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ABSTRACT. In this paper, we study a survival regression model known as Cox's 
proportional tlazards model. ~,Ve assume that the data available are alredy grouped 
and develop a ltlinillluln distance estimation procedure that is also applicable whell 
the data are also left or right censored. Asymptotic properties of the estimators are 
established and the numerical implementation of the method based on an iterated 
reweighted least squares algorit.hm is discussed. 

1. INTRODUCTION 

If one wants to e s t ima te  tlle survival function from a sample,  one could suppose 
tha t  all individuals  under  observat ion have the same l ifet ime dis t r ibut ion.  However ,  
in pract ice ,  most  samples are somewhat  heterogeneous.  Consequent ly ,  one must  take 
into account  a number  of factors having a direct  influence on each ind iv idua l ' s  survival  
t ime.  

One  of the  most  pol)ular model  used to deal with this he te rogene i ty  is Cox 's  pro- 
port ional  hazards regression model.  According to it, any two individuals  A and B 
with vectors  of concomi tan t  variables XA and XB respect ively have hazard funct ions 
h(t I Xz) and h,(t I xB) such that  h(t I x a ) / h ( t l  xB) i s  a constant  funct ion of t. One  
i m m e d i a t e  impl ica t ion of the  model  is tha t  

h(t { x) =/,0(t). g(×) 

Here ho(t) is called the baseline hazard function and in general  we restr ic t  ourselves 
to those models  for which g(x)  has a par t icular  form, namely  
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so that 

h ( t l x  ) = h0(t)e x'~ 

where x '  -- ( z ' , , x2 . . .  , x v ) i s  any vector of  regressors and /3' =- (/), . . . . . .  'qv) is the 
unknown  vector  of parameters  of interest .  

For this mode l ,  tile survival t i m e  function can be written as 

s ( t  I x)  = .%(0 °''(x'm 

where S0(t) is called the baseline survival function , see Cox (1972), }'(albfleisc}l and 
Prent ice  (1980), Lawless (1982) and Amemiya  (1988) for example,for  more discussio,, 
on hazard funct ions  and  proport ional  hazard model.  

Tile  propor t ional  hazards model  includes the Weibull  and exponent ia l  models  as 
par t icu la r  eases. It has been used to model dura t ion  t ime  unti l  a special even t  occurs. 
A m o n g  m a n y  successful appl icat ions beside model l ing survival t imes or remission 
t ime  in cancer study, we ment ion  model l ing of compensa t ion  t i lne  in actuar ial  science, 
dura t ion  of working t ime in pension s tudy and dura t ion  of u t le lnploynlent  t ime in 
economics see Lancaster  (1979), | lu t le r  and Worral (1985) or Johnson and Ondrich 
(1990) for example.  

Es t imat ion  of tho proport ional  hazards model has b e e .  studi, ' , t  , 'ss( 'ntially with 
m a x i m u m  likelihood methods ,  see Lawless (1982). Kalbfleisch and t 'r,qltic(' (1!)80). 
Looking at one of these references, one can quickly set- tha! al though tire asympto t ic  
propert ies  of those es t imators  are qui te  good in general,th(" cal , 'nlat ions at(. t~irly 
conlp[icated and can get a lot more involved when censored da ta  art. present.  Our 
m i n i m u m  quadra t ic  d is tance  approach is vet,,' s imple to (otnput( ,  alld a~ w("ll in,li, al(,. 
can be easily adapte(] to handle  ]eft or right censored data.  In fat! .  anybody  fal~ilbtt 
with any l inear  regression package can use it to find our est.iil~alol ~ft~!t a htt](' 
m a n i p u l a t i o n  of tile data.  Ryu (1994) gets essentialy the samo (,stil~a1~,r as w~ (h, 
here, howev~-r, our  quadra t ic  d is tance  approach allows us to uni ty th(. probl~,rlls ¢,t 
e s t ima t ing  the model ' s  parameters  and test ing the goodness of tlt. This  is wh;,* 
we propose to show in subsequent  paper  where we will extend our method  to ot]l(.r 
models  of regression survival models. 

