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Abstract. The Bayesian model of collective risk theory is extended in the sense that a large
class of distributions is used instead of a single one. We then investigate the sensitivity of
variance premium principle when the structure function belongs to that class.

According to robust Bayesian methodology, the uncertainty in the prior can be mod-
eled by specifying a class I of priors instead of a single one. We examine the ranges of the
Bayesian premium, also called experience rated premium, when the priors belong to that
class. Most of the robust Bayesian procedures developed measures of sensitivity of quan-
tities which can be expressed in terms of posterior expectation (e.g. mean, variance and
probability of given sets). Nevertheless, relatively few papers have been related to measure
Bayesian sensitivity of quantities which can be expressed in terms of ratio of two posterior
expectations, as ococurs in the variance premium principle. Approapiated tecniques to solve
this situation are considered. Unimodality turns out to be very convenient for modelling
subjective beliefs about the risk parameter.

The very common Poisson-Gamma model is developed in depth using our methodology.
Key words: Variance premium principle, Bayesian robustness, Classes of priors.
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1. Introduction

A premium calculation principle is a functional that assigns a usu-
ally loaded premium to any distribution of claims. The most useful
and famous principle are, among others, the net premium, exponen-
tial, Esscher and variance premium principle, obtained from different
underliying loss functions.

The use of standard Bayesian analysis in risk theory has been consid-
ered in several actuarial applications (Makov, et. al., 1996, Eichenauer
et.al., 1988, Heilmann, 1989, Klugman, 1992 among others). To use
Bayesian analysis to model insurance loss, the practitioner usually

* A preliminary version of this paper was presented by authors at 33rd. Actuanal
Research Conference. Atlanta, 1998,
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chooses a prior distribution (structure function in risk theory). Pri-
or distribution can be difficult to choose in actuarial context. Bayesian
robustness analysis has received substantial attention and a noumer-
ous list of authors have been proposed many solutions for this problem
(Berger, 1985; Berger and O’Hagan, 1988; Lavine, 1991 Sivaganesan,
1988, among others. An excellent revision of this topic is contained in
Berger, 1994).

Our approach is to assume that practitioner is unwilling or unable
to choose a functional form of the structure function, =, but we may
be able to restrict the possible prior to belong to a class suitable to
quantify actuary’s uncertainty. Then it becomes of interest to study
how the premium for priors in that class behaves. We shall use clas-
sical e-contamination class of priors. The Bayesian premium for vari-
ance principle can be written as the ratio of two particular posterior
expectations. We present a basic result for studying the range of varia-
tion of the Bayesian variance premium as the prior distribution varies
over an e-contamination class I, = {x(8) = (1 — &)mo(0) + q(8) |
g € Q}, where ¢ reflects the amount of probabilistic uncertainty in a
base prior mg and Q is a class of allowable contaminations. For Q; =
{All probability distributions} and Q, = {All unimodal distributions}
we determine the range of the Bayesian premium as n varies over I'.

The remainder of the paper is as follows. In section 2 we describe the
variance premium principle in a classical and Bayesian analysis. Section
3 presents a brief introduction to the robust Bayesian analysis and
provides a technical result for a Bayesian sensitivity analysis. In section
4 we calculate the risk and Bayesian premium in the no compound
collective model Poisson-Gamma. Upper and lower bounds for variance
principle in this model is obtained. Finally, sections 5 and 6 conclude
with some examples and final remarks on related work.

2. Premium Calculation

2.1. CLASSICAL ANALYSIS

We assume that the claim of a risk, or policyholder, per policy period
is a random variable X with probability function f(z | 6), and that
value 8 is fixed for a given risk, although it is commonly unknown.

If we wish to distinguish in which year, or policy period, the claims
X occur, we write X, for the claims in year t+ = 1,2,...,¢. For a fixed
value # we assume that the random variables X are independent for
different values of 6.

A premium calculation principle (Heilmann, 1989) is a functional H
that assigns to any risk X (with probability function f(z | §), where z
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takes values in the sample space X’ and 6 is thought of being a realiza-
tion of some parameter space ©) a real number H(X), the premium.
Let L : R? — R be a loss function that assigns to any (z, P) € R? the
loss sustained by a decision maker who takes the action P, the premium
charged, and is faced with the outcome z of some random experiment.
H(X) has to be determined such that the expected loss is minimized,
i.e. as the minimum point of the mapping P — F[L(X, P)]. In risk
theory many loss functions have been used (Heilmann, 1989): the loss
cuadratic function gives the net premium principle, the loss exponential
function results in the exponential principle, etc.

