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A b s t r a c t .  ']?he Bayesian model of collective risk theory is extended in the sense tha t  a large 
class of d i s t r ibu t ions  is used instead of a single one. We then invest igate  the sensi t iv i ty  of 
variance p remium principle when the s t ructure  function belongs to tha t  class. 

According to robust Bayesian methodology, the uncer ta inty  in the prior can be mod- 
eled by specifying a class F of priors instead of a single one. We examine the ranges of the 
Bayesian premium, also called experience ra ted  premium, when the priors belong to tha t  
class. Most of the robust Bayesian procedures developed measures of sensi t ivi ty of quan- 
t i t ies  which can be expressed in terms of posterior expecta t ion  (e.g. mean, variance and 
probabi l i ty  of given sets). Nevertheless, relatively few papers have been related to measure 
Bayesian sensi t iv i ty  of quant i t ies  which can be expressed in terms of ratio of two posterior 
expecta t ions ,  as occurs in the variance premium principle. Approapiated tecniques to solve 
this  s i t u a t k m  are considered. Unimodal i ty  turns  out to be very convenient for modell ing 
subject ive beliefs about  the risk parameter .  

The very common Poisson-Gamma model is developed in depth  using our methodology. 
K e y  w o r d s :  Variance premium principle, Bayesian robustness, Classes of priors. 

.&MS c l a s s i f i c a t i o n :  62FIS,62P05. 

1. I n t r o d u c t i o n  

A premium calculation principle is a functional that assigns a usu- 
ally loaded premium to any distribution of claims. The most useful 
and famous principle are, among others, the net premium, exponen- 
tial, Esscher and variance premium principle, obtained from different 
underliying loss functions. 

The use of standard Bayesian analysis in risk theory has been consid- 
ered in several actuarial applications (Makov, et. al., 1996, Eichenaner 
et.al., 1988, Heilmann, 1989, Klugman, 1992 among others), qb use 
Bayesian analysis to model insurance loss, the practitioner usually 

* A pre l iminary  version of this paper was presented by authors  at  33rd. Actuar ia l  
Research Conference. Atlanta,  1998. 
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chooses a prior dis tr ibut ion (s t ruc ture  function in risk theory) .  Pri- 
or dis t r ibut ion can be difficult to choose in actuarial  context .  Bayesian 
robustness  analysis has received substantial  a t tent ion and a. noumer- 
ous list of authors  have been proposed many solutions for this problem 
(Berger,  1985; Berger and O 'Hagan,  1988; Lavine, 1991 Sivaganesan, 
1988, among others.  An excellent revision of this t.opic is contained in 
Berger, 1994). 

Our  approach is to assume that  pract i t ioner  is unwilling or unable 
to choose a functional  form of the s t ructure  function,  rr, but we may 
be able to restr ict  the possible prior to belong to a class suitable to 
quant i fy  ac tuary ' s  uncertainty.  Then it. becomes of interest to s tudy 
how the premium for priors in tha t  class behaves. We shall use clas- 
sical g-contaminat ion class of priors. The  Bayesian premium for vari 
ance principle can be wri t ten as the ratio of two part icular  posterior 
expec ta t ions .  We present a basic result for s tudying the range of varia- 
tion of the Bayesian variance premium as the prior distr ibution varies 
over an E-contaminat ion class I', = {rr(0) = ( 1 -  E)rr0(0)+ cq(0) ] 
q C C~}, where ~ reflects the amount  of probabilistic uncer ta in ty  in a 
base prior re0 and O is a class of allowable contaminat ions.  ~br (21 = 
{All probabi l i ty  distr ibutions} and (22 = {All unimodal distr ibutions} 
we de te rmine  the range of the Bayesian premium as rc varies ow~,r F~. 

The  remainder  of the paper  is as follows. In section 2 we describe the 
variance premium principle in a classical and Bayesian analysis. Section 
3 presents  a brief in t roduct ion to the robust Bayesian analysis and 
provides a technical result for a Bayesian sensitivity analysis. In section 
4 we calculate the risk and Bayesian premium in the no coinpound 
collective model Poisson-Gamma.  Upper  and lower bounds for variance 
principle in this model is obtained.  Finally, sections 5 and 6 conclude 
with some examples  and final remarks on related work. 

