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Abstract 

The Lee-Carter (LC) model is one of the most popular methods for modeling 

mortality rates for all ages, because it is easily applied and provides fairly accurate mortality 

estimations and population projections. However, the parameters of the LC model, including 

its intercepts and slopes, are assumed to be constant, whereas empirical studies in various 

countries do not support such an assumption. Therefore, further modifications of the LC 

model are required to deal with non-constancy in parameters. We propose an age-shift 

model to modify the LC model and deal with the problem of parameters. We use previously 

reported data with non-constant parameters from countries such as Japan, Taiwan, Great 

Britain and the United States to verify if the proposed method can capture their non-constant 

nature. The proposed method attains smaller estimation errors (with respect to mean 

absolute percentage error or mean square error). We also apply the proposed age-shift model 

to the mortality rates of these four countries to evaluate the longevity risk in annuity 

products by measuring life expectancy. The research findings can benefit the actuary to deal 

with longevity risk in pricing and valuation. 
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1. Introduction 

The life expectancy of human beings has been increasing significantly since the start of 

the 20th century. With the United States as an example, life expectancies at birth for both men and 

women reached the low and high 40s, respectively, in 1900; but by 2000, they had increased to the 

low and high 70s (Bell et al., 1992; Human Mortality Database, 2006). This trend of increasing 

increments in life expectancy at birth does not show signs of slowing down (Figure 1). Similar 

patterns appear in other countries as well; for example, the annual increments of life expectancy at 

birth in the year 2000 were approximately 0.2 and 0.3 years for Taiwanese men and women, 

greater than those in the 1980s and 1990s.  

 

FIGURE 1 
Life Expectancy at Birth in United States, 1900–2004 

 

Increased life expectancy indicates the possible risk of underestimating insurance 

premiums on the basis of period mortality tables for life annuity policies. Traditionally, actuaries 

have used a fixed and deterministic mortality assumption to price and reserve for life insurance 

policies. However, because of rapid mortality improvements, the pure premium of annuity 

products computed from a period mortality table can be as much as 40 percent lower than that 
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computed from a more accurate cohort life table (Willets, 2004). To construct a cohort mortality 

table to compute pure premiums for annuity products requires (stochastic) mortality models or 

mortality projections. Therefore, in recent years, the use of stochastic mortality models to manage 

mortality risk has become an important tool for actuarial professionals.  

 

Today is not the first time that mortality risk has been studied in the insurance industry. 

Many previous studies note that mortality risk may cause substantial losses if handled 

improperly. For example, Equitable Life in the United Kingdom suffered critical interest rate 

risk and longevity risk because it issued the insurance contracts with guaranteed annuity 

options (GAOs) in the 1970s and 1980s.Thus, understanding the dynamics of future 

mortality or interest rate is very important for the actuary to pricing and reserving. Wilkie et 

al. (2003) and Ballotta and Haberman (2006) both analyze the problem of guaranteed 

annuity options using a stochastic mortality model. Marceau and Gaillardetz (1999) 

consider a stochastic mortality and interest rate environment to calculate reserves for a 

portfolio of term-life insurance and pure endowment policies and Milevsky and Promislow 

(2001) attempt to value mortality-contingent claims by stochastically modelling the future 

hazard-plus-interest rate and suggest that both mortality and interest risk can be hedged. 

These studies all make use of a dynamic mortality model to deal with mortality risk.  

 

A mortality model that can provide accurate predictions becomes essential to sound 

premium calculations. Among all mortality models, the Lee-Carter (LC) model, proposed by 

Lee and Carter in 1992, is one of the most popular choices, because it is easy to implement and 

outperforms other models with respect to its prediction errors (e.g., Koissi et al., 2006; Melnikov 

and Romaniuk, 2006). In addition, various researchers extend the LC model to attain a broader 

interpretation (Brouhns et al., 2002; Renshaw and Haberman, 2003), and many countries use 

the LC model as the base mortality model for their population projections. The Continuous 
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Mortality Investigation Bureau (CMIB, 2006) in Britain even suggests the LC model as a 

means to compute stochastic mortality rather than the reduction factor (RF) model 

previously proposed by the CMIB.  

