ACTUARIAL RESEARCH CLEARING HOUSE 1997 VOL. 1

A Cash Flow Approach To Teaching Actuarial Science

Ronald Crabb
Department of Finance and Business Law
University of Wisconsin-Whitewater

This paper is based on a presentation made at the 31 st Actuarial Research Conference at Ball State University in August of 1996.

Abstract

The complex world of life insurance, historically the domain of those gifted in integral calculus and probabilistic and present value mathematics, is explored using Excel spreadsheets and the Solver macro. The cash flow approach to learning life insurance examines how the cash flows through an insurance company. By avoiding the need for integral calculus, probabilities, and present value mathematics, the fascinating world of life insurance is opened up for study to those students who possess only modest math backgrounds.

The cash flow approach to teaching actuarial science avoids the use of both probabilities and present values, and allows students with very modest math skills to learn how life insurance works. This approach involves the same assumptions and the same data as in the traditional approach. The traditional assumptions are:
(1) Premiums are payable at the beginning of the year;
(2) Premiums are level in amount; and
(3) Claims are paid at the end of the year.

The required data are:
(1) The age of the insured when the policy begins:
(2) The age of the insured when premiums end;
(3) The age of the insured when the benefit ends;
(4) A mortality table:
(5) An interest rate; and
(6) A death bencfit. [Crabb (1979, p. 716)]

The cash value approach examines how the cash flows through an insurance company for a group of insureds. See Figure One for the equations underlying those cash flows. Prior to the payment of the first premium, the Beginning Reserve has a zero dollar balance. Premium Income equals the number of insureds alive at a given age multiplied times the premium payable that year. (Since the premium is unknown. it is temporarily set equal to zero.) Interest Income is computed on the sum of the Beginning Reserve plus the Premium Income. Claims Paid are equal to the number of insureds dying in a given year multiplied times the death benefit. The Ending Reserve is the sum of the Beginning Reserve plus the Premium Income plus the Interest Income less the Claims Paid. The Beginning Reserve in the next contract year is equal to the Ending Reserve from the previous year.

Figure One depicts the cash flow for a group of insureds age 21 who are purchasing a ten year term life insurance policy. In a mathematical sense, there is one equation in one unknown, with that unknown being the term life premium. Using the Solver function (a built-in macro present on most spreadsheets), the problem is to find a term premium such that the ending reserve for the policy is zero; that is, find the value for $\$ E \$ 14$ such that $\$ G \$ 30$ has a value of zero. See Figure Two.

The Solver function would be found under Tools in an Excel environment. Once the problem is specified (see Figure Two), the student clicks on the [Solve] button, and the Excel Solver macro iterates towards a solution. See Figure Three.

However, there is a problem with the solution. Although the ending reserve is zero at the end of age 30 , at ages $24.25,26$, and 27 , the ending reserves are negative. The insurer can not allow this to happen, and hence the number of premium payments must be reduced. This creates a trial and error situation. Reduce the number of premium payments by one payment. Bring up Solver. Check to see if the negative reserves have become positive. In the example in this paper, a reduction to nine payments is sufficient
to solve the negative reserve problem. See Figure Four. For longer contracts and for contracts at different issuc ages. more payments may need to be eliminated.

A reduction from ten payments to nine payments causes the premium to rise from $\$ 12.49$ to $\$ 13.56$. What if the number of payments was reduced to five payments? Then the premium increases to $\$ 22.13$. What if the insured made only one payment? Then the premium increases to $\$ 107.27$. The student now sees how a single premium contract works. The cash flow shows that the amount of interest increases significantly as the premium paying period is shortened.

What if the interest rate was 6% instead of 5% ? Change the interest rate; bring up Solver: and learn the answer. The student can thoroughly investigate the relationships between and among the number of premiun payments and/or potential interest rates for the ten year term contract. By extending the cash flow formulae to the end of the mortality table and resetting Solver to make the ending reserve at the last age in the mortality table to be cqual to zero, the student can explore the whole life insurance product.

Whole life products have cash surrender values that steadily increase over the length of the contract. approaching the face amount of that contract as the end of the mortality table nears. [Black \& Skipper (1994, p. 990] In the spreadsheet environment, this characteristic is explored by adding a single equation to the set of equations already present on the spreadsheet. In Column H in row 21, enter [$=$ G21/A22] (the Ending Reserve at the end of age 21 is divided by the insureds who survived to age 22). Copy this formula down the page to the end of the mortality table. See Figure Five.

In addition to its cash surrender value, the whole life insurance product also has two other nonforfeiture options: Extended Term insurance and Paid-Up insurance. What if the insured, after making the first two whole life insurance premium payments, decided to make no more premium payments? Then the insurance company would use the money in the Ending Reserve to buy as much insurance as it could with that amount of money. Set all future premiums to zero, and look for a negative Ending Reserve. For the whole life policy issued at age 21, the $\$ 81$ cash value which exists when the makes only premium payments will provide a deah benefit of $\$ 10,000$ for 7 years and 196 days. The Extended Term option is laid out in Figure Six.

The Paid-Up option requires a second cash flow algorithm. Duplicate the whole life cash flow algorithm. On the copy of the original algorithm, set the number of whole life premiums to one. The Solver computed premium of $\$ 945.52$ is the net single premium for age 21. The resulting set of cash values for this algorithm yields the net single life premiums for ages 22 through the end of the mortality table.

The Paid-Up option death benefit can be computed for ages 22 through 109 by using the cash values from Figure Five and the net single premiums from Figure Seven. Note that those net single premiums are located in column H , the Cash Value column.

The quotient of the whole lite cash value (from Figure Five) to the net single premium (from Figure Seven) yields the amount of the death benefit payable under the Paid-Up option. See Figure Seven for the set of net single premiums. Interested readers can make the computations on their own.

The spreadsheet and Solver allow the student to visually see how cash flows into an insurance company and how cash flows out of an insurance company. By using the spreadsheet for the purpose for which it was designed (the What if? purpose) and combining the "What if?" with the Solver macro, students with only modest mathematical backgrounds can learn how life insurance products work.

References

Black, K. \& Skipper. H.D. (1994) Life Insurance. Prentice Hall
Crabb. Ronald R. (1979) A Computer Approach To Teaching Life Insurance Mathematics. The Journal of Risk and Insurance, pp. 715-725.

Figure One. The Equations Underlying The Cash Flows For A Insurance Company

Figure Two. Preparing Solver To Solve For The Ten Year Term Premium

Figure Threc. The Solution To The Ten Year Term Premium Problem

Figure Four. The Cash Flow For A Nine Pay Ten Year Term Policy

Figure Five. The Cash Flow For A Whole Life Policy

Figure Six. The Cash Flow Solution For The Eviended Term Option At Age 23

Figure Seven. Computing A Set Of Net Single Premiums For Ages 21 to 109

