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Paper presents a new methodnlogy for obtaining fast algorithms and closed form 
solutions for pricing callable bonds in continuous time models.. The methodology uses 
stochastic optimization tcchniques where an issuer of a bond is ItTing to minimize the 
price of a callable bond in a game against the bondholder. Some flexibility to the model 
is added by allowing partially irrational calls. We assume that the term structure of 
interest rates is described by a set of stochastic differential equations with respect to 
Brov,.nian Mntion, which satisfy the Markovian Prnperty. Theoretical results obtained m 
the paper allow for quick estimalion of different market value characteristics such as 
duration and convexity for portfolios consisting of huge numbers of callable bonds. 
Results are directly applicable to rcgulato O' scenario testing, immunizalion and market 
value accounting. 

Recent developments in the Fixed Income Securities Market generated high demand for 
pricing valuation models. As market becomes more complex and bond prices become 
more volatile those models produce dramatic impact on trading strategies, portfolio 
management and other types of  financial analysis. This process has significant impact back 
on the market creating new demand for new type of  securities. In particular the idea of  
replicating portfolios creates hedging strategies which in turn give rise to numerous 
financial instruments. Some of  them are so complex that any visible analytics with respect 
to price sensitivity analysis are basically reduced to cash-flow testing under Monte-Carlo 
stimulation technique In this spiral evolution of  financial market and financial science we 
may observe two types of requirements for market price valuation models. On one hand 
we have sophisticated multidimensional models designed to price individual securities, on 
the other we have less time-consuming models designed to evaluate pricing characteristics 
of  huge portfolios. In confronting the problem of determining which model to use a 
portfolio analyst may have to consider many issues. Time limitation may be one of  them. 
Consider market value accounting in determining present value of future surplus in an 
asset/liability management game in a large insurance company. Assume that portfolio 
analyst wants to calculate the distribution of such a surplus. He faces a problem of pricing 
thousands of callable bonds along different scenarios under a dynamically evolving 
structure of  interest rates. In such a case the user may well prefer the crude Price-to- 

worst formula to the generally accepted binomial lattice backward substitution. Similar 
situation will happen with passthroughs. And again harsh reality inclines us in favor of  
simplistic crude formulas. We observe here the famous Heisenberg principle from physics 
which when applied here says that one can only get accuracy by sacrificing the speed of  
calculations. In this article we will try to show that the gap between slow accurate and fast 
crude algorithms can be reduced by looking at the matter from a different angle. 

It is well known that any contingent cash flow may be considered as combinations of  
generic options. Among them the American Call option is considered to be the most 
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/complicated for calculations. Two major reasons for this fact are an added dimension 
(user may exercise call at any point in time) and embedded assumptions of  the 
effectiveness of  an issuer. The last assumption converts the pricing problem into a 
stochastic optimization problem with stopping time. To make this statement clear, 
consider the callable bond CB and its counterpart regular Bond B s with sinking fund S. 
Assume that the schedule of  sinking fund payment depends on interest rate movement, 
but stipulated up from Denote Pb -price of  bond CB. and Ps -price of bond B s . Then 

Optimization Problem I 

P, = rain P b s , S  

This fact explains why Dynamic Programming is the main tool in dealing with callable 
bonds. In general practice the price of  an American call option is calculated by backward 
substitution using a version of a discrete or discretized arbitrage free model for interest 
rate movement, In such an algorithm it is assumed that the issuer(caller) is absolutely 
efficient, meaning that he knows the exact solution of  the optimization problem 1. This 
100% efficiency assumption is obviously not true. There are plenty of  factors involved. 
One of  them is a wide bid-ask spread which reflects the low liquidity of  the corporate 
bond market. Another is inefficiency in the process of  making a decision. A bond may be 
called if the treasurer does not have enough information or the information he has is not 
exactly correct. Bond may be called as a result of  debt restructuring, refinancing due to 
reorganization, merger, acquisitions, etc. 