2. P r e m i u m  C a l c u l a t i o n  

2.1 .  CLASSICAl ,  ANALYSIS 

We assume tha t  the claim of a risk, or policyholder,  per policy period 
is a random variable X with probabil i ty function f ( z  I 0), and tha t  
value 0 is fixed for a given risk, al though it is commonly unknown. 

If we wish to distinguish in which year, or policy period, the claims 
X occur,  we write Xi for the claims in year i = 1 ,2 , . . . , t .  For a fixed 
value 8 we assume that  the random variables X are independent  for 
different vMues of 8. 

A premium calculation principle (Heilmann,  1989) is a functional  H 
tha t  assigns to any risk X (with probabil i ty function f ( x  I 8), where m 
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takes values in the sample space R' and 0 is thought of being a realize 
tion of some parameter space ®) a real number H ( X ) ,  the premium. 
Let L : R 2 --+ R be a loss filnction that assigns to any (x, P) C R 2 the 
loss sustained by a decision maker who takes the action P, the premium 
charged, and is faced with the outcome x of some random experiment. 
I I (X)  has to be determined such that the expected loss is minimized, 
i.e. as the minimum point of the mapping P ---+ E [L(X, P)]. In risk 
theory many loss functions have been used (Ileilmann, 1989): the loss 
cuadratic function gives the net premium principle, the loss exponential 
function results in tim exponential principle, etc. 

Let L(x, P) = x(x - p)2, then 

I I (X)  ==_ P(0) - Ef  [X2 I O] (1) 
[xl0] 

is the variance premium principle. 
As in Gerber (1979, p. 66), a principle of premium calculation is 

a rule that assigns a usually loaded premium to any distribution of 
claims. Each one of the most important principles of premium calcula- 
tion can have attractive and desirable properties such as nonnegative 
safety loading and consistency, among others. 

Obviously the premium calculation principles developed above can 
only be applied if the distribution of the risk X is known. P(O), is called 
the true individual premium or risk premium. 

2 . 2 .  B A Y E S I A N  A N A L Y S I S  

In this paper we consider the case in which the distribution of X is 
specified up to an unknown parameter, and where ratemaking incorpo- 
rates individual claim experience. Therefore we now consider the case 
that the risk X within a given collective of risks is characterized by 
an unknown parameter 0 which is thought to be a realization of some 
parameter space @. 

We shall assume that given the risk X there is some claim experience 
M = m. Let f ( x  ] 0) be the density function of X; given a proper prior 
on ®, say rr0(0), the posterior distribution, rr0(0 ]m) ,  is obtained by 
using Bayes'theorem as the product of the prior and the likelihood 
function, f (x  ]m) ,  divided by the predictive distribution of the data, 
p(m ] re0) = re) f ( m  ] O)rro(O)dO. This is, 

f ( m  ] 0)~'o(0) cx f ( m  I O)~ro(O). 
rr0(0 I m) = g f ( m  I O)rco(O)dO 

The Bayesian premium of X is then defined (tteilmann, 1989) to 
be the real number Pgo(m) minimizing the posterior expected loss 
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E~0(01,~) [L(P(O),l'~o(m)]; the posterior expected loss sustained by a 
practitioner who takes the action P'(rrz)in place of P(O) that is unknown. 

)* L~t now I. (P(0) ,  t~0(,,~) ) = t'(O) (P(0)  - / ~0('~))'" ~. then 

.1(_~ l'(O)2rco(OIm)dO E=0(ol.~) [P(0)  2] 
~';°(") L) *' (0>o(0I , , , ) ,Z0  = *~'.~,(<.~)[/'(0)] ' (2) 

with 1"(0) as in ( 1 ), is the Bayesian [)remium for lhe variance principh,. 

3. R o b u s t  Bayes ian  analysis  

In the standard l{ayesia.n analysis the difficulty lies in the right choice 
of tile prior distribution. The actuary may have some ditficulties in 
providing suitable information about an uniquely specified prior of 0, 
perhaps because has not enough information for identyfying one single 
prior. It is then natural to question the robuslness of the analysis to 
this specification. 