Tile  s i tua t ion  we stu(ly is tile following. We have a Sitlllt,]~' (,1 iIL'l,'l,cll~l~qi~ ,,I, 
servations which is supposed to follow a proport ional  hazards survival mod~.l. TL,: 
concomi t an t  or covariate charact~rizat ion vector x = (:r 1 . . . .  , xv )  of each indivi,lu~ll 
is known. Moreover, we suppose that  g i  in {1 , . . .  , p}, x, can oi~h l ak~" a finito n u , , -  

1 2 ber 7z(i) of valu('s { x , , x , , .  ,,(i)'L .. , x ,  f .  Note that  this setup is t)avtic,tlarly sui~ah/," 

when we have indicator  varial)les taking on value 0 or I f¢,r exan~l,l( '  
Final ly,  we supl)ose tha t  lifetilnes are broken into .] ini(,rvals l: :- [~*r-J, ~z.:) 

j = 1, . . .  , J  with 0 = a 0 < a t  < . . . < a a - 1  < a a .  
"~Ve observe for each regressor vector x, th(' n u m b e r  7~(x,j) of ilt(lividuals of typ(, 

x at tile beg inn ing  of lj and c ( x , j )  the n u m b e r  of t hos(, that surviv, , l  ui~til llk,, ,,,,1 
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o f  lj .  

From the situation above, we want to get estimators ~ of/3 as well as ~'0(t) of So(t) 
simultaneously. Consequently, our estimators are semi-parametric estimators since 
we do not require S0(t) to be specified. Furthermore, we shall see our estimators are 
fairly easy to compute and will be based on grouped data. It happens often that 
data is already grouped, such as in a life table study, our method is thus particularly 
suitable. 

We introduce our quadratic distance estimators in section 2 and derive its asymp- 
totic properties. Procedures to estimate the survival function based on quadratic 
distance estimators are given here. In section 3, we show tile methods can also han- 
dle censored data. Adjustments are easy and outlined here. In section 4, we show 
the procedure how to obtain our quadratic distance estimator numerically based on 
an iterated reweighted least squares algorithm and finally a numerical example is 
included at the very end. 

2. ~IINIMUM QUADRATIC DISTANCE ESTIMATION 

Now that the problem is stated, let's list all that we know. Since each xi takes only 
a finite number  of different values, there are only a finite number I of different vectors 
x. We chose an ordering of those l vectors x(i},x(2),. . .  , x(0 as in Amemiya (1988, 
p.275) and we let this ordering be fixed from now on. This way, one can classify all the 
covariates into only one of the I classes represented by {x0), x(2),. •. , x(t)}. Moreover, 
we assume that there are replications of observations from each x(i) covariate for large 
samples. 

To simplify notation, we write n,j = n(x(0, j )  for tile number of individuals with 
concomitant variables vector x(i) present in the study at tile beginning of interval Ij 
and c;j = e(x(q, j)  for the number of individuals with regression vector x(~) sti]l alive 
at the end of interval lj. 

We then write/5;j = c~j/n~j. As mentionned in London (1988) or Lawless (1982), 
conditioning on the set {nij}, tile distribution of each cij is binomial. We compute 
tile mean and variance of t3ij as follows. First, lets define 

Pj(x) = Ix) 
Po(X) = 1 Vx 

and 
Pj(x) 

t b ( x ) -  Pj_,(x) j = 1 , 2 , . . . , J .  

If we also let Pj = Pj(O) and pj = pj(O) then one can easily verify that 

~p{~'~) 
pj (x )  = pj 
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is the prol)abili ty of survival in interval j for an individual  with covariate x. Therefore 

E[fiij] = p~,V(~(,)'O) = t '0 ,  i = 1 . . . .  , l 

all  d 

VaOij]- p,j(l  - -w~) ,  i =  1,. . . ,  t. 
7lij 

We will be using m i n i m u m  quadrat ic  dis tance methods  to find es t imators  ~1 and 
t3 -- (/31, . . .  , f i j ) .  ,qo we will min imize  an expression of the following form 

• ~ (00 - E , : )  2 

, = , . 1  

This  can also be viewed as a form of m i n i m u m  chi S(luare method.  
. exp(xl,).O) 

We could use O,j = PO, EO = Pj , and I.]/~j = 1 for example  bu t  the compu- 
ta t ions  would be fairly coml)licated and the es t imators  are not efficient. Instead we 
propose to use the s tandard  t ransformat ion  I n ( -  In()) and let 

O,j = l n ( -  In ~o) 

and  

E o = 111 ( - I n  p~ Xp(=i'~°)) 
= l , , ( - h ,  vj) + xi , ,e  

t 
= 'Y.i + x ( , ) f l  

if we let qj = In(- lnpj). 
As for lYij, the efficient choice as we shall see will be given by the approx imate  

102 



var iance  of Oi i  t ha t  we wri te  Var(Oi j )  

W i j  = Va~(O,j) 

