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ABSTRACT 

Genetic algorithms (GAs) and neural networks (NNs) are currently being used in actuarial and 
financial modeling. Nonetheless, while there is a general awareness of the nature of these 
techniques, there is often only vague familiarity with the details of how they are implemented 
This article is intended to help alleviate this situation. Its purpose is to present an overview of 
GAs and NNs, which includes an explanation of what they are, how they work, and an example of 
how they are implemented 

INTRODUCTION 

Actuaries generally have an awareness of the nature of genetic algorithms (GAs) and neural 
networks (NNs). Most know, for example, that GAs are based on genetics and evolution and 
NNs are based on the structure of the brain. However, there is often only vague familiarity with 
the details of how these techniques are implemented. 

This is unfortunate. Many actuaries are confronted with problems where GAs and NNs are 
appropriate. These include problems which require a heuristic solution because of the vagueness 
of the underlying theory, and situations involving nonlinearities, where there is an emphasis on not 
making unjustified assumptions about the nature of those nonlinearities. Consequently, one would 
expect to see these techniques implemented more often. 

A plausible explanation of why these techniques are not being used more often is that potential 
users are not sufficiently familiar with their characteristics and, consequently, forego opportunities 
for implementation. Assuming this to be the case, the purpose of this article is to help alleviate 
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this situation by presenting an over;,iew of GAs and NNs, which includes an explanation of what 
they are, how they work, and an example of how they are implemented 

GENETIC A L G O R I T t l M S  

Genetic algorithms (GAs) are automated heuristics that perform optimization by emulating 
biological evolution. They are particularly well suited for solving problems that involve loose 
constraints, such as discontinuity, noise, high dimensionality, and multimodal objective functions. 

GAs can be thought of  as an automated, intelligent approach to trial and error, based on principles 
of  natural selection. In this sense, they are modern successors to Monte Carlo search methods. 
The flowchart in Figure 1 gives a representation of  the process. 

Figure 1 
Flow Chart  of Genetic Algorithm 
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As indicated, GAs are iterative procedures, where each iteration (g) represents a generation The 
process starts with an initial population of solutions, P(0), which are randomly generated. From 
this initial population, the best solutions are "bred"v,,ith each other and the worse are discarded. 
The process ends when the termination criterion is satisfied. 

As a simple example 2, suppose that the problem is to find by trial and error, the value of x, x = 
0,1, .., 31, which maximizes f(x), where fix) is the output of a black box 3 If(x) = x2]. Using the 
methodology of  Holland (1975), an initial population of potential solutions {yj[i=l,...,N} would be 

2Adopted rrom (ioldberg i 198<=), Chapter 1 and Vonk et  a l  (19971, Chapter 3 

~'['he fact that the output of the black I×>x is I'(x)-x: is provided so thal the reader can better I'ollow and e,.'aluate the 
process. "['his function, while adequate IUr this illustration, is not adequate IUr a general illustration, because the local 
maximum is the global maximum, so there is no chance liar the process Io get trapr, cd in a sulx~ptimal solution. 
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randomly generated, where each solution would be represented in binary form. Thus, if0 and 31 
were in this initial population of solutions, they would be represented as 00000 and 11 I 11, 
respectively. 4 A simple measure of the fitness ofyj is pgf(yj)/Zj f(yj), and it would be the solutions 
with the highest pj's that would be bred with one another. 

Table 1 summarizes these steps assuming the foregoing black box and an initial population of 
solutions of  size four. 

Table 1 
Genetic A_lgorithm Worksheet 
Initial Expected 

Population count 
(Randomly x L 4 ~ 

No. Generated) Value f(x) ]El I Tl"i 
1 1 0 1 1 0 22 484 0.45 1.80 

S2mu -1 0 0 1 1 19 361 0.34 1.40 
3 0 0 1 1 1 7 49 0.05 0.20 
4 0 1 1 0 1 13 169 0.16 0.60 

1063 1.00 4.00 ] 
! Average 266 0.25 1.00 i 
i Max 484 0.4_5 180 , 

The first step is to randomly generate the members of the initial population, which, in this case, 
are the binary strings (chromosomes) 10110, 10011,00111, and 01101. Figuratively, each of 
these 20 genes could have been determined by flipping 20 coins and assigning each gene a value 
o f " l "  or "0," depending on whether the outcome was a "head" or a "tail." The equivalent 
random x-values are 22, 19, 7, and 13, respectively. 