 

However, the LC model still has room for improvement. To simplify the discussion, 

we consider that the LC model assumes the logarithms of the mortality rates are 

approximately a linear function of time. The slopes and intercepts are functions of ages and 

constant over time. However, many studies show that these time-invariant parameters are 

not necessarily fixed in time, which causes inaccurate mortality predictions, especially for 

older age groups.  

 

In the remainder of this study, we first provide the empirical results of applying the 

LC model to data from the Human Mortality Database (HMD) and discuss the problems 

associated with the parameters. We also propose a method to deal with the problems in the LC 

model and use the HMD data to evaluate our approach. In the fourth section, we compute 

life expectancy using the proposed method and compare it with that derived from the LC 

model, then discuss the limitations of our research and some suggestions for further work in 

the final section.  

 

2. Empirical Analysis of the Lee-Carter Model  

Lee and Carter (1992) propose the following mortality model for the central death 

rate mx,t: 

, ,ln( )x t x x t x tm α β κ ε= + + ,         (2.1) 

where parameter αx describes the average age-specific mortality, κt represents the general 

mortality level, and the decline in mortality at age x is captured by βx. The term εx,t denotes 

the deviation of the model from the observed log-central death rates and should be white 
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noise with 0 mean and relatively small variance (Lee, 2000). The parameter estimates can 

be derived from matrix operations, such as the singular value decomposition. Equivalently, 

applying the constraints Σt κt = 0 and Σx βx = 1, the estimate of parameter αx is the average 

log-central death rate over time t, such that 1

1

1
,ˆ ln( ) /t T

x x tt t
m Tα + −

=
=∑ , where t1 is the starting 

year and T is the number of years in the data. The parameters αx and βx are functions of age 

x and do not change with time, and the parameter κt is a linear function of time. Also, if 

missing values exist, an approximation method and some modifications (Wilmoth, 1996) 

can be used for parameter estimation.  

 

 
Notes: The number “9” indicates approximately the year 2000 (i.e., 

1910 + 90) and “8” is the year 1990 (1910 + 80). Other numbers follow 
similarly.  

 
                   FIGURE 2 
Survival Curves of Taiwanese Men (Complete Life Tables) 

 

The LC model contains relatively few parameters, and it provides fairly good 

estimates and predictions of the observed mortality rates in many countries, such as the 

United States and Japan. In turn, the LC model has gained significant attention since it was 

introduced. However, future mortality rates under the original LC model extrapolate past 
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trends. In particular, if the mortality rates follow the assumption of equation (2.1), the 

indication is that mortality improvements at all ages will follow a fixed pattern. But this 

assumption is unlikely to be true, because usually younger people experience greater 

improvements in their early years, as do the elderly recently. For example, in Taiwan4, more 

than 20 percent of newborns died before age 5 years and less than 50 percent of them 

survived beyond age 50 among Taiwanese men in 1920 . In 2000, fewer than 20 percent of 

the newborns died before age 60 and about 50 percent of them survived beyond age 80 

(Figure 2). The elderly have been experiencing larger mortality reductions in recent years, 

and the younger age groups enjoy the largest reductions in the early 20th century.  

 

Many countries (e.g., Great Britain and Japan) have experienced a similar mortality 

reduction shift. Therefore, the slope βx of each age in equation (2.1) is not necessarily a 

constant of time; otherwise, there would not be a shift in age for the largest mortality 

reduction（Booth et al., 2002). Another limitation of applying the LC model is the limiting 

mortality rates of each age. Because the logarithm mortality rates in equation (2.1) could be 

linear functions of time in the case that kt is projected linearly, the mortality rates of all ages 

eventually go to 0.  

  

Several modifications have been proposed to cope with the limitations of the LC 

model. The reduction shift of ages for different time periods can be treated as a “cohort” 

effect, so introducing a cohort effect into the LC model represents a popular approach. The 

original LC model is close to a combination of the age effect and the interaction of age and 

time, so a possible modification brings in additional terms related to the cohort effect. For 

example, Booth et al. (2002) propose adding more than one interaction terms of age and 

                                                 
4 The data of mortality experience in Taiwan is obtained from the Ministry of Interior.  
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time, such that  

, ,
1

ln( ) ( ) ( )
J

x t x x t x t
j

m j jα β κ ε
=

= + +∑ ,        (2.2) 

where βt(j) κt(j) is the jth interaction term between age and time, j = 1, 2, …, J.  