I n ( -  In t × Var(pi j)  

l=pij 

t=p,, nij 

1 1 - p i j  
X - -  

pi j  l n ( p o )  2 n o  

1 - p~p(x~.)O) 

ni jp~  '~p(x~')~) exp(2x{,) /3) ln(pj)  2 

PJ - 1) e x p ( - 2 x i o f l )  (2.1) 
I 'Vi j  = n i j ( l n p j ) 2  

So we have t rans formed the l)roblem into one where the usual  l inear  regression 
m e t h o d s  are  appl icable .  Tha t  is we have the analogous of a l inear  model  

where  

Y i j  = I n ( - l n ( l ~ i j ) )  

Let ' s  set B '  = ( t l , -  •. , tip, if1,. • • , 7J) ,  the vector  of pa rame te r s  of interest .  Therefore  
the  same model  can be wr i t t en  as: 

Y,,.j = Z~jB + ~ij 

where Z~j = (x~i), 6~) and  6~ E 1R J is a vector  with a single nonzero componen t  equal  
to 1 in posi t ion j .  If we let 

Y '  = ( V i i , Y 2 1 , . . .  , Y n , Y 1 2 , y 2 2 .  . . , Y t2 , .  . . . . .  , Y l J , y 2 d .  . . ,  Y ld) ,  

~ . t  ~ ( C I I ~  ~ 2 1 ~  . . .  ~ £ 1 1 ~ £ 1 2 ~ 2 2 ~  , . . 1 C l 2  ~ . . . . . .  ~ I J 1 C 2 J 1 .  • . ~ £ l d )  

103 



and Ia  denote  the J x J iden t i ty  mat r ix ,  the design ma t r i x  X of t i le model  becomes:  

(xll)  

! Ia  

x~2) 

! I j  
X = xi2) 

x~t) 

i I j  
~, xll ) 

Therefore ,  using m a t r i x  nota t ions ,  we have the following model :  

Y = X B + ¢ .  

Condi t ion ing  on {nij} ,  asympto t i ca l ly ,  E (¢ )  = 0 and 

V(¢)  = Z = Diag(Wl~,  W 2 t , . . .  , WI1 . . . . . . . . . .  W1j, H/:2j, • • • , I'l:lj) (2.2) 

where  the  [V,j's are defined as in (2.1). 
By now, we have t ransfor lned  the original  prol)h,m into one for which s t andard  

weighted  least  squares  theory applies .  If we chose the weights ma t r ix  to be I~×,i we 
get the following e s t ima to r  for B 

]3 _-- ( X t X ) - l X ' y .  

l~ is consis tent  and a s y m p t o t i c a l l y  normal  with var iance covariance ma t r ix  

V ( B )  = ( X ' X ) - ' X ' Z X ( X ' X ) - '  

where ~ is tim var ianee-covar iance  ma t r ix  for Y,  as defined al,ovc ill [2.;2). N(~w. if 
we chose ~ as the weights ma t r ix ,  we get the foll(,win~ es t ima to r  

}~,,, = ( X t E - I X ) - l X ' ~ - l y .  

which is (:onsi.~tent and a s y m p t o t i c a l l y  normal  with varianc(,-covarianc(~ ma t r ix  

V(B,,,) = (X'L'- 'X)  '. 

T h e o r e m  1. B,, is a better estimator lhan 
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Proof. : We need to show that V(13) - V(I3~) is non-negatively definite. But 

V(Bw) ~--- ( X ' Z - I X )  -1 (XtZ-I)y](Z-IX)(XtZ-IX)-I 

= ( x , z - , x ) - :  ( x , z - , x ) ( x , z - l x )  - ,  

= ( X ' E - ' X ) - '  

So if we compute the variance-covariance matrix of the random vector 

u = (x'x)-'xT - (x'z-tx)-'(x'z-')r 
we get 

v ( u )  = ( x ' x ) - ' x ' z x ( x ' x ) - '  
_ (X'X) -  I xty] ~,.~- 1X (X" y]- 1 X) -1 

- ( x ' z - ' x ) - ' ( x ' z - ' ) ~ ( x ) ( x ' x ) - '  + ( x ' p , - ' x ) - '  

= ( x ' x ) - ' x ' z x ( x ' x ) - '  

- ( x ' z - ' x ) - '  - ( x ' z - ' x ) - '  + ( x ' z - ' x ) - '  

= ( x ' x ) - ' x ' z x ( x ' x ) - '  - ( x ' z - ' x ) - '  

v(u) = V(B) - v(B~). 
V(I~) - V(t~,,,) being the variance-covariance matrix of the random vector U is clearly 
positive semi-definite. [] 

Of course from now on we will be using ]]w which is the efficient quadratic distance 
estimator and for notatiou sake, we write 

As a result of tile above comtmtations , we could compute the covariance matrix for 
the estimators of our /3  and consequently ,5'(a,lx). Obviously, V(/3) is easy to find. 