Robust Bayesian analysis consist of the sensitivity of Bayesian answers 
to uncertain inputs. As we have metioned above, this paper develops 
Bayesian robust tools for making inferences about premiums using the 
variance premium principle. According to robust Bayesian methodolo- 
gy, the uncert.mnty in the prior can be modeled by specifying a class 
P of priors instead of a single one. Thus, one musl study the robust- 
hess or sensitivity of Bayesian analysis by considering a (:lass of priors 
that are reasonable rel)resentation of i)rior beliefs and we examine lit(' 
ranges of Bayesian premium when tile priors belong to that (:lass. Most 
of the robus~ Bayesian procedures developed measures of sensitivity of 
quantities which can he expressed in terms of posterior expectations 
(e.g. mean, variance and probability of sets). Nevertheless, a main dif- 
ference appears in the actuarial context considered here. Expression in 
(2) suggests that the quantity of' interest can be expressed in terms 
of the ratio of posterior expectat.ions. Appropiated techniques are con- 
si(lere(t in order to analyse the sensitivity of the premiums charged 1o 
changes in priors. 

The most attractive g-contaminated (:lass of prior is given by (Siva- 
ganesan, 1988 and Sivaganesan and Berger, 1989, among others), 

I'~ = {rr(0) = (1 - E) rco(0) + ~q(0) [ q ¢ Q}, (a) 

where ,'%(0) is a base prior that one would use in a single prior Bayesian 
analysis, coming from past. experience, control studies, and/or  subjec- 
tive judgement. E E [0, 11 is the amount of error that one attaches to 
7r0(0), and Q is a. large (:lass of plausible contaminations. 
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A natural  goal of a robustness investigation is to find the range of 
the poster ior  quanti ty,  I~(m) in our case, when 7r runs over I'~. Thus  
our  a t ten t ion  will be focused in inf P~(m) and sup P,~(m). 

~EI2~ rrEF, 
A common first class to check local sensitivity to prior is the class of 

all possible distr ibutions.  In some sense we can say tha t  the pract i t ioner  
is indifferent to the choice of prior distribution.  Obviusly, this class 
contains some unreMistic distr ibutions,  llowever when robustness is 
present  one may' feel comfortable  with its conclusions. On the o ther  
hand,  a large range means that  the results are meaningfully different, 
and m a t t e r  what  prior is chosen. In this case, a more realistic and 
smaller class may be considered. For instance,  one may' show some 
shape preferences for the prior. Since mode is very intuit ive statistical 
concept ,  the ac tuary  who has a good statistical t rainning should have 
no problem to assess it, based on historical da t a  or any other  procedure ,  
the unimodal i ty  of risk parameter  and its numerical value. We are then 
speaking about  the consideration of all unimodal  distr ibutions with a 
given mode. The  range of P,~(m) is found over the two following classes, 

I'; = {Tr(O) = (1 - g) 7to(O) + gq(O) I q e (2i}, (i = 1,2) 

where 
~ 1  ~--: { All distr ibutions }, 

a l l  d 

(22 = { All unimodal  distr ibutions with the same mode, 00, as rr0 }. 

We shall prove tha t  the sup P~ and inf P,~ as rr varies over the (:lass 
rrEF~ rrEr' 

I'~ for (21, and Q2 can be obtained by minimizing and maximizing a 
function of one variable, as we show in the following theorems.  

Theo~m 1. 

inf sup P,~(m) = inf sup 
~er~ L=eE~I oeo L0eO l I~1 + Ra(O) 

i 

where I~, = (1 - ~)p('~ I ~o)So v(O>o(O I .~)dO, n~(O) = ~P(O)~f(~., I 
0), ~:~(0) = ~1'(O)f(.~ I0), I '(0) as in (1) and P;o ( ' 0  ~s in (2). 