 

Renshaw and Haberman (2003) investigate the LC model with age-specific 

enhancement for mortality forecasts. Hyndman and Ullah (2005) further suggest using 

principal component (PC) decomposition to solve for the paired parameters (βt(j), κt(j)). 

The idea behind this approach is similar to that proposed by Bell (1997), according to which 

the LC model displays similar behavior for both one PC and two PCs.  

 

In 2006, the U.K.’s Continuous Mortality Investigation Bureau (CMIB) used the 

proposal of Renshaw and Haberman (2006) considering the cohort based on the LC model 

to project mortality rates. The proposed modification is similar to that offered by Hyndman 

and Ullah (2005), which is       

*
, , , ,ln( ) ( ) ( )x t c x x t x c x t ct cμ α β κ β κ ε= + + + ,        (2.3) 

where μ is the force of mortality, and *
cκ  is the cohort effect. Equation (2.3), called the LC 

age-period-cohort (APC) model, can be used to predict future mortality rates. In this case, 

the CMIB suggests using the likelihood method for parameter estimations and the classical 

multivariate time series method for predictions. Note that the model in equation (2.3) can be 

treated as a special case of the APC model that includes only one main effect (age) and two 

second-order interaction terms (age-period and age-cohort).  

  

Not many studies focus on the limiting mortality rates of 0, with the exception of the 

RF model suggested by the CMIB (1999. 2006). The RF model takes the following form: 



 9

, / 20

,0

( , ) ( ) [1 ( )][1 ( )]x t t

x

q
RF x t x x f x

q
α α= = + − − ,   (2.4) 

where qx,t is the mortality rate of age at time t. The limiting value qx,t in equation (2.4) is 

α(x) times the original mortality qx,0, not necessarily 0. Although the RF model relaxes the 

restriction for the limiting values, the LC model achieves a better fit. The CMIB therefore 

decided to study and use the LC-related model, not the RF model, in 2006. For the rest of 

this study, we focus on the modification to the age shift in mortality reduction rather than 

the limiting mortality rates.  

 

3. Approach for Modifying the Lee-Carter Model 

We propose an approach to handle age shifts in mortality reduction. Similar to Bell 

(1997) and Hyndman and Ullah (2005), we apply the principal component (PC) approach to 

the logarithm of central mortality rates for data from the HMD and specifically select data 

from Europe, America and Asia. In particular, we choose data from four countries—Great 

Britain, the United States, Japan and Taiwan—to explore possible patterns in κt(j) and *
cκ . 

To be consistent, the data we use are from the years 1947–2003 for all four countries.  

 

 

American Man 

Japanese Man British Man 
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FIGURE 3 
Estimates of βx for Japanese, British and American Men 

 

Age shifts exist in the mortality reductions—that is, βxs are not constants of time in 

the original LC model—as we show by dividing the data into two periods: 1947–1970 and 

1971–2003. The age groups considered are basically five-year groups, including 5–9, 10–14, 

…, 95–99, as well as 0, 1–4, and 100+ (ages 100 and older). The data pertaining to British 

and Japanese men serve as demonstrations, as we show in Figure 3; the estimates of βxs are 

obviously different in the two time periods. In particular, the elderly reach greater mortality 

reductions in 1971–2003, and younger adults (ages 20–40) generally experience larger 

reductions in 1947–1970. These results are exactly what we expected; therefore, the age 

shift of mortality reductions exists among these four countries.  

 

Next, we apply the PC approach to the logarithm of central mortality rates. The LC 

model can be treated as the one-PC model, and the first PC is a linear function of time. 

According to Bell (1997), the logarithms of mortality rates contain one, two or three PCs, 

depending on the data. We use the Japanese data to describe our findings. In Figures 4 and 5, 

we provide the graphs of the first two PCs for Japanese male and female logarithm mortality 

rates. The first two PCs account for 98.72 percent (men) and 99.52 percent (women) of the 
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variations, and the two-PC models explain approximately 5 percent more variation than the 

one-PC models. Therefore, in this research we modify LC model based on two PCs. 

