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Estimating Long-term Returns 
in Stochastic Interest Rate Models 

Lijia Guo *and Zeng Huang 

Abstract 

This paper addresses the evaluation of long-term returns R(t~ r) 
when the short interest rate r(t) is modeled by a general diffusion 
process: 

dr(t) = a(t, r(t))dt + a(t, r(t))dZ 

where Z(t) is a Brownian motion and where a(t, r(t)) and a(t, r(t)) 
are the instantaneous drift and variance, respectively, of the processes 
r(t). By deriving the long-term return dynamics and invoking the 
Feyman-Kac formula, the long-term return is represented as the so- 
lution of a partial differential equation. A finite difference method is 
derived for the valuation of the long-term return. Numerical examples 
and applications are also addressed. 

*Lijia Guo is grateful to the support from The Ohio State University Actuarial 
Faculty Fund 
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1. L \ ' T R O D U C T I O N  

1. I n t r o d u c t i o n  

Long-term return is the concern of insurance companies in reserving, invest- 
ment decision making, ruin analysis as well as product pricing. Interest rate 
models call be used to price interest rate derivative securities and to hedge 
investment risk. Previous work to study long term return in the stochastic 
interest rate environment includes Deelstra and Delbaen (1995). Deelstra 
and Delbaen studied the convergence in law of the long-term return when 
the short interest rate modeled by an extension of the CIR model. Assuming 
short rate r(t) follows 

drt = (2~qrt + 5~)dt + g(rt)dZt,  (1.1) 

With (Zt)t>o a Brownian motion, /~ < 0 and 
g : R --~ R + a Lipschitz function vanishing at zero. 

They proved that under certain conditions, the following convergence 
almost everywhere holds: 

i fo' -6 - r ,  d 7  - - ~  - -  
t 2~ 

with ~ f~ 5~dr -+ 5 almost everywhere. 

In general, however, no closed formula for long term stochastic interest 
rate has been given. 

In this paper, we study the long term interest rate in a general stochastic 
setting. We developed a partial differential equation to estimate the expected 
long term interest rate. The numerical method to solve the partial differential 
equation (PDE) is also presented. 

The paper is organized as follows: In next section, we give a general 
description about  the stochastic long term return. We derive the partial 
differential equation for estimating the expected long term return. Section 
3 presents fully explicit finite difference scheme for the numerical solution of 
the associated PDE. In Section 4, some examples are given for the estimation. 
The conclusion and discussion are presented in section 5. 
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2. P r o b l e m  F o r m u l a t i o n  

Consider a probabili ty space (f~, ~-, P)  with the filtration {~-~, t _> 0}, all 
increasing family of sub-sigma-algebras of S .  

At some future time T, T > 0 , the long-term return of interest rate over 
[0, T] is represented by R(T, 7"). 

Let r(t) represent the instantaneous short interest rate at t. 

If r(t), 0 < t < T is known, then 

R(T, r) = r(T)dT 

The purpose of this s tudy is to forecast R(T, r) in a general stochastic setting. 

We assume tha t  r(t) follows a diffusion process described by 

dr(t) = a(t, r)dt + a(t, r)dZ, (2.1) 

a = instantaneous mean of the interest rate 
a 2 = instantaneous diffusion variance of the interest rate 
Z(t) = s tandard  Brownian motion. 

At any time t C [0, T], the average return over [t,T], t e [0, T] is defined 
as 

1 /t  T r(w)d7 A(t, T, r) = r---'-tt 

Notice tha t  

Define ~: as 

R(T, r) = A(O, T, r) (2.2) 

1 2 02 0 0 (2.3) 

The following theorem states that  the expected long-term return dynamics 
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are determined by a partial differential equation 