Let L(z, P) = z(z — P)?%, then

H(X) = P(0) = —-—L]ff[[); l|09]] (1)

is the vartance premium principle.

As in Gerber (1979, p. 66), a principle of premium calculation is
a rule that assigns a usually loaded premium to any distribution of
claims. Each one of the most important principles of premium calcula-
tion can have attractive and desirable properties such as nonnegative
safety loading and consistency, among others.

Obviously the premium calculation principles developed above can
only be applied if the distribution of the risk X is known. P(8), is called
the true individual premium or risk premium.

2.2. BAYESIAN ANALYSIS

In this paper we consider the case in which the distribution of X is
specified up to an unknown parameter, and where ratemaking incorpo-
rates individual claim experience. Therefore we now consider the case
that the risk X within a given collective of risks is characterized by
an unknown parameter § which is thought to be a realization of some
parameter space O.

We shall assume that given the risk X there is some claim experience
M =m. Let f(z | #) be the density function of X'; given a proper prior
on 0, say mo(8), the posterior distribution, 7¢(@ | m), is obtained by
using Bayes’theorem as the product of the prior and the likelihood
function, f(x | m), divided by the predictive distribution of the data,
p(m | 7o) = fg f(m | B)mo(8)dO. This is,

f(m | 8)mo(6)
Jo f(m | 8)mwo(0)df
The Bayesian premium of X is then defined (Heilmann, 1989) to

be the real number Py (m) minimizing the posterior expected loss
3
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Ero61m) [L(P(8), 7, (m)]; the posterior expected loss sustained by a
practitioner who takes the action P*(rn)in place of P(#) that is unknown.
Let now L (P(8). Py (m)) = P(8) (P(0) - P;‘O(m))z7 then
Jo P(O)mo(0] m)df _ Ery(opm [P(0)°]
Jo P(®)ro(8 | m)db Ky [P(0)]

with P(8) asin (1), is the Bavesian premium for the variance principle.

Pr(m) =

(2)

3. Robust Bayesian analysis

In the standard Bavesian analysis the difficulty lies in the right choice
of the prior distribution. The actuary may have some difficulties in
providing suitable information about an uniquely specified prior of 8,
perhaps because has not enough information for identyfying one single
prior. It is then natural to question the robustness of the analysis to
this specification.

Robust Bayesian analysis consist of the sensitivity of Bayesian answers
to uncertain inputs. As we have metioned above, this paper develops
Bayesian robust tools for making inferences about premiums using the
variance premium principle. According to robust Bayesian methodolo-
gy, the uncertainty in the prior can be modeled by specifying a class
I' of priors instead of a single one. Thus, one must study the robust-
ness or sensitivity of Bavesian analysis by considering a class of priors
that are reasonable representation of prior beliefs and we examine the
ranges of Bayesian premium when the priors belong to that class. Most
of the robust Bayesian procedures developed measures of sensitivity of
quantities which can be expressed in terms of posterior expectations
(e.g. mean, variance and probability of sets). Nevertheless, a main dif-
ference appears in the actuarial context considered here. Expression in
(2) suggests that the quantity of interest can be expressed in terms
of the ratio of posterior expectations. Appropiated techniques are con-
sidered in order to analyse the sensitivity of the preminms charged to
changes in priors.

The most attractive ¢-contaminated class of prior is given by (Siva-
ganesan, 1988 and Sivaganesan and Berger, 1989, among others),

e ={n(0) = (1 - ¢)m(#) +<q(f) | q € Q}, (3)

where mo(#) is a base prior that one would use in a single prior Bayesian
analysis, coming from past experience, control studies, and/or subjec-
tive judgement. ¢ € [0,1] is the amount of error that one attaches to
7o(#), and Q is a large class of plausible contaminations.
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A natural goal of a robustness investigation is to find the range of
the posterior quantity, 7{m) in our case, when 7 runs over I'c. Thus
our attention will be focused in inf PZ(m) and sup P;(m).

mel. nel’.

