
ACTUARIAL RESEARCH CLEARING HOUSE
1 9 9 9 VOL. 1

The Inner Workings of Neural Networks
and Genetic Algorithms*

Arnold F. Shapiro, J. Scott Pflumm and Thomas A. DeFilippo ~
Penn State University

ABSTRACT

Genetic algorithms (GAs) and neural networks (NNs) are currently being used in actuarial and
financial modeling. Nonetheless, while there is a general awareness of the nature of these
techniques, there is often only vague familiarity with the details of how they are implemented
This article is intended to help alleviate this situation. Its purpose is to present an overview of
GAs and NNs, which includes an explanation of what they are, how they work, and an example of
how they are implemented

INTRODUCTION

Actuaries generally have an awareness of the nature of genetic algorithms (GAs) and neural
networks (NNs). Most know, for example, that GAs are based on genetics and evolution and
NNs are based on the structure of the brain. However, there is often only vague familiarity with
the details of how these techniques are implemented.

This is unfortunate. Many actuaries are confronted with problems where GAs and NNs are
appropriate. These include problems which require a heuristic solution because of the vagueness
of the underlying theory, and situations involving nonlinearities, where there is an emphasis on not
making unjustified assumptions about the nature of those nonlinearities. Consequently, one would
expect to see these techniques implemented more often.

A plausible explanation of why these techniques are not being used more often is that potential
users are not sufficiently familiar with their characteristics and, consequently, forego opportunities
for implementation. Assuming this to be the case, the purpose of this article is to help alleviate

l'l]le authors are affiliated with the Penn State University. Amold Shapiro is Professor of Actuarial Science and
Insurance and Robert G. Schwartz Faculty I:ellow Scott Pflumm is a Research Associate of the Risk Management
Research Center Thomas I)eFilipt'~s was a student in the Universily Scholars Program

Corresp~mdcnce should l-,e addressed to Arnold Shapiro at afsl@psu edu

*This work was sponsored in part b~ the Committee on Knmvlcdgc Extension and Resc~arch of the Sc.cie~' of
Actuaries.

arc9SH m l wpd

415

this situation by presenting an over;,iew of GAs and NNs, which includes an explanation of what
they are, how they work, and an example of how they are implemented

GENETIC A L G O R I T t l M S

Genetic algorithms (GAs) are automated heuristics that perform optimization by emulating
biological evolution. They are particularly well suited for solving problems that involve loose
constraints, such as discontinuity, noise, high dimensionality, and multimodal objective functions.

GAs can be thought of as an automated, intelligent approach to trial and error, based on principles
of natural selection. In this sense, they are modern successors to Monte Carlo search methods.
The flowchart in Figure 1 gives a representation of the process.

Figure 1
Flow Chart of Genetic Algorithm

, g = 0] - tpopulation P (0) l

evaluate 5ttness of ~ N o t s
incli~Aduats of P(t) I N.

j ' x 7
I indi~,uals i°-PTt+ 1) =~1

As indicated, GAs are iterative procedures, where each iteration (g) represents a generation The
process starts with an initial population of solutions, P(0), which are randomly generated. From
this initial population, the best solutions are "bred"v,,ith each other and the worse are discarded.
The process ends when the termination criterion is satisfied.

As a simple example 2, suppose that the problem is to find by trial and error, the value of x, x =
0,1, .., 31, which maximizes f(x), where fix) is the output of a black box 3 If(x) = x2]. Using the
methodology of Holland (1975), an initial population of potential solutions {yj[i=l,...,N} would be

2Adopted rrom (ioldberg i 198<=), Chapter 1 and Vonk et a l (19971, Chapter 3

~'['he fact that the output of the black I×>x is I'(x)-x: is provided so thal the reader can better I'ollow and e,.'aluate the
process. "['his function, while adequate IUr this illustration, is not adequate IUr a general illustration, because the local
maximum is the global maximum, so there is no chance liar the process Io get trapr, cd in a sulx~ptimal solution.