The black box [fix) = x 2] provides the first set of potential solutions: 484, 361, 49, and 169. The 
sum, average, and maximum of which is 1063, 266, and 484, respectively 

Since the solutions are developed adaptively based on the observed data, and the goal is to 
maximize fix), the relative fitness of  each of these samples is assigned a value of f(xj)/Ej f(xj) = 
f(x~)/1063. Thus, the relative fitness of each of the initial values are 45%, 34%, 5%, and 16%, 
respectively. 5 

The second step is to use the current population of solutions to generate the next one. A 
flowchart of  this process is depicted in Figure 2. As indicated, there are three ways to develop a 
new generation of  solutions: reproduction, crossover, and mutation. 

431=1"2~+1°22+ 1"2:+ 1"2~+1"2 o 

5These values have been adjusted to sum to 100% 
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Figure 2 
Genetic Operations 
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Reproduction adds a copy of  a fit individual to the next generation This is accomplished by 
randomly choosing a solution from the population, where the probability a given solution is 
chosen depends on its pj value An intuitive way to accomplish this is to use the notion of  a 
weighted roulette wheel, as depicted in Figure 3, where tile wheel can be unbiasly spun four times 
to randomly choose the next population 

Figure 3 
Weighted Roulette Wheel 

For example, assuming that outcomes of  such spins resulted in the expected count, N pj [Table l, 
col 6], rounded to the nearest integer, and adjusted to sum to N Then, two samples would fall 
within area (1), one sample would fall within area (2), and one sample would fall within area (4) 
None of the samples would fall within area three. Table 2 shows the situation in this example after 
the first reproduction Note that chromosome three has been replaced with a duplicate of  
chromosome one. 
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Table 2 
Mating Pool After Reproduction 

i Initial Population Reproduced Mating Pool 
Stnng (Randomly # of after 
N o -  Generated') .~ times Reproduction 

1 1 0 1 1 0  yes 2 1 0 1 1 0  

2 1 0 0 1 1 yes 1 1 0 0 1 1 ! 

3 0 0 1 1 1  no 0 1 0 1 1 0 ! , ,  

4 ° ~ I 0 !  yes 1 0 1 1 O t  i 

Crossover emulates the process of creating children, and involves the creation of  new individuals 
(children) from the two fit parents by a recombination &their genes (parameters). In the 
example, crossover would take place in two steps: first, the fit parents are randomly chosen on the 
basis of their pj values; second, there is a recombination of  their genes. 

Table 3 depicts the process If, for example, the randomly chosen fit parents were 10110 and 
10011, and the randomly chosen crossover point was after the third gene, crossover would result 
in the two children 10111 and 10010. The improvement as a result of  this iteration can be seen by 
comparing the last two columns of  the table. 

Table 3 
Crossover 

Mating Pool Mate New 
String after Randomly After x - - -  f(x) - -  
No Reproduction Selected Crossover Value new old 

1 t 0 1 1 0 2 1 0 111 1 23 529 484 

! 2 1 0 0 1 1 1 1 0 011 O 18 324 361 

i 3 1 0 1 1 0 4 1 011 0 1 21 441 49 
I 

4 0 1 1 0 1 3 0 111 1 0 14 196 169 

Sum 1490 1063 
Average 373 266 
Max 529 484 ~' 

In the final step of the iteration, there is a small probability ( -  0.001) that a particular gene will be 
subject to mutation. That is, if its value is 0, it will be changed to a 1, and visa versa. This has 
the potential effect of  introducing good gene values that may not have occurred in the initial 
population or which were eliminated during previous iterations. 

NEURAL NETWORKS 

Neural networks (NNs) are software programs that emulate the biological structure of the human 
brain and its associated neural complex and are used for pattern classification, prediction and 
financial analysis, and control and optimization. 
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A sketch of the operation ofa NN is shown in Figure 4. 

Figure 4 
The OPeration o r a Neural Ne twork  
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The case depicted involves supervised learning, so that both the inputs and output of the system 
are known, 6 and the objective is to find a relationship between them. The process begins by 
assigning random weights to the connection between each set of neurons in the network. These 
weights represent the intensity of the connection between any two neurons and will contain the 
memory of the network. Given the weights, the intermediate values (hidden layer) and output of 
the system are computed If the output is optimal, the process is halted; if not, the weights are 
adjusted and the process is continued until an optimal solutions is obtained or a stopping rule is 
reached. 