Here we consider a continuous time model justified in addition to other reasons by the 
fact that in the Bond Market the caller has to pay accrued interest at the exercise date. 
In the model we introduce two causes of  calls. First is the rational cause, when a caller 
exercises his option based on his idea of what the fair market price of  the bond is at the 
moment. Second is the irrational cause. The irrational cause forces the issuer to call a 
bond regardless of  financial market analysis and therefore completely randomly from the 
issuer's point of  view. We do not deny rationality to irrational cause. Irrationality in this 
case means independence from issuer's will. Necessity of  financial restructuring may be 
one of  examples of irrational cause. We further assume that the caller is subject to error 
while making a decision and therefore his solution is quasi-optimal, The methodology we 
use to implement these aberrations is discussed later in the more technical part of  the 
paper. As it happens quite often in stochastic processes theory the added stochastic 
complexity simplifies the final result. Consequentially we are able to deliver methodology 
which bears significant potential in obtaining fast algorithms and closed form solutions for 
problems of  pricing callable bond. Finally we will discuss how this methodology may be 
developed for pricing mortgage backed securities. 
In the paper we demonstrate 

a) how irrational cause and an imperfection in a rational decision may be taken into 
account. 

170 



b) how model built on top of the imperfection assumption allows for different realizations 
dependent on user's preferences. 

c) methodology which bears potential for a wide range pricing model including MBS. 

d) that under certain assumptions the price of  a callable bond satisfies second order 
Ordinary Differential Equa#ou (Equations 8,9,10 ) with general solution available from 
the traditional sources [5][6]. 

Underlying Stochastic Interest Rate Model 

As we have mentioned before, we build our theory under continuous time assumptions. 
We assume that the term structure of  interest rates is described by a stochastic differential 
equation with respect to a Wiener process wt. For our purposes we do not have to specify 
the underlying model. However we are going to be more specific while demonstrating 
examples. We assume that the underlying model allows no arbitrage. To eliminate market 
price of  risk and to be able to use the discounting technique to obtain prices we assume 
that stochastic measure is already risk neutral. According to [7] this assumption would 
not restrict the generality of  the model. We define interest rates dynamics as follows 

Equation I 

dx t = b t (x  t ) * d t  + t Y t ( x t ) d w  t 

We assume that x t describes term structure of interest rates, b and cr are the so called 
drift and diffusion coefficients. Parameter ~ reflects volatility of  x, and b describes 
deterministic characteristics of  the movement. For illustrative purposes we assume single 
dimension for all the parameters. As an example consider Cox, Ingersoll, Ross (CIR) [2] 
model 

Equation 2 

dxt  : k * ( O -  x t ) o  dt + cr. ~ t d w  t 

Here k is the so called elasticity parameter, 0 -meanreversion and ~ is the volatility 
parameter for the model. This one dimensional model has significant accumulation of  
analytical tools [2], [3] and therefore is very attractive as a basis for building applications. 
To understand the meaning of  0, one may set cr to zero. It is easy to see that in the 
resulting deterministic equation, x t converges to 0, with t ~ ~ .  The same is true for the 
mathematical expectations Ex t . Parameter k controls the speed of  convergence. 

Introducing Irrational Cause (IC) 

Assume existence of  intensity function r(t,x) which depends on time t and interest rate x. 
This function describes intensity of  irrational cause. It says that conditional probability 
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that the bond will be called due to IC on the interval [t, t+At] is r .A t  +o(At). 
Naturally, r(t,x) has to be a non-decreasing function ofx. Note that the intensity function 
may be used to control mandatory maturity Any fixed maturity may be approximated by 
IC with intensity unrestrictedly high in the neighborhood of  the maturity. The simplest 
example of  an IC func t ion  is a constant function r(t,)c) - I / T  where 7' is a cons tan t  number 
which we choose to equal maturity. Another example of  r(x,O is 
r ( x , t )  = a t + b t . f ( d  t • x + c t )  wherefmay be any S-shaped decreasing function. The 

coefficients are part of  tuning up a model and may also depend on time to maturity T 
and type of  stochastic interest rate model used as a basis. 

Introducing quasi-optimality in a caller decision. 