   FIGURE 4 
The First Two PCs of Japanese Men (Logarithm of Central Mortality Rates) 

 
FIGURE 5 

The First Two PCs of Japan Women (Logarithm of Central Mortality Rates) 

 

As we expected, the first PC from both the male and female data is very close to a 

straight line of time. In contrast, the second PC looks like a straight line of time but behaves 
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quite differently before and after a certain cut-off point. On the basis of this pattern, we 

propose the following modified model:  

, * *

,0

*
1 1 0 2 2 0

ln( )

             ( ) {( [ ]) ( [ ])}

x t
x t x t

x

x x

m
m

a bt a b I t t a b I t t

β κ β κ

β β

= +

≡ + + + < + + ≥ ,   (3.1) 

where t0 is the cut-off point (or jump).  

 

The idea of adding * *
x xβ κ  in equation (3.1) is similar to adding κt(j) in equation (2.2) 

and *
cκ  in equation (2.3). The parameters for xβ  and *

xβ , namely, a, b, a1, b1, a2, b2, and 

t0, can be estimated using an ordinary regression, after finding the first two PCs from the 

principal component analysis. Although we introduce a two PCs approach to deal with the 

issue, the extra number of parameters needed increases at least 50 percent compared with 

the original LC model. If all the components of κt(j) in equation (2.2) and *
cκ  in equation 

(2.3) are linear functions of time or cohort, both equations can be simplified to (2.1). In 

other words, the parameters κt(j) and *
cκ  cannot be simply linear functions of time, or they 

could not be used to describe the age shift in the mortality reduction. We use empirical data 

to determine possible forms for κt(j) and *
cκ .  

 

Note that the effect of the cut-off point in *
xκ  is equivalent to introducing an 

“age-shift” in the mortality reductions; that is, the mortality reductions before and after the 

cut-off point differ. The mortality improvement is more significant after the cut-off point. In 

all four countries, the elderly have the largest mortality reductions after the cut-off point, 

whereas the 20–60 age groups experience the smallest reductions. Only Taiwanese men still 

achieve large reductions in the younger age groups, in addition to the elderly groups. In the 
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next section, we use an empirical study to evaluate our modification to the LC model.  

 

Similar to Hyndman and Ullah (2005), the computation of our approach is fairly 

straightforward. The number of age-shifts is not limited to one, and we can use an idea 

similar to cubic spline interpolation to find the optimal polynomial between two age-shifts 

(though we prefer using a linear function). However, just as in equations (2.2) and (2.3), we 

cannot decide if there are future age-shifts solely on the basis of the current PCs or past 

trends. Therefore, equation (3.1) requires further modification to include the possibility of 

future age-shifts. This is not part of the paper ands is left for future work.  

 

4. Empirical Comparisons and Applications  

In this section, we use the empirical data to evaluate our modification in equation 

(3.1) in comparison with the LC model. We first compare the estimation errors of the 

original LC model and the proposed modification in equation (3.1) for the data from Great 

Britain, Japan, Taiwan and the United States. We use the mean absolute percentage error 

(MAPE) to examine the goodness fit of the original and modified models, defined as  

1

ˆ1 100%
n i i

i i

Y Y
MAPE

n Y=

−
= ×∑ ,     (4.1) 

where iY  and îY  are the observed and estimated values, and n is the number of 

observations.  

 

In Table 1, we list the MAPE of these four countries. The modified method in 

equation (3.1) produces smaller MAPE than the original LC model in all four countries, for 

both men and women. Except in the United States, the MAPE of the modified method are 

less than 20 percent of those of the LC model; in the United States, the ratio between the 

modified method and the LC method is approximately 30 percent. These reduction ratios are 
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obvious, though the number of additional parameters is 50 percent in the modified method. 

Also, we can compare these two methods using the Akaike information criterion or 

Bayesian information criterion.  

 

TABLE 1 
MAPE of Original LC Model and Proposed Modification 

 
  Method Britain Japan Taiwan United

SLee-Carter 5.73% 7.04% 5.63% 4.47%
Male 

Proposed 1.31% 1.71% 0.85% 1.45%
Lee-Carter 5.54% 9.35% 5.11% 3.50%

Female 
Proposed 1.12% 1.70% 1.02% 1.07%

   

More parameters likely will yield smaller MAPE or estimation errors, though this 

trend is not always the case in modeling mortality rates. In a previous study, Yue et al. (2007) 

compare the APC model and the RF model to the LC model and find that the LC model 

usually achieves the smallest MAPE, even though the number of parameters used in the 

APC and RF models is at least 50 percent more than the LC model, similar to the 

comparison of our modified method to the LC model. 