Proof. ~or ,~(0) as in (4) '~(0 I ' ~ ) i s  given by 

where 

7r(O [ m) ~ )~(m)Tro(O t m) + [1 - A(m)] q(O ]m), 

p(m I~) 
5 
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1 - A ( m )  - 
Ep(m I q) 
p(m l rc)" 

P2~(m) = J'e P(O)2~r( O Ira) dO 
fo P(O)rc(O f re)dO 

A(m) fe  P(O)2rco( 0 I re)dO + [1 - A(m)] fo P(O)2q( O I re)dO 
A(m) fe P(O)Tro(O I re)dO + [1 - A(m)] fe P(O)q(O I rn)dO 

(1 - E)p(m, I fro) fe P(0)27~o( 0 I re)dO + gp(m I q) fo P(O)2q( 0 I re)dO 
(1 - g)p(m I rCo) fe P(O)rco(O I rn)dO + gp(m I q) fe  P(O)q(O [ rn)dO 

( 1  - g)p(m I ~o)r;o(~).re P(O)7co(O ] rn)dO + gp(rn I q),f~) P(O)2q( 0 ] re)dO 
(1 - E)p(m I fro) fo P(O)~ro(O I ,~)dO + ~p(m I q) f(-) P(O)q(O I re)dO 

Now, interchanging q (01m ) by f ( m  I O)q(O)/p(m I q), the Bayesian 
premium in the contamination class can be rewritten as 

t~(m) = R1P2°(m) + fo R2(O)q(O)dO 
t~1 AF f(r) R3(O)q(O)dO 

Now inf P2(m) and sup P,~(rn) follows by an application of Lemma 
r E F ~  rrE[ ' l  

1 of Sivaganesan and Berger (1987). [] 

Theomrn 2. 

[sup1 = [s pl 
~i'~ L~eF~j z_>O Lz_>Oj 

where 
* m 1 reo+~ R2(O)d8 R(~)= R'P;°( )+zJeo i r z > 0 ,  

R1 + 1 too+= R3(O)dO 
z JSo 

and 

R(o) = R,P;o(m) + R~(Oo) 
RI + R,~(Oo) ' 

with R1, R2(0) and R3(0) how in the Theorem 1 respectively. 
6 



The  Var iance  P r e m i u m  Principle:  A Bayesian Robus tness  Analysis  

Pro@ The proof is similar using now Lemma 3.2.1 of Sivaganesan 
and Berger (1989) and Lemma 1 of Sivaganesan and Berger (1987).rq 

4. A p p l i c a t i o n  to  P o i s s o n - G a m m a  m o d e l  

Consider a portfolio of insurance business where the number of claims 
X has a Poisson distribution with parameter 0. This parameter 0 can 
represent the propensity to have a claim and re(0) indicates how that 
propensity, is distributed throughout of the insured population. One of 
the most useful no compound collective risk model consists in assuming 
Gamma prior distribution over the risk parameter 0. Also, assume that 
given a parameter 0, the observations XI,. . . ,  X~ are independently and 
identically distributed with Poisson probability mass function, f ( z  ] 0). 
Then prior and likelihood function are given by 

7rO(O ) o( ob-l e -aO, 

f (xl , . . . ,x ,  10) -- 10) 0' e 

1 k 
where a and b are fixed prior parameters, and rn = - zi. According 

I .  
I = 1  

to Bayes' theorem the posterior density 7r0(0 ] m) is also a Gamma 
distribution with parameters a + t and b + tin, respectively. 

Now, using (1), P(O) = 0 +  1 is the true individual premium for the 
variance principle and from (2), 

(b + trn)(b + tm + 1) + 2(a + t)(b + tin) + (a + t) 2 
•;0(m) = (a + t)(a + t + + tin) , (4) 

is the Bayesian premium for the variance principle. 
So at the beginning of period t + 1 we know the claim amounts 

¢ l ,x2 , . . . , z t  from the preceding periods which are conceived of being 
realizations of the random variables X1, X2, ..., Xt. 'I'he premium that 
the company charges could be given by Pgo(m) x e, where c denotes the 
assumed fixed (maybe, average) payment of a claim in the collective. 

In the preceding section we have presented results about bounds 
for variance principle in a general situatlon~ now the bounds for the 
variance principle in the no compound collective model Poisson-Gamma 
are given in the following corollaries, where we will name indifference 
scene to F~ and ~miraodality scene to F~ 2. 

