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Equil ibrium in Competi t ive Insurance Markets  Under  Adverse  Selection and 

Yaar i ' s  Dual  Theory  O f  Risk 

Abstract 

Under Yaa_ri's dual theory of risk, we determine the equilibrium separating 

contracts for high and low risks in a competitive insurance market, in which risks are 

defined only by their expected losses, that is, a high risk is a risk that has a greater 

expected loss than a low risk. Also, we determine the pooling equilibrium contract when 

insurers are assumed non-myopic. Utility theory generally predicts that optimal insurance 

indemnity payments are nonlinear functions of the underlying loss due to the nonlinearity 

of agents' utility functions. Under Yaari's dual theory, we show that under mild technical 

conditions the indemnity payment is a piecewise linear function of the loss, a common 

property of insurance coverages. 

1. Introduction 

By assuming adverse selection in a competitive insurance market in which agents 

are expected utility maximizers, one can explain many common provisions found in 

insurance policies--deductibles, (nonlinear) coinsurance, and maximum limits, (Young 

and Browne, 1997) and (Fluet and Parmequin, 1997). Two issues remain unresolved under 

utility theory: (1) Most insurance policies provide an indemnity benefit that is a piecewise 

linear function of  the underlying loss. Under utility theory, however, nonlinearity of  the 

utility function in wealth forces optimal insurance to be nonlinear, in general (Young and 

Browne, 1997). (2) Utility theory predicts that a risk-averse agent will buy less than full 

coverage when the premium charged is greater than the actuarial expected value (e.g., 

Mossin, 1968; or Smith, 1968). Mossin, however, observes that many of his 'otherwise 

rational' friends purchase full insurance. 

Yaari (1987) develops a theory of risk, parallel to utility theory, by modifying the 

independence axiom of von Neumann and Morgenstern (1947). In Yaari's theory, 

attitudes toward risks are characterized by a distortion applied to probability distribution 

functions, in contrast to utility theory in which attitudes toward risks are characterized by 

a utility function of  wealth. Segal and Spivak (1990) show that, under Yaari's dual theory 
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of risk, a risk-averse agent may purchase full coverage even if the premium charged is 

greater than the agent's expected loss. Thus, under Yaari's dual theory, the second puzzle 

mentioned above is solved. This paper primarily addresses the first problem. 

In this paper, we apply Yaari's dual theory of risk to determine equilibrium 

insurance policies in the presence of adverse selection. We show that, in this model, low 

risks may prefer to pool with high risks and purchase full coverage, a result anticipated by 

Segal and Spivak (1990). More importantly, we show that, under mild technical 

conditions, optimal insurance provides an indemnity benefit that is a piecewise linear 

function of the loss. This occurs because under Yaari's theory, the value functional is 

linear in wealth, as opposed to utility theory, in which the value functional, or expected 

utility, is nonlinear in wealth. In addition, by reconsidering optimal insurance under Yaari's 

dual theory, we examine the robustness of optimal insurance results obtained under utility 

theory. We find several qualitative similarities between optimal insurance contracts under 

the two theories. 1 

In Section 2, we state our basic assumptions and, in Section 3, formulate our 

problem concerning equilibrium separating and pooling insurance contracts in a 

competitive, anticipatory market. We analyze the equilibrium separating and pooling 

policies in Section 4. First, we consider the simple case in which the loss amount is fixed 

but the probabilities of loss differ between the risk classes, the case that Rothschild and 

Stiglitz (1976) study. Then, we consider the case of a general random loss and obtain 

conditions satisfied by the optimal separating and pooling contracts. We show that under 

mild technical requirements, these conditions are sufficient to uniquely determine the 

optimal contracts. In this case, we find that the equilibrium contract is a piecewise linear 

function of the underlying loss. We present an illustrative example in Section 5 and show 

how piecewise linear coverage with a deductible and a maximum limit can be realized as 

an equilibrium policy in our framework. In the last section, we summarize our results and 

compare them with ones obtained under utility theory. 

Also Doherty and Eeckhoudt (1995) consider optimal insurance under Yaari's dual theory of risk. 
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2. Market for Insurance 

We assume that insurers compete for the business of  low and high risks in the 

market, with the proportion of  high risks equal to p. Low and high risks are identical 

except for their distributions of  loss X >  0. A risk is defined to be low versus high if the 

expected loss o f  a low risk is less than or equal to the expected loss of  a high risk. 