   

In addition to estimation errors, we compute the life expectancies at various ages 

using the LC and our proposed model to evaluate the differences in pricing annuity products. 

The second PC for Japan and Great Britain reveals an obvious pattern of age shifting, such 

that the coefficients for ages older than 60 versus younger ages (e.g., 20–45) have different 

signs. Therefore, younger and older ages groups have different mortality reductions when 

we add the second PC in the model. In particular, in Figures 4 and 5, the slope of the second 

PC differs before and after the jump point. (This difference is one of the reasons we call the 

cut-off point a “jump,” because it is like jumping from one side to the other.) Therefore, the 

younger population would experience greater mortality reductions in the past, and the older 
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population has a larger reduction now. The coefficients of the second PC for the Taiwanese 

and U.S. data behave similarly, but the coefficients of younger or older ages do not always 

have the same signs. 

 

We compute life expectancies at ages 50, 55, 60, 65, 70 and 75 years, with a limiting 

age of 100, using the LC model and the proposed method. As expected, because the 

proposed method has the second PC to emphasize the mortality reduction for the older 

ages, life expectancies are always greater than those using the LC model. Also, the 

coefficients of the second PC for the older ages do not always have the same sign in the 

Taiwanese and U.S. data. Therefore, the differences in the life expectancy for all ages are 

always smaller than 5 percent in Taiwan and the United States. Only data from Japan and 

Great Britain show larger differences in life expectancy (Figures 6 and 7). The Japanese 

data reveal the largest differences, such that life expectancy at age 65 years using the 

proposed method is 13 percent, which is 7 percent more than that achieved using the LC 

model for women and men. The data pertaining to British men also display larger 

differences, and other cases look similar to those in the British female data, with few 

differences.  
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FIGURE 6 

Ratio of Life Expectancy between Proposed and LC Models (Japan) 

 

 
FIGURE 7 

Ratio of Life Expectancy between Proposed and LC Models (Great Britain) 

 

5. Conclusions and Discussions  



 17

The Lee-Carter model has received significant attention in the effort to model 

mortality rates since 1992. Because its computation is fairly straightforward and it reaches 

good accuracy in its predictions, the LC model probably represents the most popular 

approach for population projections. However, two main restrictions affect the use of the LC 

model: the constant assumption for the parameters and the limiting mortality of 0. These 

limitations have prompted lots of discussions and many proposed modifications.  

 

In this study, we propose another modification designed to deal with the age shifts in 

the mortality reductions. The proposed age-shift model using principal component analysis 

has significantly improved the model fitting based on the empirical study. Using mortality 

data from Great Britain, Japan, Taiwan and the United States, we find that the modified 

method achieves much lower MAPE compared with the LC model. This model is easy to 

apply for actuarial works. In this research we use this model to calculate the life expectancy. 

Because the coefficients of the second PC in the Japanese data have the same signs, the life 

expectancy (and pure premium for annuity products) calculated would undergo a significant 

increase if the proposed method, instead of the LC model, were applied. For the Taiwanese 

and U.S. data, though the estimation errors can be reduced, the proposed method and the LC 

model result in similar life expectancies.  

 

The modified method can improve model fit, but there remains room for further 

improvement. Our proposed approach introduces age-shifts of mortality improvements at a 

cut-off time on the second PC. Throughout this study, we assume there are two PCs, and 

only the second PC can have an age-shift at some time point. We do not discuss the 

possibility of three or more PCs, nor do we provide a methodology or criterion for 

determining the number of PCs in the model.  
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We also allow only the second PC to have a jump. However, we fail to address the 

issue of the number of age-shifts and their optimal locations. The discussion would be even 

more complicated if more than one PC could jump—similar to considering the variable 

selection problem (e.g., number of PCs vs. number of age-shifts) and the change-point 

problem (i.e., the optimal locations for the age-shifts) at the same time. Many possible 

combinations may need to be considered, which may require multiple computations.  
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