T H E O R E M  1 Assume that c~(t, 7"),a(t, r) are continuous and satisfy 

II(~(t,r)[l 2 + []a(t,r)ll 2 <_ K2(1 + Ilrl[~), 

for every 0 < t < oc ,x  E R +, where K is a positive constant. 
Then 
(i) v(t, r) = E r [A(t, T, r)] satisfies the Cauchy problem 

r v 

£v + ~ + T_--------t - 0; in [0, T) xT¢, (2.4) 

subject to the boundary condition 

l imu( t , r )  = rT; r C T~. (2.5) 
t o T  

(ii) The closed-form solution of the long-term interest rate is given by 

R(T, r) =- ~ G(O, r; ~', ~) ~ d~dr, (2.6) 

where G(t, r; T, ~) is the transition probability density for the process r(t) 
determined by (2.1); i.e., 

P[r(T), given that r(t) = r e A] = /A G(t,r;~-,~)d~, (2.7) 

for all the Borel set A. 

P r o o f  First we define S(t, r) and u(t ,r)  as 

[ s ( t ,  r) = r(~)d~ 

u(t ,  r) = E r IS] 

According to Feyman-Kac formula, (see, for example, Karatzas and Shreve, 
1991) 

[; ] u(t ,r)  = E ~ r(T)d'r dt (2.8) 
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is the solution of 

/ : u + r = 0  

a n d  

s ( T ,  ~) = o. 

Let G be the Green's function, then u could be solved by: 

Since 

= ]o F 

1 
A(t ,  T, r) - T - t S( t ,  r) 

(2.9) 

(2.10) 

(2.11) 

and 

1 - 1  - - £ u +  - - u  
T - t (T - t) 2 

--~" - - V  
- -  + 

T - t  T - t  
(2.12) 

lim u( t , r )  = lim E r [ A ( t , T , r ) ]  = E rr [l im R ( T , t , r ) ]  = rT 
t--~T t - ~ T  [ t--~T 

Q.E.D. 
Let rm~( t )  and rmi~(t) be the highest and lowest possible values of the 

expected short rate. Then we practically solving PDE (2.4) and (2.5) together 
with the following boundary conditions: 

v(t, rmi~) = rmi~(t) E [0, T); (2.13) 

v(t, ~m=) = ,-,~o:(t) e [o, r ) .  (2.14) 
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3 .  F i n i t e  D i f f e r e n c e  M e t h o d  

Let  
T r.,o¢ - -  l ' r n * n  

. £  t = , \~ , _ S t -  M 

\Ve consider  a un i fo rm grid of  (,\; + 1 ) (M + 1) in t.hc. (i, r) space: 

) 

{(t,, = n p ,  r~ = ih ) ,  n = 1 2 , . . . , . Y ;  i = 1 , 2 , - . . ,  M}  

where  p = 2Xt and h = L r  are the discrete  inc rements  in t ime  space and 
shor t  ra te .  

\Ve next  define grid func t ion  I~, ,n  = t,  2 , . . . , N  as 

l ; ,  = ( v ( t , , r l ) ,  u ( t , , r2 ) , . - . , v ( t , , , r~ ,1 ) )  r n = l , 2 , . . , , N ;  (3.1) 

and denote 

ai,~ = a ( t n , r i ) , a i , n  = a ( t ,~ , r i ) ; i  = 1 , 2 , . - . , M ; n  = 1 , 2 , - . . , N .  (3.2) 

By  rep lac ing  the  par t i a l  der iva t ives  by the  forward finite differences,  we 
a p p r o x i m a t e  P D E  (2.4) by the  following implici t  finite differences scheme: 

r - -  Jt r 

~'n = ~n (,An ~n+a 4- bn), n = 1 , 2 , . - . , N  - 1. (3 .3 )  

where  

Bn(i, i) = 1 1 P°i2'n i = 1 , 2 , . . .  M - 1: 
(N - n) + h - - r - '  

B n ( i , j )  = O, i C j ,  i , j  = l , 2 , - . . , M - 1 .  (3.4) 

A n ( i , i )  = 1,i  = 1 , 2 , ' " , M -  1; 

A, , ( i ,  i + 1) - pa~'" pa/ ,n ,  i = 1 2 , . . . ,  M - 2; 
2 h 2 2h 

A n ( i ,  i - 1) - pa~'n pc~i,~ . - 2h---~' 2 + - - ~ - , ¢ = 2 , 3 , ' . ' , M - 1 ;  

.A ,~( i , j )  = 0,1i-jl > 1 , i , j  = 1 , 2 , . . . , M -  1. (3.5) 
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and 
i h p  

- - - , i  = 1 , 2 , - . . ,  M .  (3 .6)  

with local truncation error that behaves as o (h 2 + 2h + p) for tile expected 
long-term return v ( t ,  r) as h and p -+ 0. 