We introduce quasi-optimality in caller decision by allowing the caller to deviate 
somewhat from optimality. How far a caller may deviate from the actual optimal solution 
is controlled by quasi-optimality parameter a. We utilize here Prof N. Krylov's [1] idea 
of  controlling optimal call with non-negative intensity function. Roughly speaking this 
means the following. Assume that T o is the optimal stopping (calling) time If the issuer 
has complete control over the situation, he will call exactly at ?'o minimizing the price of 
the security. If he deviates from 7o and calls the bond at times 7o-e, 7~,), To, ~ with equal 
probabilities of  l /3 ,  the resulting price will be higher than optimal, though the difference 
will be negligibly small tbr small v.. This means that the caller has a positive intensity 
function in the vicinity of  the optimal calling time. Lower a causes higher value of  the 
intensity function in the vicinity of  T o and therefore better approximation of  the optimal 
stopping time. 

Notations and Preliminary Information 

Consider a callable bond maturing at time T and paying coupon f t with continuously 
compounded interest. Assume that the current level of interest rate is equal to x, Assume 
also that the bondholder is entitled to a premium g t  at time t if the bond is called. Assume 
that the bond has par value of  1 and that gt  is a decreasing continuous function such that 
gT = 1. Denote "~ as a fixed random moment (not necessarily optimal) when the bond is 
called. In accordance with our assumption of  no-arbitrage and risk-neutrality the price 
vr(x, 0 of such a bond is a mathematical expectation of  discounted future cashflow. 

/- A 
?, ( rAT '1 (:',-s,,,,. + e x p J -  S" • . ( '  A ,') Vr(X,t ) = E {  J't exp s ~- t u 

This is not a price of  the callable bond CB yet It is rather the price of  a non-callable bond 
with a scheduled circumstantial call z. It is possible to show that price v(x,O of  a callable 
issue is a minimum price that the issuer of the bond may obtain given that he is allowed to 
chose the most beneficial for him circumstantial call. Therefore 
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Optimization Problem 2 

r A T  ( r A T  
,'(x.t)=minE[{ j exp(-f.;x,,'d,,)'isd~+exp l-  jx,,d,<l'g(rAT)}] 

r I \ l / 

dXs : bds + adWs X o = x 

It is shown in [1] that v(x,O satisfies the Non-Linear Partial Differential Equation 

Equation 3 

' 9  

g _ v ( t , x ) + [ 1 . a 2  2/'v +b. :- : - - 2  Ov + - - - x - v + f t + v - g ]  = 0  
2 d x  3 x  3 t  

[a]_ = rain(a,0) 

This in turn is equivalent to  the following three conditions: 

Equation 4 

g - V _ > O  

g -  v> O ~  L v +  f = 0 

g = v ~  L v +  f>_O 

1 0 2 V + b  ~ ~ '  
where Lv : ~ ~-2" "~-  + - - - - X "  '~ 

Effective numerical procedures have been developed to solve equation 4, but 
description of  them is beyond the scope of this paper. 

Pricing with irrational cause 

As we have discussed earlier, we define the irrational cause through intensity function 
r(x,O. This means that probability at time t O that the bond will be called due to the 
irrational cause on the interval (t,t+dt) is 

! 

r(x t , t  ). exp(-  I r(xu,u)" du). dt 
l 
0 

For the sake of simplicity assume that t o =0 We reformulate the optimization problem 2 
by introducing additional variabley t , and assuming perpetuity in payment T=m. It is not 
difficult to see that the last assumption does not cause a loss in generality. To achieve the 
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actual maturity at T one has to choose unrestrictedly high intensity function in the small 
vicinity of  T. The optimization problem 2 may be rewritten as 

Optimization Problem 3 

r 

v(x, y): min E[ I  exp(-y , ) ,  fl d~ + exp(-y~ ). g(yr )] 
o 

dx  s = bds  + (xIws  x O = x 

= x  ds  y 0 = y  dYs s 

Now consider an individual trajectory e~ where the bond is scheduled to be called at time 
"~(c9). The conditional contribution of this trajectory to the criteria of  the optimization 
problem 3 is 

iexp(-Y')'f'ds+ exp(-y,).g(.,,r )] 
o 

Assume now that together with circumstantial call ~ the bond may be called due to the 
irrational cause defined by intensity function r(x,t).  Therefore the expected contribution 
from the individual trajectory is 

r r 

exp(-fr(x, , t )dt) . { I  exp(-y,). ~ ds + exp(- y,) .g(yr) } + 
0 o 

r I t 

I It(,, ,, ). exp(- f "( ' , ' "  )~" ){ f exp(- y, ). S ~" + exp(- y, ). ,~ v, ~} la, = 
o o o 