We assume that individuals are rational as determined by Yaari's dual theory of  

risk (1987): Risk preferences under Yaari's theory can be represented by the expected 

value with respect to a distorted probability. Let o~ denote the distortion function that 

distorts the probability that a random variable will exceed a given value: ~ maps the unit 

interval [0, 1] onto itself and is nondecreasing. In particular, ~ (0 )  = 0 and g ( l )  = 1. The 

certainty equivalent of  a random outcome Y is equal to (Yaari, 1987) 

;®(~[Sr  ( t ) ] - l l d t  + So g[Sr(t)ldt = ~Sr'(q)arg(q)' 

in which Sr is the decumulative distribution function of  Y, St(t) = Pr{Y> t}, t ~ R, and 

S /  is its inverse, defined by S/(p) = inf{t: Sr(t ) _< p}, 0 < p < I. 2 Thus, an individual is 

rational under Yaari 's theory if he or she orders random outcomes Y according to the 

value ~Sr 1 (q)a~(q) and chooses Y to maximize this value. 

I2 One can think of  S[/(q)d~g(q) as a generalized expected value, in which one 

distorts the probabilities before calculating the expectation. Note that for ~ equal to the 

1 1 
identity, ~£ S r (q)dq = E[Y]. 

We assume that ~ is strictly increasing; thus, individuals value more highly 

outcomes that are more likely to occur, that is, they preserve the ordering o f  first 

stochastic dominance. In addition, we assume individuals are risk-averse; that is, they 

order risks according to second stochastic dominance, or equivalently, ~ is convex 

(Yaari, 1987). 

2 When referring to a particular risk type, we further subscript Sr and Sr I by L or H, to represent low or 

high risk, respectively. 
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Let I :R + -4  R + denote an insurance policy which pays l(x) to an insured if the 

insured suffers a loss of  size x. We assume that I is continuous and piecewise differentiable 

with 0 < I '  < 1 and I(0) = 0. Such an insurance policy I is called feasible.  The inequality 

I '  > 0 restricts the indemnity benefit to be a nondecreasing function o f  the underlying loss 

in order to prevent a policyholder misrepresenting a loss downward. Similarly, the 

inequality 1 ' <  1 restricts the indemnity benefit to increase at a slower rate than the 

underlying loss in order to prevent a policyholder from misrepresenting a loss upward. 

Insureds can buy at most one insurance policy to cover their potential losses. Denote the 

initial wealth o f  an insured by w. 

The expected value E to an individual of  type i, i = L (for low risk) or H (for high 

risk), who buys an insurance policy I for a premium P is given under Yaafi 's  theory by 

V~(I, P)  = l~ S~'_p+,(x)_x., ( p ) d ~ ( p )  

~ J l  1 
= w - P - I ~ x _ , ( x x , ( p ) d g ( p )  

(2.1) 
= w -  P -  i2[S,- '(p) - I ( ST ' (p ) ) ]dg (p  ) 

= w - P -  t + t ,  

in which g is the distortion defined by g ( p )  = 1 - g ( 1  - p ) ,  0 < p g 1. 3 Note that g is an 

increasing, concave distortion. When the random variable is the underlying loss random 

variable X, then we simply write S, for Sx, j, i = L or H. 

3. Separating and Pooling Equilibria 

We assume that insurers behave as if they are risk neutral and that administrative 

expenses and investment income are zero. We assume that the insurance market is a 

competitive market, as in Rothschild and Stiglitz (1976), and that each insurance policy 

3 In simplifying the value V, we rely on the following: Two random variables X and Y are comonotonic i f  
there exist nondecreasing real-valued functions hi, h2 and a random variable Z, such that X = ht(Z) and 
Y = h2(Z). The restrictions on the rate of growth of a feasible insurance policy result in the random 
variables X, I(X), and X-I(X) being pairwise comonotonic. In the case of comonotonic random variables, 
we have that ~xl÷r = ~xl+ ,_~r 1. Note that a constant is comonotonie with respect to any random 

variable. Also, the integral J~S-x'(p)d~(p) is asymmetric in that l~S~x(p)d~(p)=-~Sx~(p)dg(p). 
These integrals are special cases of Choquet integrals with respect to nonadditive measures. See 
Denneberg (1994) for more background in non,additive measure theory. 
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earns nonnegative profits. A set of contracts is in equilibrium if there does not exist an 

additional contract which, if also offered, would make a positive profit. Information 

asymmetries exist in the market because of regulatory prohibitions on underwriting or the 

inability of insurers to acquire relevant information. 4 

Under asymmetric information, a separating equilibrium consists of a set of 

contracts (In, Pu) and (IL, PL) satisfying the conditions stated above, together with the 

self-selection constraints: 

Vu(In, PH) > Vn(IL, PL); (3.1) 

VL(IL, PL) >- VL(Iu, PH) . (3.2) 

The nonnegative profit constraints, or premium constraints, are written 

P, > E,[I,O0], (3.3) 

for i = L or H. Competition will force the premium constraints to hold in equilibrium. Note 

that, in terms of  the (inverse) decumulative distribution function, we can write an 

1 1 
expectation, Eli(X)], as ~II[S-(P)ldP = ~oS(t)dl(t). 