A common first class to check local sensitivity to prior is the class of
all possible distributions. In some sense we can say that the practitioner
is indifferent to the choice of prior distribution. Obviusly, this class
contains some unrealistic distributions. llowever when robustness is
present one may feel comfortable with its conclusions. On the other
hand, a large range means that the results are meaningfully different,
and matter what prior is chosen. In this case, a more realistic and
smaller class may be considered. For instance, one may show some
shape preferences for the prior. Since mode is very intuitive statistical
concept, the actuary who has a good statistical trainning should have
no problem to assess it, based on historical data or any other procedure,
the unimodality of risk parameter and its numerical value. We are then
speaking about the consideration of all unimodal distributions with a
given mode. The range of P(m)is found over the two following classes,

U= {n(8) = (1 —e)mo(8) +eq(#) | g € Qi},  (i=1,2)

where

@, = { All distributions },

and
Q2 = { All unimodal distributions with the same mode, 6y, as mo } .

We shall prove that the sup Py and inf P} as w varies over the class

T€lL rel}
I for Q;, and Q; can be obtained by minimizing and maximizing a
function of one variable, as we show in the following theorems.

Theorem 1.
Rll’;o(m) + R,(8)
R+ Ry(8) ’

inf |sup| P*(m) = inf |sup
el Lerg] =(m) 6€0 | pco

- e)p(m | mo) o P(8)mo(8 | m)db, Ra(8) = eP(0)* f(m |

where By = (1
eP(8)f(m|8), P() asin (1) and P (m) asin (2).

), Ra(0) =
Proof. For n(6) as in (4) w(# | m) is given by

(6| m) = A(m)mo(8 | m)+ [1 — A(m)]g( | m),

where

b

(1= e)p(m | mo)
Mm) = i )
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and
Epim
|- A(m) = P19
p(m | )
Then,

. _ Jo P(6)*n(8 | m)db
Pr(m) = f(z_)P(O)r(ﬂ | m)df
_AMm) fo P(8)*70(8 | m)d8 +[1 — A(m)] [g P(8)%q(6 | m)d®
A(m) fo P(8)mo(0 | m)do + [1 — A(m)] [ P(8)q(8 | m)do
_ (I =¢g)p(m | m) Jo P(8)mo(8 | m)db + ep(m | q) Jo P(8)*q(8 | m)db
(1= &)p(m | mo) fo P(8)mo(8 | m)db + ep(m | q) [o P(#)q(8 | m)db
_ (L= e)p(m | mo) 7 (m) fo P(E)mo(8 | m)df +ep(m | ) fo P(8)%q(6 | m)do
(1 —e)p(m | mo) fo P(8)m0(8 | m)db + ep(m | q) fo P(8)q(6 | m)do

Now, interchanging q(6 | m) by f(m ] 8)q(8)/p(m | q), the Bayesian

premium in the contamination class can be rewritten as

i Ry + [o R3(8)q(8)d0
Now inrf1 P;(m) and sup P;(m) follows by an application of Lemma
el rell
1 of Sivaganesan and Berger (1987). O

Theorein 2.
it [ e = [
where
R Pz (m) + 1[92 Ry(6)do
h(z) = PR o KOV
R1+;f90° R3(6)d8
and

R P; (m) + Ry(6o)
Ry + Ra(fo)

with Ry, Ry(#) and R;(8) how in the Theorem 1 respectively.
6
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Proof. The proof is similar using now Lemma 3.2.1 of Sivaganesan

and Berger (1989) and Lemma 1 of Sivaganesan and Berger (1987).0

4. Application to Poisson-Gamma model

Consider a portfolio of insurance business where the number of claims
X has a Poisson distribution with parameter 4. This parameter € can
represent the propensity to have a claim and n(8) indicates how that
propensity is distributed throughout of the insured population. One of
the most useful no compound collective risk model consists in assuming
Gamma prior distribution over the risk parameter 4. Also, assume that
given a parameter §, the observations X3, ..., X; are independently and
identically distributed with Poisson probability mass function, f(z | 8).
Then prior and likelihood function are given by

To(0) x Hb_le—ao,

flzy,. .z | 8)= f(m | 8) x 6™e™ 0,
1 t
where a and b are fixed prior parameters, and m = 7 Zz,-. According

to Bayes’ theorem the posterior density 7o(# | m) is also a Gamma
distribution with parameters a + ¢ and b + tm, respectively.
Now, using (1), P(8) = 8+ 1 is the true individual premium for the

variance principle and from (2),

N b+ tm)b+tm+ 1)+ 2(a+ )b+ tm) + (a+ 1)?
Pro(m) = (a+t)(a+t+b+tm) (@)

is the Bayesian premium for the variance principle.