By lett ingA be the p × (l, + J) matrix of the for , , , :A= lip Op×a] t h e n / 3 = A I ~  
and its variance-covariance matrix is V(/3) = A ( X ' E - I X )  - ' A ' .  

Also,let's define P such that P '  = (pl ,p2, . . .  ,p J) as the vector of the base survival 
probabilities in each of the J intervals considered. So, fro,,, 13~, we can extract 1 ~ 
the estimator hu' P by applying the adequate transformation to the last elements of 

15' = (exp( -  exp(ah )), e x p ( -  exp(~2)), . . . ,  e x p ( -  exp('~a))). 

Consequently, it is easy to estimate the survival fimction 5(aiJx) and the base survival 
function ,%(ai). The estimators and their asymptotic properties are given in the 
following theorem, the proof of which consists of using a Taylor expansion type of 
argumeut as the one used in deriving (2.1). 

105 



T h e o r e m  2. For a given value of the covariate x' = (x l ,x2 , .  . . ,xp) ,  we can estimate 
A . " 

the survival function S(ai lx) ,  with S ( a d x  ) =~=, i6k "'p(x'o). 

In this case,the approximate variance of S(ai lx)  is 

Var I , ~ )  ] = [S(a, lx)]eexp(2x'~)g'(x'~-'X)-~g 

whcre 

( i: V' \ - -Xl  ~ --X2 .~--Xp e~k~ . , 0  
I 

k= l  k= l  k= l  

We can estimate the base survival function S0(ai), with i [Ik=l P~ and m this case,the 

approximate variance of So(ai) is 

't/)h e re  

y~, = ( 0 , . . .  , o , - e  ~' , - e ~ = , . . . , -  e~', O , . . .  ,0)  

p times 

Note tha t  these variance expressions can he est imated easily in a senti-parametric  
way. 

3. CENSORED DATA 

So far, in our exposition, we assumed without s t ipulat ion that  all withdrawals 
from a survival s tudy were due to "death" (or due to whatever other cause whose 
durat ion t ime we are trying to es t imate)  and that all individuals under study are 
present at age 0 at the beginning of the observation period. However, often in such 
studies, there will be withdrawals due to other external  factors that  shouldn' t  be 
considered as "deaths" ,  in other words, the da ta  could be censored. Moreover, rather 
than tossing away those individuals retiring too early, and considering the artificially 
reduced populat ion resulting, we would like to get as much information as possible 
from all individuals under study. We do this in the following way. 

As we have seen, we are lead to use a general linear regression model to obtain 
our es t imators  for the beta 's  and S ( I x ) .  Essentially, the est imators  are based on the 
/~ij's, the probabil i t ies  of survival in interval j for individuals with characterization 
vector x(i). Obviously, the closer the t~,j's reflect reality, the bet ter  our est imators  
should be. This leads us to the notion of exposure. 

For a given vector of concomitant  variables x{,), we had defined in section 2 
~ij = cij/rzij where nlj is the number  of individuals with that  vector of concomi- 
tant  variables present in the study at the beginning of interval Ij and ci5 for the 
number  of individuals with the same vector of regression still alive at the end of 
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interval Ij. Suppose for simplicity that all intervals are of length 1 and that a total 
of K individuals with vector of concomitant variables x(o appear in the interval Ij 
for some time. 

For each of these, define sk, k = 1 , . . . ,  K as the time of entry into the study and 
tk, k = 1 , . . . ,  K as the time of departure from the study for external reasons. Those 
are left and right censoring times. One way to take all pertinent information into 
account is to define 

eij 
'~J ~ E L , ( t ~  - ~ ) '  

where, the denominator is the exposure measure mentionned in London (1988) and 
Lawless (1982). We can then apply our procedure to those 15i3's, keeping in mind 
that it is then an approximate one. 

4. NUMERICAL IMPLEMENTATION 

4.1. A l g o r i t h m .  To compute the estimator B is fairly straightforward with any 
statistical package that handles muItple linear regression. As a matter  of fact, the 
only non-trivial work involved is in organizing the data correctly and generating tile 
design matrix X, obtaining I~ is then simply a matter of using already available 
routines. 