Full coverage at an actuarially fair price for both low and high risks constitutes a 

separating equilibrium if and only if EL[X] = En[X]. Indeed, when insurers cannot observe 

a risk's type, full insurance is not feasible if EL[X] * EH[X], because only the less expensive 

policy would be bought. If, however, EL[X] = EH[X], then full coverage at an actuariaUy 

fair price of EL[X] would constitute an equilibrium. 

In what follows, we show that, under Yaari's dual theory, if equilibrium is 

achieved by a pair of  separating policies and if EL[X] <En[X], then the equilibrium 

coverage for high risks is full insurance at the actuarially fair price of En[X], and the 

equilibrium coverage for low risks is less than full coverage. Let (Is, Ps) denote the 

solution to the following problem: 

max,.pVL(I,P)=maxt.e[w-P-~og[SL(t)]dt+~og[SL(t)]dl(t)],  (3.4) 

4 It is straightforward to show that in the case of full information, equilibrium will consist of each risk 
receiving full coverage at an actuarially fair price. This duplicates a result from expected utility theory. 
Both results are consequences of the fact that risk-averse decision makers in each theory preserve the 
ordering given by second stochastic dominance (Yaari, 1987). 



subject to 

and 

0 < I '  < 1; /(0) = O, (3.6) 

w - G [ x ]  = v ~ ( I L  G [ x ] )  

~ V . ( i . P ) = w _ p _ j 2 d & ( t ) l d  t + j.og[&, ( t) ld/( t)  ' (3.7) 

in which f f  denotes full coverage. The last constraint (3.7) ensures high risks will not 

prefer the policy of  low risks to full coverage. 

Lemma a.1 /fELIX] < END(], then (Is. Ps) is a part ial  coverage contract satisfying 

Vn(ls, &[Is(X)]) = Vu(I e, En[X]) = w - En[X], 

and  

gL(/s, ELlis(X)]) a VL(f, E~[X]) = w - E,,[X]. 

Proof." See Appendix. 

The contracts (if, En[X])and (Is, EL[Is(X)])satisfy the self-selection constraints 

(3.1) and (3.2), as well as the nonnegative profit constraints (3.3). If  a separating 

equilibrium exists, then they are the equilibrium contracts, as shown in the following 

proposition. 

Proposition 3.2 Assume that a separating equilibrium exists. The equil ibrium pair  o f  

contracts is (In, Pn) = (IF, En[X]) and  (IL, PL) = (Is, Ez[Is(X)]). 

Proof: See Appendix. 

Note that Proposition 3.2 tells us that the expected loss of  a risk is sufficient to 

characterize a risk as low or high in order to determine the optimal separating contracts. 

The same is true in the case o f  a pooling equilibrium, as we demonstrate next. 

Further assume that insurers are non-myopic, as in Wilson (1977)--that is, they 

will not offer policies that will become unprofitable if other policies are removed from the 

market in response to the introduction of  a new policy. It may occur that both risks will 

prefer a pooling policy to their optimal separating policies. In that case, any pooling policy 

which is priced actuarially fair and that does not maximize the expected value Vof the  low 
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risks can be improved upon for the low risks. That the old policy will be removed from the 

market is a result o f  insurers being non-myopic and of  the following lemma. 

Lemma 3.3 Suppose that EL[X] < En[X]. For any poolmg policy I with an actuarially 

fair premium P, such that the high risks prefer I to full coverage with an 

actuarially fair premium of EnD(I, we have that P < En[I(X)]. 

Proof: See Appendix. 

Therefore, if the equilibrium is a pooling equilibrium, then the optimal pooling 

contract (/e, Pc) solves the following problem: 

maxiVL(I,P ) maxl.~,Iw- P ~ S + 

subject to 

and 

P _> (1- p)EAI(x)] + pE,,[/(x)], 

(3.8) 

(3.9) 

0 _<. I '  < 1; I(0) = 0. (3.10) 

For the optimal separating policies to constitute an equilibrium, we also have the 

self-selection constraints that at least one risk class will prefer its optimal separating policy 

to the optimal pooling policy. Similarly, for the optimal pooling policy to constitute an 

equilibrium, we have the self-selection constraints that both risk classes will prefer the 

optimal pooling policy to their optimal separating policies. To state this more simply, if at 

least one o f  the risks prefers to separate, then they will separate. 

In the next section, we determine necessary conditions satisfied by the optimal 

separating and pooling insurance policies for general loss distributions. First, we look at a 

simple case: the amount o f  loss is nonrandom, and risks differ only in their probabilities of  

loss. 