4 1 6

randomly generated, where each solution would be represented in binary form. Thus, if0 and 31
were in this initial population of solutions, they would be represented as 00000 and 11 I 11,
respectively. 4 A simple measure of the fitness ofyj is pgf(yj)/Zj f(yj), and it would be the solutions
with the highest pj's that would be bred with one another.

Table 1 summarizes these steps assuming the foregoing black box and an initial population of
solutions of size four.

Table 1
Genetic A_lgorithm Worksheet
Initial Expected

Population count
(Randomly x L 4 ~

No. Generated) Value f(x)]El I Tl"i
1 1 0 1 1 0 22 484 0.45 1.80

S2mu -1 0 0 1 1 19 361 0.34 1.40
3 0 0 1 1 1 7 49 0.05 0.20
4 0 1 1 0 1 13 169 0.16 0.60

1063 1.00 4.00]
! Average 266 0.25 1.00 i
i Max 484 0.4_5 180 ,

The first step is to randomly generate the members of the initial population, which, in this case,
are the binary strings (chromosomes) 10110, 10011,00111, and 01101. Figuratively, each of
these 20 genes could have been determined by flipping 20 coins and assigning each gene a value
o f " l " or "0," depending on whether the outcome was a "head" or a "tail." The equivalent
random x-values are 22, 19, 7, and 13, respectively.

The black box [fix) = x 2] provides the first set of potential solutions: 484, 361, 49, and 169. The
sum, average, and maximum of which is 1063, 266, and 484, respectively

Since the solutions are developed adaptively based on the observed data, and the goal is to
maximize fix), the relative fitness of each of these samples is assigned a value of f(xj)/Ej f(xj) =
f(x~)/1063. Thus, the relative fitness of each of the initial values are 45%, 34%, 5%, and 16%,
respectively. 5

The second step is to use the current population of solutions to generate the next one. A
flowchart of this process is depicted in Figure 2. As indicated, there are three ways to develop a
new generation of solutions: reproduction, crossover, and mutation.

431=1"2~+1°22+ 1"2:+ 1"2~+1"2 o

5These values have been adjusted to sum to 100%

417

Figure 2
Genetic Operations

!

reproduction / ~ m~ation

select fit
:rossover

' I

I ^ P ~ H) I cros,o,,~r I i ^P(t* l) j
= 1 COpy] ~ J : 1 mutant I

I , P t + , ~1 I

Reproduction adds a copy of a fit individual to the next generation This is accomplished by
randomly choosing a solution from the population, where the probability a given solution is
chosen depends on its pj value An intuitive way to accomplish this is to use the notion of a
weighted roulette wheel, as depicted in Figure 3, where tile wheel can be unbiasly spun four times
to randomly choose the next population

Figure 3
Weighted Roulette Wheel

For example, assuming that outcomes of such spins resulted in the expected count, N pj [Table l,
col 6], rounded to the nearest integer, and adjusted to sum to N Then, two samples would fall
within area (1), one sample would fall within area (2), and one sample would fall within area (4)
None of the samples would fall within area three. Table 2 shows the situation in this example after
the first reproduction Note that chromosome three has been replaced with a duplicate of
chromosome one.

4 1 8

Table 2
Mating Pool After Reproduction

i Initial Population Reproduced Mating Pool
Stnng (Randomly # of after
N o - Generated') .~ times Reproduction

1 1 0 1 1 0 yes 2 1 0 1 1 0

2 1 0 0 1 1 yes 1 1 0 0 1 1 !

3 0 0 1 1 1 no 0 1 0 1 1 0 ! , ,

4 ° ~ I 0 ! yes 1 0 1 1 O t i

Crossover emulates the process of creating children, and involves the creation of new individuals
(children) from the two fit parents by a recombination &their genes (parameters). In the
example, crossover would take place in two steps: first, the fit parents are randomly chosen on the
basis of their pj values; second, there is a recombination of their genes.

Table 3 depicts the process If, for example, the randomly chosen fit parents were 10110 and
10011, and the randomly chosen crossover point was after the third gene, crossover would result
in the two children 10111 and 10010. The improvement as a result of this iteration can be seen by
comparing the last two columns of the table.