So at the beginning of period ¢ + 1 we know the claim amounts
T1,2,...,2; from the preceding periods which are conceived of being
realizations of the random variables X, X3, ..., X;. The premium that
the company charges could be given by P; (m)X ¢, where ¢ denotes the
assumed fixed (maybe, average) payment of a claim in the collective.

In the preceding section we have presented results about bounds
for variance principle in a general situation, now the bounds for the
variance principle in the no compound collective model Poisson-Gamma
arc given in the following corollaries, where we will name indifference
scene to T'! and unimodality scene to T'2.

Corollary 1. In the setting of indifference, bounds of the Bayesian
premium for the variance principle is given by
7
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inf {sup

R Py (m) + Ry(6)
0€@ loco

Ry + Rs(0) 7

where
Ry =(1- E)ubF(b +itm)(a+t+b+1tm),

Ry(8) = eT(b) (a + )T (g 4+ 1207617,
Ry(8) = P2(8)/(0 4+ 1) and P7, (m) as in (3).

Proof. The proof follows from Theorem 1.0

Corollary 2. In the setting of unimodality, bounds of the Bayesian

z

premium for the variance principle is given by inf [sup} R(z), being
220

Ry P ot Ra(8
R(z) = — : Hf LTINS
Ry + L 15% Ry(6)do

and
Il)l [):O(TI’I) + [1),2(9())
Ry + R3(8)
with Ry, R2(6), R5(8) and P7 (m) as in Corollary 1.

R(0) =

Proof. The proof follows from Theorem 2.0

5. An illustration of the model

We find it clearer to deseribe our methodology in the context of a simple
example. Assume the expected amount of a claim is fixed and its value
is ¢ = 100 u.m.. Moreover, assume the actuary feels comfortable con-
sidering that the expected frequency is F[f] = 2.5 (roughly speaking,
the company can expect 5 claims every 2 years with this policy).

As Scollnik (1995) comments: “...prior information available for this
parameter can be well modelied by a Ga(a,b) distribution, for some
values of @ and b. This is reasonable, since the shape of the Gamma
density is very flexible. If we happen to have very little prior information
concerning # available, then we note that the selection (a = 2, b = 1)
will result in a fairly satisfactory and relatively diffuse prior for 6”.
Hence, given our prior mean, it will be reasonable to assume that the
base prior is Ga(2,5) (with this elicitation the actuary knows that the
mode is around 2, i.e. 6y = 2).
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Table I. Number of claims during ¢ = 10 years.

Year

|
Case | 3223244220 4‘m:5:2.5
|

Case 2 2’277866426‘771:5:5

The Bayesian robustness analysis developed in this article is illus-
trated by randomly generated data. Two situations are presented. In an
standard Bayesian analysis, the Bayesian premium to be charged will
be Pr(m) x c. Yor instance, in the first case (m = 2.5) and under the
variance premium principle we obtain 355.952 monectary units. Table
I presents the number of claims observed grouped by year of exposure
{t = 10 years).