4. Design of Optimal Insurance Contracts 

4.1 Nonrandom Loss Severity, Differing Probabifities of Loss 

In this section, we examine the model studied by Rothschild and Stiglitz (1976). 

Specifically, risks are identical except for their probabilities of  loss, wlth p, = S,(0), i = L or 

H, andpz <pt¢. We also assume that the loss amount is fixed at, say, x. We first present a 

graphical approach for understanding this problem which highlights the similarities 
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between our results and those of  Rothschild and Stiglitz. Then, we solve the problem 

algebraically. 

Consider Figure 4.1 in which we graph premium P versus coverage I. The lines 

denoted Pu I, pp I, and pL I, are the fair-odds lines for the high, pooled, and low risks, 

respectively. The lines marked V# and VL are the indifference lines for the high and low 

risks, respectively, s These indifference lines are given by P = g(p,) I + [w - gfPD x - Vii, for 

i = L or H, (2.1). The line Vn is steeper than the indifference line of  the low risks because 

g(PL) < g(Pn). By using standard arguments, we see that the risks separate with high risks 

buying full coverage, denoted by f ,  and low risks buying the amount of  coverage on their 

fair-odds line where VL intersects Vu, denoted by Is. In this case, the equilibrium is 

separating because VL does not intersect the fair-odds pooling line. 

P 

Figure 4.1 

I s 

V L VH 

Separating Equilibrium 

] F 
P H I  

PI, I 

PL I 

I 

X 

5 We use the notation V~, i = L or H, to denote both an indifference line and the value (2.1) to a risk of 
being on that line. 
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In Figure 4.2, we see that the risks prefer to pool at full coverage, Ip, because the 

indifference line of  the low risks, VL, intersects the fair-odds pooling line. This result is 

anticipated by Segal and Spivak (1990) who show that under Yaari's dual theory of risk, 

optimal insurance may be full coverage even when the premium is loaded. The pooling 

policy will be in equilibrium if one assumes that insurers are non-myopic, as in a Wilson 

anticipatory market (1977). 

P 

V L V H  

Figure 4.2 Pooling Equilibrium 

PH I 

pp  1 

P L I  

I 

x 

Is solves the self-selection equation Vn(Is, pLIs)  = w - p n x .  It follows that 

g ( P n  ) - Pn 
I s - x. The line VL intersects the line Pe/,  or equivalently the risks pool, if 

g(P. ) - :'L 

and only if the proportion of high risks p is less than g(PL) --PL Thus, we see that if the 
g ( P • )  - PL " 

high risks make up a sufficiently small portion of the market, then the risks prefer to pool. 

Also, if pL and ,on are sufficiently close, then the risks will pool because the ratio 
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g(PL) - PL increases to 1 as the probabilities o f  loss approach each other. Finally, ifg~ is 
g(PH) -- PL 

a concave distortion, then so is gl °g ,  and g(PL)--PL <_gl[g(PL)]--PL g,[g(Pg)]--PL" Thus, as g g(PI~ ) -- PL 

becomes more concave, the risks are more likely to pool. 

To summarize, if the costs of  pooling are not too great, as described above, then 

the risks will pool at full coverage. Otherwise, the risks separate with high risks 

g(P~ ) - PH 
purchasing full coverage and low risks purchasing I s - g ( P ~ ) - - P L  X, each at an 

actuarially fair price. It is straightforward to show that these results also follow from 

Theorems 4.1 and 4.5, given below. 

4.2 General Loss Random Variable 

In this section, we describe the optimal separating and pooling contracts. We 

assume that EL[X] < E#[X], as in Section 3. In Section 4.2.1, we describe the optimal 

separating contracts. First we determine conditions satisfied by the optimal separating 

contract for the low risks, for general loss random variables. Then, we show that the 

conditions are sufficient to determine the optimal contract under mild technical 

requirements. By further restricting the loss distributions, the distortion function, or both, 

we obtain conditions under which the optimal contract for the low risks is either a 

deductible policy or a policy with a maximum limit. In Section 4.2.2, we parallel Section 

4.2.1 for the optimal pooling contract. 

4.2.1 Optimal separating contracts 

In this subsection, we give conditions satisfied by the optimal separating insurance 

contracts for general loss random variables. The optimal separating insurance contract for high 

risks is full coverage,/r, at an actuarially fair premium, EH[X], as shown in Proposition 3.2. 

Conditions for the optimal separating policy for low risks are given in the following theorem. 