If the flow of information through the network is from the input to the output, it is known as a 
feed forward network. If inadequacies in the output are fed back through the network so that the 
algorithm can be improved, tile NN is said to involve back-propagation 

Neural Processing Unit 

The core ofa  NN is the neural processing unit, an example of which is shown in Figure 5. 
Figure 5 

Neural Processing Unit 
Inpuls Weights 
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6 ,  Examples oI knox~n output include st~ch things as I'iHns that have become insolvent and claims v, hich are fraudulent 
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As indicated, the inputs to the neuron, xj, are multiplied by their respective weights, wj, and 
aggregated. The weight w, serves the same function as the intercept in a regression formula, 7 
The weighted sum is then passed through an activation function, F, to produce the output of the 
unit. Typically, the activation function takes the form of the logistic function F(z)---(l+e~) 4, 
where z = 2j wj x.i, as shown in the figure, 

Figure 6 shows an example of how the neural processing unit is implemented. In this case, the 
input/weight pairs are (1,.21), (0,. 13), and (1,.04), and the resulting output is 562, 

Figure 6 
Example of a Neural Processing Unit . 
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A Three Layer Neural Network 

ANN is composed of layers of neurons, an example of which is the three-layer NN depicted in 
Figure 7. Extending the notation of the last section, the first layer, the input layer, has three 
neurons (labeled x,r j-0,1,2), the second layer, the hidden processing layer, has three neurons 
(labeled x u, j=0,1,2), and the third layer, the output layer, has one neuron (labeled x20. There are 
two inputs I 1 and 12 

Figure 7 
Three Layer Neural Network 
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7Anders (1996) invesligatcs neural ncl~orks as a gencraliz~llion of nonlinear retzression models 
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The neurons  are connected by the weights w~j k, where the subscripts i, j, and k refer to  the i-th 
layer, the j - th  node o f  the i-th layer, and the k-th node o f  the ( i+l )s t  layer, respectively. Thus, for 
example, wo2 ~ is the weight connect ing node 2 of  the input layer (layer 0) 'to node 1 o f  the hidden 
layer (layer 1). It follows that the aggregation in the neural processing associated with the hidden 
neuron x~ results in z = x~o w~xo~ + Xo~ woj~ + xo2 wt~2z, which is the input to the activation function. 

Consider  the simple situation represented in Figure 8. There are two inputs, 0 and 1, and one 
output,  1, and the goal is to use a NN to reproduce this resuh. 8 

Figure 8 
Exclusive-or Problem 
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Layer Layer Layer 
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1 
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Figure 9 extends the approach begun in Figure 6 to a 3-layer N N  The value assigned to the 
hidden neuron x u, .562, is the same one computed with respect to Figure 6. Similarly, hidden 
neuron x12 has the input/weight pairs (1 ,21) ,  (0,.29), and (1,-. 17), and the resulting value is .475 
Finally, the output,  x21, which is derived using the nodes in the hidden layer, has the input/weight 
pairs (1,. 10), (.562,-. 18), and (.475,. 16), and the resulting output is .519. 

s'i'his is a portioll of the cxclusix¢~r problem, ,,vhcrc x = {0,1 }, y= { 0,1 }, xorIx,y) = O, if x = y, and xor(x,y) = 1, if x <> 
Y 
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Figure 9 
Example of Three-layer NN 

Input Hidden Output 
(L~yer O) (Layer 1) (Layer 2) 

.562 
0 . 1 3 - ~  
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.475 

A measure of  the prediction error in this simple example is (T-O) 2, where T - I  is the targeted 
value and O is the output in a given iteration through the network. 9 After the first iteration, this 
prediction error is (1-.519)-' =0231. 

The Learning Rules 

The weights of the network serve as its memory. Thus, the network "learns" when its weights are 
updated, and the general form of this learning can be expressed as 

wuk(t+ 1) = w0k(t ) + Aw,jk(t) 

where wijk(t ) is the weight during iteration t and Aw0k(t ) is the adjustment to the weight after the t- 
th iteration. 

The adjustment is done using a learning rule, a common example of which is the Delta rule 
(Shepard (1997), p. 15) TM, given by 

Awijk(t ) = q 6iik(t) xt, 

9The prediction error can I~ measured in a nmnbcr ofv.ays See, lbr example, Anders (1996, p. 973) and Shepherd 
(1997, p 5) 

l°Other types of learning rules are discussed by Vonk el. al (1997). p 12. 
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where q is the learning rate, which controls the speed of convergence a, 8,jr(t) is the error signal, 12 
and x~j is the value associated with thej-th node of the i-th layer. Since the case at hand involves 
three layers, including a single output layer, the adjustments are Aw0jk(t) and A%j,(t), the values 
are x0j (the input values) and xlj (the hidden values), and the learning rates are 80jr(t) and 801(t ). 

As an example, consider the revised weight associated with w m (depicted in Figure 10). The 
revised weight is win(t+ 1 ) = wm(t ) + Awm(t). The error signal in this case is ~5,u = 0.120 '~ 
Thus, since xn is .562 and assuming the learning rate is 15 percent, Aw m becomes 0.010 ~4 and 
the revised weight is -0.17 = -0.18+001. 