=I+II 

If  the issuer decides to call the bond at "r, two different events may happen . First takes 
place when the bond indeed called at "t and the first part (I) of  the expression above 

r 

evaluates the expected contribution from this event. In this case exp( - f r (x , , l )d t )  is the 
0 

probability that the bond will be called by the issuer without interference of the irrational 
cause. The second event takes place when the irrational call happens before "c. 
Accordingly the second part (II) is a contribution from such an event. After some 
transformations we have 

]+II =eqx-j',-(x,,om).~p(-y,)go-)+ -y , -  ,~,s)a,..(z, +,~(~,,O.gU))a~} 

Now we may get rid of) '  and return to previous notations. 
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I+II =exp(-f(r(x,t)+x,)dt).g(r)+ - xs,s)+ . +r(x,t).g(t))a~} 
0 0 "  0 / 

The price of  a bond with given call ~ is a mathematical expectation of  contributions of  
individual trajectories 

v (x,0) = E(I + iI) 

Effective market will price the bond by choosing the call time to a maximum disadvantage 
of  a bondholder. Therefore we obtain price of  the bond as a result of  the 

Optimization Problem 4 

or 

v(x,t) : rain v (x,t) 
r 

"t" 

v(x, t) = min E[exp(- J" (r(xt, t) + x t )dt). g(r) + 
r 0 

{~exp(- i ( r (x  , s ) + x  ) d Q ) . ( f  t +r(xt , t ) ,g( t))dt}]  
o L o " s ) 

Applying Equation 3 to this problem we obtain a Differential Equation for v(x,t) 

Equation 5 

~ dx c~vdt 
1 a2 + b . d V + - - - ( x + r ) . v + f t + r g + v - g ] _  = 0  g- ,,(t, x) + [5 

where again [a]_ = rain(a,0). 

Pricing with Irrational Cause and Quasi-Optimality Assumption 

Our quasi-optimality assumption stipulates inability of  the bondholder to call the bond 
exactly at optimal time. Assume that the issuer may call the bond before or after the 
optimal time T T. Probability distribution of  the calling time is set by the intensity function 
p. It says that the conditional probability that the bond will be called by the issuer himself 
on the interval [t, t+At] is p .At , o(At). If issuer has the ability to pick any intensity 
functions, his choice will be the approximation of  T ~ by the intensity function which has 
infinitely high values in the small neighborhood of  T ~. To illustrate the point consider an 
example, Assume that the issuer calls the bond in accordance with the intensity function 

I! P c ( X ' t )  = P C ( t )  = t >_ T - 
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1 

Probability that the bond will be called on the interval [T-@,TI is I - e  ~f~ It 
approaches one as e approaches zero. We see that with e close to zero, the bond is almost 
certain to be called at the optimal time. On the other hand with positive e, call will be 
spread randomly in the vicinity ofT,  making price higher than optimal. 

Now we have two intensity functions. The difference between them is that quasi- 
optimality intensity function p is controlled by the issuer while irrational cause intensity 
function r(x,O is imposed on him. Denote v'(x,O the value of  the optimization problem 4 
given that the issuer is not allowed to stop exactly at the optimal stopping time "t but 

1 
rather he is allowed to use any intensity functions p with values not higher than - .  

g 

Apparently, v~(x,O ~ v(x,O as e ~ 0. It is shown in [1] that under some assumptions v ~" is 
a solution of  the system of  the following equations. 