Theorem 4.1 The optimal separating insurance contract (Is, Ps) for the low risks, that solves 

(3.4)-(3.7), satisfies the following: There exists a nonnegative constant 2 such that 

(a) I f  g~SL(X)]<(1- t )SL(x)+tg[S , (x )] in  a neighborhood of  xo, then 

I ; (Xo)  = o. 
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o) I /~ s~oo ] >o- a ) s ~ ( o+ .~s , , ( ~ ) ] i .  ,~ ,,ei~h~rhooa o: ~o, then 

L~(Xo) = t 

The premium Ps equals the expected indemnRy benefit, Ps = EL[Is(X)], and the 

self-selection constraint (3.7) holds at the optimum. 

Furthermore, if the following technical condition (C1) holds, then (a) atwl (b) 

above are sufficient to determine Is and 2 unique(F: 

(C1) g[St (x)] - St (x) is not constant on any interval in R*. 

P -  Iog[SL(t)]dt + J~g[SL(t)]dl(t), subject to the constraints w -  

P._ and w - E . m  : w -  P -  Io d s H ( o l a ,  + Io 

is equivalent to minimizing 

over feasible I and 2 > 0 because the premium constraint binds. Because a feasible 

I is piecewise differentiable, we can write the objective function M as 

M ( I , I )  = So {(1- 2 )S t ( t ) -  g[S L (t)] + 2g[Sn (,)] } I'(,)dt. 

This expression for M leads directly to the conditions for Is. 

If condition (C1) holds, then clearly conditions (a) and (b) are sufficient to 

determine Is, for a given 2. To show that 2 is unique, suppose that it is not. Let 21 

Proof: Maximizing 

-< 22 be such that 

En[X] = Io[SL (t)I~(t)* g~Sn(t)Kl- l;(l))]dt 

= ~o[SL(t)l;(t)*g[S,t(t)ll-l;(t))]dt, 
(4.1) 

in which/j, j = 1 or 2, is the insurance policy determined by conditions (a) and (b) 

with 2 = ,~.. Because 21 < 22, 12 < I~ and let A be the subset o f R  ÷ given by 



A = O} 

= _< 

By (4.1), we have that 

L - -  Lg[  (')] 
which implies that A has measure zero because SL < Sn on A. Thus, 21 = 22, and 2 

is uniquely determined by the self-selection constraint (3.7). []  

One can interpret the conditions in Theorem 4.1 economically. Indeed, the left-hand 

side of  each expression in (a) and (b) is the marginal benefit to the low risks of  receiving 

additional coverage beyond a given loss x. The corresponding right-hand sides are the marginal 

costs of paying additional premium for that coverage, adjusted for the net marginal gain to the 

high risks for the extra coverage. Therefore, if the marginal benefit of  receiving extra coverage 

beyond x is outweighed by the adjusted marginal cost, then Is(x ) = 0, an intuitively appealing 

result. 

From condition (C1) in Theorem 4.1, we learn that the optimal indemnity payment 

for the low risks is a piecewise linear function of  the underlying loss, a result that is not 

generally true under utility theory (Young and Browne, 1997). The reason that the optimal 

indemnity is a piecewise linear function is that the value function under Yaari's dual theory 

is linear in wealth, while expected utility is not generally linear in wealth. Condition (CI), in 

particular, implies that I~ = 0 or 1, except at most a countable number of  point~ In this case, 

the optimal coverage for the low risks looks like a 'terrace' with alternating fiat portions and 

portions that increase with slope 1. A special case of such an insurance policy is deductible 

coverage combined with a maximum limit, Ia(x) = min[max(x-d, 0), u]. 

The following corollary follows directly from condition (b) in Theorem 4.1 and from 

the fact that g(p) >p, for allp ~ [0, 1]. 

Corollary 4.2 I f  SL(x) > Sn(x), for all x in a neighborhood of  :Co, then l~(x) = 1 in a 

neighborhood of xo. In particular, let x0 = 0 ; / f  the loss random variable o f  the low 

risks is dominated by the loss random variable of  the high risks under second 

stochastic dominance, then ls is full coverage up to some loss amount. 
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Next, we obtain conditions that lead to optimal policies with deductibles, 

maximum limits, or both. We state the following without proof. 

4SL ( 0 ) ] - S  L (0) </ l ,  then the optimal separating policy for the low 

I 

Corollary 4.3 ( a ) I f  g[Sn(0) ] 
SL(0) i 

risks has a nonzero deductible; that is, there exists a d > O, such that Is(x) = O, for 

x <d; andls(x) > O, f o rx  > d. 

lim g[SL (x ) ] -  SL(x) 
(b) I f  x-,® g[S n (x ) ] -  S L (x) < 2, then the optimal separating policy for the low risks 

has a maximum limit; that is, Is(x) = u,for some u, m > O, and for all x > m. 