The efficient quadratic distance estimator t ~  though depends on the/~ij's and the 
/3's. However, those quantities are not available a priori but easily estimated once 
one has an initial estimate of B. This leads clearly to an iterative procedure where 
one first estimates B by t~, extracts the iS,j's and the/3's from it and then uses those 
values to compute the entries of the weight matrix IV. From this point on, one 
repeatedly computes I ~  and updates W until a criterion for convergence is met. So 
we use a series of iterated reweighted least squares procedures. 

In practice, in all examples of computations we have tried, the first estimates I3 
were slightly off, though the weight matrix generated gave a preliminary 13~ quite 
different from I~. The next couple of iterations gave it a slight correction and from 
that point on, any further iteration gave relative changes of far less than 0.01% for 
each parameter. In all examples we tried, we never needed more than 3 or 4 iterations 
to obtain an acceptable accuracy. 

4.2. E x a m p l e .  We have implemented our method in S-Plus. We wrote code that 
would create the design matrix X from the situation at hand. We haven't  tested it on 
real life data but we did test it extensively by simulation. In the example described 
here, we decided to let/3o = (0.1, 0.3, 0.2) while the values that could be taken by 
x were x = (xl,x2,x3) where x,e{O, 1}, x2e{0, 0.4, 0.9} and x3e{-1,  1}. 

We fixed the base survival function to be that of an exponential random variable 
with parameter X = 0.1 so that the base expected time of survival is 10. For the 
12 different vectors of covariates, we simulated corresponding times of survival for 
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an initial  sample of 1000. We chose to split the t ime interval at all quarters from 0 
to 3, thus generating 12 sub-intervals. With  this setup, we then ran our est imation 
procedure on the result of the simulations. We repeated this process 200 times to 
have a good idea of how good our method was. The results are fairly encouraging. 

In the following table, we compare the result of our two methods,  natnely with and 
without  weights. 

Pl 
P2 
P3 
P4 
Ps 
P6 
pr 
l)8 
I)9 
Pro 
Pll 
P~ 

No weights With  weights 
Mean Variance Mean Variance 

0.09369945 0.001677068 0.09302015 0.001587944 
0.28838041 0.002404128 0.28927907 0.002317426 
0.19315782 0.000319992 0.19340011 0,000316183 
0.97617147 2.64575e-006 
0.97623301 2.20511e-006 
0.97647781 2.13237e-006 
0.97642031 2.60941e-006 
0.97655229 2.34267e-006 
0.97648027 2.67874e-006 
0.97659894 2.50644e-006 
0.97651214 3.45007e-006 
0.97668582 2.76196e-006 
0.97654216 2.81350e-006 
0.97655769 2.09560e-006 
0.97645519 2.09560e-006 

0.97620276 2.58179e-006 
0.97620834 1.97766e-006 
0.97645571 2.06813e-006 
0.97639730 2.39343e-006 
0.97655295 2.21630e-006 
0.97651056 2.45656e-006 
0.97662187 2.52137e-006 
0.97650509 3.45923e-006 
0.97664985 2.69636e-006 
0.97654069 2.78533e-006 
0.97658714 2.03501e-006 
0.97651284 2.03513e-006 

Empirical means and variances for 
the two est imation procedures. 

It appears  that  the weighted w~rsion performs bet ter  than the unweighted one, as 
confirmed by the theory. 

4.3. E x c e p t i o n a l  cases .  Because of the transformation l n ( -  in) ap]ied to our t3ii's, 
there  are a few situations raising concerns. Plasically there are two situations which 
are opposite extremes and that  should be avoided. 

The first one is when all individuals with the same characterisation vector (lie in 
a given interval. The problem is that  this would give/~,j = 0 and we couldn' t  apply 
the desired transformation.  In other words, tile observation period has gone too long 
and it should have been t runcated before. Or another way to look at it is to say that  
the sample isn' t  large enough. Unfortunately, if the da ta  has already been collected 
in this way, there is nothing that  can be done to fix this. 

The other problematic  si tuation is when no individual with a given characterisation 
vector die in a certain interval. Here, that  would mean/~ia = 1 and the second log 
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can ' t  be taken.  Again,  we could in terpre t  this as too small  a sample.  However ,  
this can be easily fixed by ex tend ing  that  interval  of observat ion to conta in  also the  
previous  or next  one. 

As a concluding note,  we recall tha t  

~'~--~ ( O i j -  Eij)  2 

,=, j=, W~: " 

as in t roduced  in section 2 defines a distance.  Consequent ly ,  a goodness of fit test  
s ta t i s t ic  can be cons t ruc ted  based on tha t  expression.  This  will be dealt  in another  
paper .  
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