Equation 6 

e . ( ( L v + f + g . r ) - ( g - v ) ) + g - v = O  and g<_v (A) 

o r  

Lv+ f +g . r - -O and g-v>_O (B) 

where L is a differential operator 

Lv 1-.or2 ~?2v Ov Ov = + b . - - + - - - ( x + r ) . v  
2 Ox 2 (?x Ot 

Equation 6 is not easy to solve. One of  the complications comes from the uncertainty and 
incorrectness of  the boundary conditions. We may overcome this problem by imposing 
rather innocent (from market value point of  view) assumptions, We assume that the bond 
will be called unconditionally if the interest rate falls below low bou~d level xt. similarly 
we assume that the bond is sold at the market price of  a non-callable bond if the interest 
rate is higher than high bound level x . .  Those assumptions should not have significant 
impact in most reasonable pricing areas Thus it is not unreasonable to assume that the 
bond with 7% coupon and sufficiently low call price g will be called if the interest rate falls 
below 0.5% and would be considered non-callable by a hypothetical market in a 30% 
interest rate environment. These assumptions create the needed simple boundary 
conditions 

v(xL,t) = g(t) and v(xH,t ) = Pl~(Xli,t) 

where P~(x , , t )  is the price of a non-callable bond with the same characteristics as the 

callable one. For such a problem in its entire complexity it is quite unlikely that a closed 
form solution exists even for simplest term structure models. At the same time with the 
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added boundary conditions the finite difference methodology works almost the same way 
as in a regular problem involving Partial Differential Equations. 

Pricing with stationary processes 

Assume that x, is a stationary process. This means that coefficients cr and b in equation 1 
do not depend on time. Assume also that intensity function r(x,O is a function only of  
state x, r(x,O - r(x). Then an equation for price v has the same appearance as equation 6 

Equation 7 

e . ( (Lv+ f + g r - ( g - v ) ) + g - v = O  and g<_v (A) 

o r  

Lv+ f +gr=O and g - v 2 0  (B) 

There is a crucial difference, however, v does not depend on t, and operator Lv becomes 
an ordinary differential operator 

1 
L v = - . a ' v "  + b. v ' - ( x  + r). v 

2 

To simplify the matter we further assume that the issuer is 100% optimal. In this case we 
may use equation 5 for Pricing with Irrational Cause (without Quasi-Optimality 
assumptions). This time equations for price become quite simple. There exists a constant 
x~ such that 

Equation 8 

-cr'~ + b v ' + ( x + r ) v + f + r g = O  
2 

where x > x c 

and v(xc) = g; v'(xc) = O; v(oo) = O; 

It is a second order ordinary differential equation with somewhat bizarre boundary 
conditions. In case of  CIR model with constant coefficients (equation 2) we have 

Equation 9 

1 
- ~ . r v " + k . ( O - x , ) v ' + ( x + r ) v +  f +rg= 0 
2 (A) 

V t - -  . where r > x and v(xc)= g; ( x c ) -  0, v(m) = 0; (B) 

1 7 7  



Let us make one more simplification. Let r(x)= ~ where T is the assumed time to 

maturity. By doing this we ensure that the average time to a call due to the irrational cause 
is equal to maturity. 

Equation 10 

-cs.xv" +k.(O-x,)v '  +(x + )v+ f +-fg=O (A) 
2 

where x > x. and v(x.):  g; v ' ( x ) =  0; v(~) : 0; (B) 

Equation 10 has a closed form solution which can be obtained from traditional sources 
[51,[6]. 

Summary 

The idea of  distributing maturity using irrational cause may well be implemented in 
building pricing methodology for Mortgage Backed Securities. As it is shown above 
additional "stochasticity" may improve pure mathematical characteristics of  a problem. 
This of  course cannot be done witbout sacrificing some features The partial differential 
equation approach "implies" Markovian Property for underlying processes. This means 
that burnout or seasonality effects in modeling of prepayment functions should be 
reconsidered accordingly. Theoretically speaking it is not a severe restriction because any 
non-Markovian process may be converted to Markovian by adding a dimension. 
Unfortunately for practitioner, an added dimension may be not just a problem but an 
insurmountable obstacle. 

The approach discussed in this paper takes into account some unavoidable aberrations in 
the issuer's decision while calling a bond Depending on assumptions the user may prefer 
a full scale model described by the set of equations 6 ,  or the most simplified version 
shown by equations 9 and l0 where the general solution is available 
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