,. S . ( x )  
The condition in part (b) holds when, g'(O) < oo and u r n - -  = 0% for example. 

• - ,~  S L ( x )  

S . ( x )  
It also holds when g(p) = pC, for some 0 < c < 1, and when l i r a - -  = oo. The condition 

x-,~, SL ( x )  

S,,~x_____2) 
!im SL(x ) = oo indicates that the loss distribution o f  the low risks is heavily dominated by 

the one of  the high risks for large losses. In that case, the low risks are willing to give up 

coverage at large loss amounts because they are much less likely to incur large claims than 

the high risks. For the special case in which the severity densities are equal, we have the 

following result. 

Corollary 4.4 Suppose the loss severity densities of  the risks are identical with SL(O) < 

S~(O). 6 Then, optimal separating insurance for the low risks ls may have a 

deductible or may have a maximum limit, depending on the risk aversion 

embodied by the distortion function g. Specifically, define the relative risk 

aversion for probabilities by 

pg"(p)  
g ( p )  - _ _ _  

g'(p) 

(a) I f  R,(p) is nonincreasing with respect to p, then the optimal Is is deductible 

coverage, given by Is(x) = max(x - d, O),for some d >__ O, and for all x >_ O. 

Note that, in this case, condition (CI) of Theorem 4.1 holds. 
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l~(p) 
(b) If/~(p) > - -  > 0, for all p ~ (0, I), then the optimal Is has a maximum 

g(p)- p 

limit with full coverage below the limit; that is, Is(x) = rain(x, u), for some u >_ O, 

and for all x >_ O. 

Proof: See Appendix. 

If R, is decreasing, then as insurable events get more rare (p decreases), the 

decision maker (d.m) becomes more risk-averse relative to the probability of the event (R, 

increases). In this case, Corollary 4.4 implies that a d.m. will insure rare events, namely, 

losses over a deductible, and self-insure losses under the deductible. A family of 

distortions for which R, is nonincreasing is the collection of  power distortions gc given by 

gc(P) = i f ,  for a fixed, but arbitrary c ~ (0, 1). R, for the distortion gc is identically 1-c. 

On the other hand, if a d.m. is relatively less risk-averse as events get more rare, 

then the d.m. will self-insure rare events, namely, losses over a maximum limit. A family of  

R,(p) 
distortions for which /~(p)  >_ - -  > 0, p ~ (0, 1), is the collection o f  dual power 

g(p) - p 

distortions ga given by gap)  = 1-(1  .p)d, for fixed, but arbitrary d > 2. Indeed, 

/~ (p )  = ( d -  1) 1_--~, from which the inequality follows. 

4.2.2 Optimal pooling contract 

In the following theorem, we state conditions satisfied by the optimal pooling insurance 

contract. The proof parallels the one of Theorem 4.1, so we omit it. 

Theorem 4.5 The optimal pooling insurance contract (le, Pv), that solves (3.8)-(3.10), 

sati~qes the following cona~tions: 

(a) I f  g~SL(x)]<(1-p)SL(x)+pSM(x),  in a neighborhood of  Xo, then 

r~(Xo) = o. 

(b) If g[SL(x)]>(I-p)SL(x)+pSn(x), in a neighborhood of xo, then 

I'e(Xo) = 1. 

The premium Pp equals the (t~oled) expected indemnity benefit, 

Pe = (l-p) EL[IF(X)] + p En[Is(X)]. 



Furthermore, i f  the following technical conch" tion (C2) holds, then ( a) and ( b ) 

above are sufficient to determine Ip uniquely: 

(C2) g[S L (x)] - S L (x) is not equal to p on any interval in R ÷. 
S . (x )  - SL(x) 

One can interpret the conditions in Theorem 4.5 economically, as for Theorem 4.1. For 

example, if the marginal benefit of receiving extra coverage beyond x outweighs the adjusted 

marginal cost for the low risks, then I'e(x ) = 1. If the condition ((72) holds, then optimal 

pooling insurance is a piecewise linear function of the loss. Again, this result is not 

generally true under utility theory (Young and Browne, 1997) for utility functions that are 

nonlinear in wealth. 

We have the following straightforward corollary which is weaker than Proposition 3.2. 

Corollary 4.7 I f  SL = Sm then the optimal pooling policy Ip is full  coverage. 

Note that Corollary 4.2 also holds for the optimal pooling contract. The next 

corollary parallels Corollary 4.3. 

Corollary 4.8 (a) I f  g[SL(0)J--SL(0) Sn(O)_ SL(O) < p, then the optimal pooling policy has a 

nonzero deductible; that is, there exists a d >_ O, such that Ip(x) = O, for  x <_ d; and 

Ip(x) > O,for x > d. 