Figure 10 
Revised Weight 
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The Learning Strategy of a Neural Network 

The characteristic feature of NNs is their ability to learn. The strategy by which this takes place 
involves training, testing, and validation, and is exemplified in Figure 11) 5 As indicated, the clean 
and scrubbed data is randomly subdivided into three subsets: T I, 60 percent, is used for training 
the network; T2, 20 percent, is used for testing the stopping rule; and T3, 20 percent, is used for 
testing the resulting network The stopping rule reduces the likelihood that the network will 
become overtrained, by stopping the training on TI when the predictive ability of the network, as 

X l l f q  is too large,  the error term may  not converge  at all, and  i f  it is ttx~ small ,  the weight  upda t ing  pr{~ess m a y  ~,et 
s tuck in a l~x:al m i n i m u m  an&'or be extremely t ime inlensive. 

12 
" A s s u m i n g  the l)elta rule. the rotor s ignals  become 8,~t(t) = I:'(~'.,,(t)) ( 'I '-t)) and 80~t(t ) = l : ' ( :~ . (0 l  Ej 6,jk(l) '~Vllk(t), 

where  F '  denotes  the differential  ~'.ith respect Io z and  z,~(I) = ~ "~VqK(t } X. 

Given  the logist ic t\ml~ of  the act ivat ion [hnclion. F'=I"(I-F) 

13('1"-())()(I-()) = (1- 519) 519 ( I -  519) = 0 120 

1'~0010 = 0 1 5 " 0  120"~)5(~2 

I S.l.hi s f igure  is ba:sed ,an a d i scuss ion  of  an applicatic, n h~, r I~r,.~ckett et a l  (199,:I), p 415 
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measured on T2, is no longer improved. 

Figure 11 
The NN Learning Slrategy 
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COMMENT 

It seems inevitable that GAs and NNs will become significant tools for actuaries. Whether driven 
by the need for an unbiased solution, or forced to use a heuristic approach because of the 
vagueness of the underlying theory, or because of the increasing importance of the interaction 
terms, or simply because of the proliferation of user-friendly GA and NN software and high speed 
personal computers, the use of these techniques is likely to gain momentum. Hence, it is 
important for actuaries to be familiar with these techniques. If this article helps in this regard, it 
will have served its purpose. 

SELECTED REFERENCES 

Anders, U. (1996) "Statistical Model Building for Neural Networks," 6th AHR Colloqumm. 

Barber, J. C. (1995)"Genetic Algorithms as Tools for Optimization". Risks andReward~', June. 

Brockett, P. L., W. W. Cooper, L. L Golden, and U. Pitaktong (1994) "A Neural Network 
Method for Obtaining an Early Warning of Insurer Insolvency," ]he Journal of  Risk and 
blsurance, pp 402-424. 

Deboeck, G Editor. (1994) Trading on the Edge: Neural, Genetic, and Fuzzy Systems for 
chaotic financial markets. (New York: John Wiley and Sons) 

Eberhardt, R C. and R. W. Dobbins. (1990). Neural Network PC ]bols: A Practical Guide 
(New York: Academic Press) 

Forrest, S. (1996)"Genetic Algorithms". ACMCompu/ingSurve~:s, March. 

4 2 5  



Gorman, R. P (1996)"Current Modeling Approaches: a Case Study," Actuarial and Financial 
Modeling Conference, December 16-17, Georgia State University 

Goldberg, D. E. (1989)Genetic Algorithms in Search, Optimization, and k,fachiue Learuing, 
Addison Wesley. 

Holland, J H (1975) Adaptation in Natural and Artificial Systems, Univ. Michigan Press, Ann 
Arbor 

Lewinson, L "GeneHunter-GA Software from Ward" 1'(" AI Magazine, MarctgApril. 

Masters, T. (1993) Practical Neural Network Recipes in C+~+, Acaden#c Press 

Shapiro, A. F., T A DeFilippo, K J Phinney, and J Zhang (1998) "Technologies Used in 
Modeling," AR('H 1998.1, p. 47. 

Shepherd, A. J. (1997)Second-Order Methodfisr Neural Networks, Springer 

Smith, M. (1993) NeurcdNelwork.s.fi~r Statisticalkh)deliu£,, Van Nostrand Reinhold. 

Von Altrock, C. (1997) l')lzzy ].ogic ~llld ~k, urol*itzzv Aptdication.s m Husilless aud bTucmce. 
Prentice-Hall 

Vonk, E, L. C. Jain, and R. P Johnson. (1997)Automatic Generatiou of  Neural Network 
A rchilecture [/sing Evolutionat 3, ( "omputation, Word Scientific 

426 