Table 3
Crossover

Mating Pool Mate New
String after Randomly After x - - - f(x) - -
No Reproduction Selected Crossover Value new old

1 t 0 1 1 0 2 1 0 111 1 23 529 484

! 2 1 0 0 1 1 1 1 0 011 O 18 324 361

i 3 1 0 1 1 0 4 1 011 0 1 21 441 49
I

4 0 1 1 0 1 3 0 111 1 0 14 196 169

Sum 1490 1063
Average 373 266
Max 529 484 ~'

In the final step of the iteration, there is a small probability (- 0.001) that a particular gene will be
subject to mutation. That is, if its value is 0, it will be changed to a 1, and visa versa. This has
the potential effect of introducing good gene values that may not have occurred in the initial
population or which were eliminated during previous iterations.

NEURAL NETWORKS

Neural networks (NNs) are software programs that emulate the biological structure of the human
brain and its associated neural complex and are used for pattern classification, prediction and
financial analysis, and control and optimization.

419

A sketch of the operation ofa NN is shown in Figure 4.

Figure 4
The OPeration o r a Neural Ne twork

weight~ I ~
t

I Compute j (~ Y e , CompUteoutput ..,(I Hidden Layer
Value ~ Vaues

The case depicted involves supervised learning, so that both the inputs and output of the system
are known, 6 and the objective is to find a relationship between them. The process begins by
assigning random weights to the connection between each set of neurons in the network. These
weights represent the intensity of the connection between any two neurons and will contain the
memory of the network. Given the weights, the intermediate values (hidden layer) and output of
the system are computed If the output is optimal, the process is halted; if not, the weights are
adjusted and the process is continued until an optimal solutions is obtained or a stopping rule is
reached.

If the flow of information through the network is from the input to the output, it is known as a
feed forward network. If inadequacies in the output are fed back through the network so that the
algorithm can be improved, tile NN is said to involve back-propagation

Neural Processing Unit

The core ofa NN is the neural processing unit, an example of which is shown in Figure 5.
Figure 5

Neural Processing Unit
Inpuls Weights

_W o

X1 ~ Activahon \~

Ag~legalio¢~

6 , Examples oI knox~n output include st~ch things as I'iHns that have become insolvent and claims v, hich are fraudulent

420

As indicated, the inputs to the neuron, xj, are multiplied by their respective weights, wj, and
aggregated. The weight w, serves the same function as the intercept in a regression formula, 7
The weighted sum is then passed through an activation function, F, to produce the output of the
unit. Typically, the activation function takes the form of the logistic function F(z)---(l+e~) 4,
where z = 2j wj x.i, as shown in the figure,

Figure 6 shows an example of how the neural processing unit is implemented. In this case, the
input/weight pairs are (1,.21), (0,. 13), and (1,.04), and the resulting output is 562,

Figure 6
Example of a Neural Processing Unit .

Inputs WeiGhts

xo= I --21 -~. i~ ~I "-...
> , ; ,..
// / " \ Activation "~

.~- o - - ~3---~" 1 ~ ~ '1
I , Z = . 2 5 ~ ' - I F t ' 7 ~ : '_1--+-~-562

~,:i - -o4 ~,--7~4 -/ F ~' l+e-I /
',, \ , f /

' , . Aggregation . / '

- ~ _ _ j r "

A Three Layer Neural Network

ANN is composed of layers of neurons, an example of which is the three-layer NN depicted in
Figure 7. Extending the notation of the last section, the first layer, the input layer, has three
neurons (labeled x,r j-0,1,2), the second layer, the hidden processing layer, has three neurons
(labeled x u, j=0,1,2), and the third layer, the output layer, has one neuron (labeled x20. There are
two inputs I 1 and 12

Figure 7
Three Layer Neural Network

Input Hidde~ Output
(Layer O) (L~ycr 1) [Layer 21)

k2V w ~ ~

7Anders (1996) invesligatcs neural ncl~orks as a gencraliz~llion of nonlinear retzression models

421

The neurons are connected by the weights w~j k, where the subscripts i, j, and k refer to the i-th
layer, the j - th node o f the i-th layer, and the k-th node o f the (i+l)s t layer, respectively. Thus, for
example, wo2 ~ is the weight connect ing node 2 of the input layer (layer 0) 'to node 1 o f the hidden
layer (layer 1). It follows that the aggregation in the neural processing associated with the hidden
neuron x~ results in z = x~o w~xo~ + Xo~ woj~ + xo2 wt~2z, which is the input to the activation function.