(b) I f  lim gtSL(X)]- SL(x) < p, then the optimal pooling policy has a maximum 
x ~  SM(x)-S~(x)  

limit; that is, Ip(x) = u, for  some u, m > O, and for  all x > m. 

The discussion following Corollary 4.3 holds in this case, too. In particular, if the 

loss distribution of the high risks heavily dominates the one of the low risks for large 

losses, then, quite generally, the condition in Co) will hold. In the pooling case, we can 

assert something stronger than Corollary 4.4. 

Corollary 4.9 Suppose the loss severity densities o f  the risks are identical with SL(O) < 

Sn(0). 7 Then, optimal pooling insurance Ip is deductible coverage, given by 

Ie (x)  = m a x ( x  - d ,  0) ,  

7 Note that, in this case, condition (C2) of Theorem 4.5 holds. 
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for  some d >_ O. 

Proof: See Appendix. 

In the next section, we present an illustrative example to show how piecewise 

linear coverage with a deductible and a maximum limit can be realized as an equilibrium 

policy in our framework. 

5. Illustrative Example 

Suppose p = 0.10, that is, high risks constitute 10% of the market. Assume that low 

risks have probability of loss SL(0) = 0.80 and have loss severities distributed according to the 

exponential distribution with mean $1000. Similarly, high risks have probability of  loss Sn(0) = 

1.00 and have loss severities distributed according to the exponential distribution with mean 

$2000. Assume that both the low and high risks have a power distortion, g(p)=pVLI. It 

follows that low and high risks are willing to pay up to $898 and $2200 for full coverage, 

respectively. 

The optimal separating policy to the low risks Is is a piecewise linear function of  the 

loss, given by 

Is(x ) = min(max(x - 290, 0), 919 - 290), x > 0. 

That is, the Is has a deductible of  $290 with a maximum limit of  $919, or maximum benefit of  

$628. The value to the low risks of this policy, ignoring wealth w, is -877, while the value to 

the high risks is -2000. 

The optimal pooling policyle is a piecewise linear function of  the loss, given by 

Ie(x  ) = min(max(x-  159, 0), 1662-  159), x > 0. 

That is, thele has a deductible of  $159 with a maximum limit of  $1662, or maximum benefit o f  

$1503, The value to the low risks of  this policy is -894, while the value to the high risks is - 

1762. We see that the low risks want to separate. Thus, the equilibrium is a separating one with 

the high risks receiving full coverage and the low risks receiving Is, each at an actuarially fair 

price. 

In the next section, we conclude our work by summarizing our results and by 

comparing them with ones obtained under utility theory. 
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6. Summary 

We showed that if the two risk classes have equal expected losses, EL[X] = E~[X], 

then equilibrium is full coverage at an actuarially fair price. If EL[X] < E~X] and if a 

equilibrium is achieved by a pair of separating contracts, then the equilibrium coverage for 

high risks is full insurance at the actuarially fair price of EM[X], and coverage for low risks 

is less than full. These results are also true under utility theory, (Fluet and Pannequin, 

1997) and (Young and Browne, 1997). We showed that the optimal separating contract 

for the low risks solves the optimization problem given by (3.4-7). Under utility theory, 

the optimal contract for the low risks solves the corresponding problem with the value 

function replaced by expected utility. 

We showed that if insurers are non-myopic, then a Wilson anticipatory pooling 

equilibrium might exist. The optimal pooling contract solves the problem given by (3.8- 

10). Under utility theory, the optimal contract solves the corresponding problem with the 

value function replaced by expected utility (Young and Browne, 1997). Utility theory 

predicts that the optimal pooling coverage is never full coverage, (Mossin, 1968) and 

(Smith, 1968). However, under Yaari's dual theory, we showed that the optimal pooling 

coverage might be full coverage if the costs of pooling are not too great, Section 4.1. 

We found conditions satisfied by the optimal contracts. Qualitatively similar conditions 

hold for the optimal contracts under utility theory: In that case, one compares marginal utility 

benefits and costs, whereas under Yaari's theory, one compares marginal benefits and costs 

which arise from a value functional which is an expected value with respect to a distorted 

probability. 