The boundary conditions corresponding to (2.4), (2.12) and (2.13) are 

, ~  = , ( X p , , h )  = r:4~h); (3.7) 

~4,(0) = ,',,,,,(,~p); (3.8)  

t ~ ( M )  = r,na~(np). (3.9) 

The finite differences schemes (3.1) - (3.5) evaluate {I~,n} in the order of 

~ presents the estimate of expected long term return over [0, T], R(T, ri) 
based on the ri at t = 0. 

4. Numer ica l  examples  

E x a m p l e  1. ( C I R  m o d e l )  
As a numerical example, consider the one factor CIR model where the 

risk neutral interest rate process is assumed to be 

dr  = (#  - ,~a)rdt  + a r d Z  (4.1) 

where A is the market price of risk. The corresponding PDE (2.4) to calculate 
the expected average rate v( t ,  r)  becomes 

1 ~ 202v  Ov Ov r v - 0; i n  [0, T) x7"4 +, 

(4.2) 
To estimate the long term return, Let x -- Inr  and the above PDE is equiv- 
alent to 

1 2 02v cr 2 ) O v  + Ov e ~ v -- 0; i n  [0, T ) × ' R ,  
~ ~ + ( z -  ~ -  2 & ~ + ~--~ + T ~  

(43) 
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A p p l y i n g  f ini te  d i f fe rences  s c h e m e  [3.3) w i th  ,7 .... = a a n d  ~,,,, = ll - h a  - 

~ ,  tile expeet .ed r e t u r n s  over  [0, T] are o b t a i n e d .  

F i g u r e  1. E s t i m a t e d  O n e  Year R e t u r n  (or = 1, # = 7%) 

2.5 

2 

1.5 

0.5 

0 L.- 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
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Figure 1 gives the es t imated one year re turn corresponding to the short  rate 
at t = 0 .  

Figure 2. 
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Figure 2 shows the 1-Year ret, urn when the lewq of volatility is ilwreas~d from 
1 to 1000. 

Figure 3. 
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Figure 4. Estimat~,d Ten-year l{eturn (o = l,/1 = 15%) 

2f 

1.8 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 
0 

I B I I I I I 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

43 



Figure  5. E s t i m a t e d  Twenty-year  t~eturn (a = 1. Iz = 2I)~/~,) 
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E x a m p l e  2. Cons ider  a general ized CIR mode l  where  t~ and  a are not  

c o n s t a n t  bu t  func t ions  of t: p = #o  + k t ;  cr = c r x / ( T  - t )  
* /  
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Figure 6. Est imated Five-year Return (o = v/5 - t,/z = 15% + 0.001t.) 
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Again we calculate the est imated returns over five years as shown in Figure 
6. The ten years and twenty years returns are given as follows: 
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t"igur(~ 8. Est imat( 'd  Twent..v-y(,ar I~.eturn (o = 2 ~ - t ,  ll = 15~: + 0.00lt .)  
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5.  C o n c l u d i n g  R e m a r k s  

This study has developed a stochastic model for forecasting the long-term 
return of interest rate process. The paper derived a dynamic model for aver- 
age short rate over time to Illal urity period. Both closed-form and lmmerical 
solution are presented is presented together with numerical examples. The 
method developed in this paper is suitable fbr any interest rate process in- 
cluding multi-factor models. For example, to estimate tile expected long 
term return with short rate modeled by the two factor CIR model, one could 
solve PDE (2.4) in two diinensional space. Tile method could be used for 
hedging interest rate risk, pricing and managing interest rate derivatives and 
interest rate sensitive insurance products. 
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