Consider the simple situation represented in Figure 8. There are two inputs, 0 and 1, and one
output, 1, and the goal is to use a NN to reproduce this resuh. 8

Figure 8
Exclusive-or Problem

Input Hidden Output
Layer Layer Layer

0

1

1

Figure 9 extends the approach begun in Figure 6 to a 3-layer N N The value assigned to the
hidden neuron x u, .562, is the same one computed with respect to Figure 6. Similarly, hidden
neuron x12 has the input/weight pairs (1 ,21) , (0,.29), and (1,-. 17), and the resulting value is .475
Finally, the output, x21, which is derived using the nodes in the hidden layer, has the input/weight
pairs (1,. 10), (.562,-. 18), and (.475,. 16), and the resulting output is .519.

s'i'his is a portioll of the cxclusix¢~r problem, ,,vhcrc x = {0,1 }, y= { 0,1 }, xorIx,y) = O, if x = y, and xor(x,y) = 1, if x <>
Y

422

Figure 9
Example of Three-layer NN

Input Hidden Output
(L~yer O) (Layer 1) (Layer 2)

.562
0 . 1 3 - ~

1 1 , ~ - . 1 7 ~

.475

A measure of the prediction error in this simple example is (T-O) 2, where T - I is the targeted
value and O is the output in a given iteration through the network. 9 After the first iteration, this
prediction error is (1-.519)-' =0231.

The Learning Rules

The weights of the network serve as its memory. Thus, the network "learns" when its weights are
updated, and the general form of this learning can be expressed as

wuk(t+ 1) = w0k(t) + Aw,jk(t)

where wijk(t) is the weight during iteration t and Aw0k(t) is the adjustment to the weight after the t-
th iteration.

The adjustment is done using a learning rule, a common example of which is the Delta rule
(Shepard (1997), p. 15) TM, given by

Awijk(t) = q 6iik(t) xt,

9The prediction error can I~ measured in a nmnbcr ofv.ays See, lbr example, Anders (1996, p. 973) and Shepherd
(1997, p 5)

l°Other types of learning rules are discussed by Vonk el. al (1997). p 12.

423

where q is the learning rate, which controls the speed of convergence a, 8,jr(t) is the error signal, 12
and x~j is the value associated with thej-th node of the i-th layer. Since the case at hand involves
three layers, including a single output layer, the adjustments are Aw0jk(t) and A%j,(t), the values
are x0j (the input values) and xlj (the hidden values), and the learning rates are 80jr(t) and 801(t).

As an example, consider the revised weight associated with w m (depicted in Figure 10). The
revised weight is win(t+ 1) = wm(t) + Awm(t). The error signal in this case is ~5,u = 0.120 '~
Thus, since xn is .562 and assuming the learning rate is 15 percent, Aw m becomes 0.010 ~4 and
the revised weight is -0.17 = -0.18+001.

Figure 10
Revised Weight

I
I l i ddm Output

(~Q562 !
-.t8 +Awm I

" x ~ . 5 1 9 1

The Learning Strategy of a Neural Network

The characteristic feature of NNs is their ability to learn. The strategy by which this takes place
involves training, testing, and validation, and is exemplified in Figure 11) 5 As indicated, the clean
and scrubbed data is randomly subdivided into three subsets: T I, 60 percent, is used for training
the network; T2, 20 percent, is used for testing the stopping rule; and T3, 20 percent, is used for
testing the resulting network The stopping rule reduces the likelihood that the network will
become overtrained, by stopping the training on TI when the predictive ability of the network, as

X l l f q is too large, the error term may not converge at all, and i f it is ttx~ small , the weight upda t ing pr{~ess m a y ~,et
s tuck in a l~x:al m i n i m u m an&'or be extremely t ime inlensive.