We showed that under mild technical conditions, the optimal separating and pooling 

coverages are piecewise linear functions of the underlying loss because the value function is 

linear in wealth. This result does not hold under utility theory (Young and Browne, 1997) for 

utility functions that are nonlinear in wealth. Thus, Yaari's theory predicts a common property 

of most indemnity contracts---namely, piecewise linearity--which utility theory does not 

predict. 
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Appendix 

Proof of Lemma 3.1: 

First, note that the premium constraint will always bind. Because EL[X] < En[X], 

Vn(Is, EL[Is(X)]) > w - En[X], if Is were full coverage. Thus, the self-selection constraint 
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Vn(ls, EL[Is(X)]) < w - En[X] binds. To prove that VL(Is, EL[Is(X)]) >- w - En[X], it is 

enough to find a contract I compatible with the constraints that satisfies this inequality. Let 

(I,,, Pa) be a coinsurance contract; that is, l~(x)= or, for some a E [0, 1], and 

Pa = o - E u [ X ] .  Let 

a ' =  argmax~lo, llV L (I  a, P,) = argmaxa~o,,,Iw- ~ g[SL(t)ldt + a [ :(g[SL(,)  l - Sn(t))dt ]. 

Then, a*  = 0 or 1, which implies that VL(Is, ELlis(X)]) >- VL(Ia., P~.]) ~ w - En[X]. 

[]  

Proof  o f  Proposition 3.2: 

From the properties of  the solution ls, we have that if full coverage is the optimal 

separating contract for the high risks, then Is is the optimal separating contract for the low 

risks. Therefore, it is enough to show that full coverage is the optimal separating contract 

for the high risks. 

Suppose not; that is, suppose that the optimal I* is not the identity on R +. Then, 

Vn(l*, En[I*(X)] )<w-En[X] ,  by continuity of  1", because full coverage / r  at an 

actuarially fair premium is optimal for any risk. Consider a contract which provides full 

coverage at a premium P ,  = E,v[X] + e, for 6>  0. For e small enough, V~(I*, E,v[I*(X')]) < 

Vn(l e, P,) = w - En[X] - 6 < w - En[X]. The contract (/r, p,)  would attract all the high risks 

and make positive profits, If  it attracts the low risks, it still makes positive profits because 

EL[X] <En[X]. Thus, (/r, p,)  overturns the equilibrium if I* ¢ f .  It follows that the 

separating equilibrium for high risks is full coverage/r  at a premium En[X]. []  

Proof o f  Lemma 3.3: 

We are given that high risks prefer the pooling policy I to full coverage, both at 

actuarially fair prices. That is, 

w - E n [ X ] < V . ( I , P ) = w - P -  _l(X~n(t dt 

<_., - P -  E . [ X -  I(X)], 

in which the second inequality follows from Jensen's inequality. It follows that P < En[I(x)]. 

[]  
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Proof o f  Corollary 4. 4: 

First suppose Rr(p) is nonincreasing, or more simply, decreasing with respect to p. 

To show that ls is deductible coverage, by Theorem 4. I, it is enough to show that the ratio 

g[s .  (x)] - st (,0 (A. 

is increasing with respect to x. Write p = pL S(x), then PnS(x) = --~L PLS(X) = a p,  in 

which a =pn/PL ~ [1, I/p]. Then, the ratio in (A.1) is increasing in x if and only if 

g ( P ) -  P r(p)  = 
g(ap)  - p 

is decreasing in p. 

g ' ( p ) -  1 ~g ' (~p ) -  1 
Now, r ' (p )< 0 if and only if g - ~ - p  < g(ap)  - p , for all a ~ [1, 1/p]. This 

inequality holds with equality at a = 1; thus, it holds for all a c [1, l/p], if the right-hand 

side is increasing in a. The derivative of  the right-hand side with respect to a is 

proportional to cepg(cep)g"( ap) - ap2 g"(ctp) + g(ctp)g'(ap) - apg'(ap):.  Substitute q for 

otp and ,8 for 1 /~  then, the derivative is proportional to 

d(q,f l)  = qg(q)g"(q) - l~l~g"(q) + g(q)g'(q)  - qg,(q)2, 

with ,8 ~ (0, 1]. To verify that d(q) is greater than or equal to zero, it is enough to verify 

this for fl as small as possible, namely 0. Then, we are left with checking whether 

0 < qg(q)g"(q) + g(q)g'(q)  - qg'(q)~ 

oc {g(q) - qg'(q)} - R,(q)g(q). 

Assuming that the limit exists as q approaches 0, we have d(0, 0) = 0. Thus, finally, it is 

enough to show that d(q, 0) is increasing in q. Its derivative is equal to -R~(q)g(q) ,  

which is positive by the assumption that R, is decreasing. Thus, we have verified part (a) 

of  the proposition; part (b) follows by similar reasoning. [ ]  
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Proof of Corollary 4. 9: 
By Theorem 4.5, it is enough to show that 

g[pLS(x)V dSL(x)]-SL(x)_ /pLS(x)-I 
Ss(x) - SL(x) PM~p L ! 1 

is increasing with respect to x, or equivalently, that g(P)~p is decreasing with respect to 

p,  which is true because g is concave. []  
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