Table [I shows the range of variation of the experience rated pre-
mium for the variance premium principle and various ¢, from 95 %
(¢ = 0.05) to 80 % (¢ = 0.20) degree of confidence on my by steps of
5 %. They also include a measure of which magnitudes do not depend
on the units of measurement of the premium, the relative sensitivity
factor (R.S.) introduced by Sivaganesan (1991), and which is given by

) l * . * Y . ¢
R.S! = W ;;p{ Pr(m)— Wlél[f; Pr(m)| x 100%, (i=1,2)

that can be thought as the amount of percent variation of Pf(m)
around P7 (m), as w(f) varies in T'L, (i = [,2). It is also apparent the
extreme robustness of the premium principles considered here. Thus,
we conclude that the variance premium principles is little sensitive to
departures from prior elicitations. In fact, R.S. factor has not heen
particularly high in any of the cases considered here, that is, we have
reasonably robust results. With respect 1o scenarios considered, R.S.
factor increases over ¢ and increase when Q1 is used, however this is
not exacerbated. Perhaps this Q) contains many unreasonable priors
which artificially inflate the ranges of the Bayesian premium. In this
case, for example, by m = 2.5 and ¢ = 5% the Bayesian premium can
oscillate for the variance principle 1.06% around the Bayesian premium
obtained by a base prior my(f). This R.5. decreases as far as 0.65% when
we use all unimodal distributions and a considerable reduction (38.68
%) is obtained with Q,, indicanting that the effect of the unimodality
assumption is relatively larger.
It can be seen that unimodality effects are very important in mod-
elling subjective beliefs on the risk parameter. Table IT shows that a
9
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Bounds for the Bayesian premium in the variance principle.

Indifference scene.
H e | 0.05 0.10 0.15 0.20
Case 1 inf (1’,:("1) X ) 352,512 349.226 346061 342.987
REF;
m =25 sup (In{m) X ¢) | 360.086 | 364.060 | 367.916 | 371.689
nEFg
P;O(m) X ¢ = 355.952 R.51 1.06 2.08 3.06 4.03
Case 2 infl (P,:(m) X ) 5h4.454 546.502 540.046 534.509
rerl!
m =5 sup (PZ(m) X ¢) | 600.966 | 622.153 | 637.374 | 649.447
rerl
Pro(m) x ¢ = 565.174 R.s.! 4.11 6.69 8.61 10.16
Unimodality scene.
I € | 005 0.10 0.15 0.20
Case 1 inf (1’,:(771) X ) 352.516 349.270 346,100 343.013
nEFE
m=2.5 sup (Pr(m) x c) | 357.208 | 358.405 | 359.351 | 360.651
mel?
P2 (m) X ¢ = 355952 R.S2 0.65 1.28 1.88 2.47
Case 2 inf (Pr(m)xc) | 361197 | 557.495 | 553.992 | 550.630
mel?
m =5 sup (PX(m)xc) | 575.536 | 583.009 | 588.68G | 593.164
WGFE
Py (m) x ¢ = 565.174 R.S2 1.26 2.25 3.06 3.76
Reduction 1 e 38 6 : ; . 5 .
A R Case 1 sses | 3846 | ssse | oss7i
RS - RS2 N . o _ o )
—_—— x 100% Case 2 69.34 66.36 64.46 63.00

R.S.1

significant reduction in K.9. factor is obtlained if unimodality is con-
sidered in the prior elicitation process.

6. Concluding remarks

In actuarial practice one is interested in using all available source of
information. Some prior beliefs could be established by practitioner
and a base prior (@) matching those requirements is elicited. In this
paper we combine standard and robust Bayesian tools to study how the
choice of prior can critically impact the premium to be charged. Robust

10
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Bayesian analysis assumes uncertainty on the structure function mo(8),
modelling such uncertainty by considering classes of priors for which
robustness analysis is carried out. The robustness Bayesian analysis
must be interpreted as follows. If the model is not sensitivity the inves-
tigator (the actuary) can be calm with your conclusions; the insurance
company can charge the Bayesian premium. If the model is sensitivity,
not robust, the investigator must be careful with your conclusions. In
this case, the results can differ markedly of your estimations,

In this paper we show the advantages of bringing together the more
commonly used methods of robust Bayesian methodology along with
a practical situation in credibility theory using Poisson no compound
model. This approach allows for slightly more flexibility than standard
Bayesian methods in credibility theory allowing competitive situations
with the same prior information. If only mean and/or unimodality prior
information is available and a base prior is elicited, € —contamination
classes here considered to yield robust range of Bayes premium to be
charged.

Even though the model is very robust, the consideration of uni-
modality does significantly reduce the sensitivity of the Bayesian pre-
mium arising from a base prior mg. Therefore, unimodality turns out
to be very convenient for modelling subjective beliefs about the risk
parameter.
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