12
" A s s u m i n g the l)elta rule. the rotor s ignals become 8,~t(t) = I:'(~'.,,(t)) ('I '-t)) and 80~t(t) = l : ' (:~ . (0 l Ej 6,jk(l) '~Vllk(t),

where F ' denotes the differential ~'.ith respect Io z and z,~(I) = ~ "~VqK(t } X.

Given the logist ic t\ml~ of the act ivat ion [hnclion. F'=I"(I-F)

13('1"-())()(I-()) = (1- 519) 519 (I - 519) = 0 120

1'~0010 = 0 1 5 " 0 120"~)5(~2

I S.l.hi s f igure is ba:sed ,an a d i scuss ion of an applicatic, n h~, r I~r,.~ckett et a l (199,:I), p 415

424

measured on T2, is no longer improved.

Figure 11
The NN Learning Slrategy

s - g ~ L J Trainne~ork I.--.
into 3 data sets ~ using 71 I]

T1 = 60% / J, " I
T2 = 20% I ~ - ~ ~ I
T 3 - 20% I t T,st n , ~ o , k I I

- I I using T2 I I

~ Assess network
using 7"3 I - ~ i r n p r o v e d / - , , b /

COMMENT

It seems inevitable that GAs and NNs will become significant tools for actuaries. Whether driven
by the need for an unbiased solution, or forced to use a heuristic approach because of the
vagueness of the underlying theory, or because of the increasing importance of the interaction
terms, or simply because of the proliferation of user-friendly GA and NN software and high speed
personal computers, the use of these techniques is likely to gain momentum. Hence, it is
important for actuaries to be familiar with these techniques. If this article helps in this regard, it
will have served its purpose.

SELECTED REFERENCES

Anders, U. (1996) "Statistical Model Building for Neural Networks," 6th AHR Colloqumm.

Barber, J. C. (1995)"Genetic Algorithms as Tools for Optimization". Risks andReward~', June.

Brockett, P. L., W. W. Cooper, L. L Golden, and U. Pitaktong (1994) "A Neural Network
Method for Obtaining an Early Warning of Insurer Insolvency,"]he Journal of Risk and
blsurance, pp 402-424.

Deboeck, G Editor. (1994) Trading on the Edge: Neural, Genetic, and Fuzzy Systems for
chaotic financial markets. (New York: John Wiley and Sons)

Eberhardt, R C. and R. W. Dobbins. (1990). Neural Network PC]bols: A Practical Guide
(New York: Academic Press)

Forrest, S. (1996)"Genetic Algorithms". ACMCompu/ingSurve~:s, March.

4 2 5

Gorman, R. P (1996)"Current Modeling Approaches: a Case Study," Actuarial and Financial
Modeling Conference, December 16-17, Georgia State University

Goldberg, D. E. (1989)Genetic Algorithms in Search, Optimization, and k,fachiue Learuing,
Addison Wesley.

Holland, J H (1975) Adaptation in Natural and Artificial Systems, Univ. Michigan Press, Ann
Arbor

Lewinson, L "GeneHunter-GA Software from Ward" 1'(" AI Magazine, MarctgApril.

Masters, T. (1993) Practical Neural Network Recipes in C+~+, Acaden#c Press

Shapiro, A. F., T A DeFilippo, K J Phinney, and J Zhang (1998) "Technologies Used in
Modeling," AR('H 1998.1, p. 47.

Shepherd, A. J. (1997)Second-Order Methodfisr Neural Networks, Springer

Smith, M. (1993) NeurcdNelwork.s.fi~r Statisticalkh)deliu£,, Van Nostrand Reinhold.

Von Altrock, C. (1997) l')lzzy].ogic ~llld ~k, urol*itzzv Aptdication.s m Husilless aud bTucmce.
Prentice-Hall

Vonk, E, L. C. Jain, and R. P Johnson. (1997)Automatic Generatiou of Neural Network
A rchilecture [/sing Evolutionat 3, ("omputation, Word Scientific

426