Corollary 1. In the setting of indifference, bounds of the Bayesian 
premium for the variance principle is given by 

7 
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w here 

inf sup 
0e(-) LOeOj R1 + R:~(O) 

1l~ = (1 - e)abr(b + tm)(a  + t + b + t in ) ,  

l'{2(0) = ~l~(b) (a-~- [)b+tm+l (0 + 1) 2 otmc -tO 

R:~(0) = P2(O)/(O + 1) and t~0(m ) as in (3). 

Proof. The proof follows fiom Theorem 1.El 

(¥)rollary 2. In the setting of unimodali ty,  bounds of the Bayesian 
r n 

prelllium for the v & r i a n c e  principle is given by inf /Sllp] R(z), being 
~->o L~>O j 

I fOo+z l~2(O)dO R ( z ) =  RIP~°(rn')+ YJOo if z > 0 ,  
1~1 + ! too+ ~ R:~(O)dO 

JOe 

a n d  

/11)1 1)~0(/7,) q- 1~2(0())  
R(0) 

R1 + I~:~(0) 

with Rt,  h'2(0), tP:+(0) and l~0('m ) as in Corollary l. 

Pro@ The. proof follows from Theorem 2.El 

5. A n  i l l u s t r a t i o n  o f  t h e  m o d e l  

We lind it. clearer to describe our methodology in the context of a simple 
example. Assume the ext)ected amount  of a claim is fixed and its vahle 
is c = 100 u.m.. Moreover, assume the actuary feels comfortable con- 
sidering t.hal the exi)ected frequency is El0] = 2.5 (roughly speakinG, 
tile company can expect 5 claims every 2 years with this policy). 

As Scol[nik (1995) comments: "...prior information available for this 
parameter  can be well modelled by a Ga(a,b)  distribution,  for some 
values of a and b. This is reasonable, since the shape of tile Gamma 
density is very {texible. If we happen to have very little prior information 
concerning 0 available, then we note that  the selection (a = 2, b = 1) 
will result in a fairly satisfactory and relatiwdy ditfuse prior for 0". 
tlence, given our prior me'an, it will be reasonable to assume that  the 
base prior is Ga(2, 5) (with lhis elicitation the actuary knows thal  the 
mode is around 2, i.e. 00 = 2). 
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Tab le  1. N u m b e r  of c l a ims  d u r i n g  t = 10 years .  

Y,~ar I t 2 3 4 ~ 6 r s 9 10 I 

Case  1 I 2 2 3 2 4 4 2 2 0 4 I r a  = N =  2.5 

Case2 I 2 2 r 7 8 6 6 4 2 ~ I m = ~ = 5  

The Bayesian robustness analysis developed in this article is illus- 
t rated by randomly generated data.  Two situations are presented. In an 
s tandard  Bayesian analysis, the Bayesian premium to be charged will 
be l~0('m ) x c. l'br instance, in the first case (m = 2.5) and under lhe 
variance prendum principle we obtain 355.952 monetary units. Table 
I presents the number of claims observed grouped by year of exposure 
(t = 10 years). 

Table [I shows the range of variation of the experience rated pre 
mium tor the variance premium principle and various e, from 95 °./e 
(g = 0.05) to 80 % (e = 0.20) degree of confidence on % by steps of 
5 %. They also include a measure of which magnitudes do not depend 
on the units of measurement of the premium, the relative sensitivity 
factor (R.S.)introduced by Sivaganesan (1991), and which is given by 

1 [sup l ~ ( m ) -  inf P~(m)] × 100~,, ( i =  1,2) R's'i  - 2t'*~0 (m) k~el'~ ~.er~ 

tha t  can be thought  as the amount  of percent variation of l ~ ( m )  
around l'~o(m), as ~r(0) varies in F~, (i = 1,2). It is also apparent  the 
extreme robustness of the premium principles considered here. Thus,  
we conclude tha t  lhe variance premium principles is little sensitive to 
departures  from prior elicitations. In fact, R.S. factor has not been 
part icularly high in arty of the cases considered here, that  is, we have 
reasonably robust results. With respect to scenarios considered, R.S. 
factor increases over g and increase when Q1 is used, however this is 
not exacerbated.  Perhaps this {21 contains many, unreasonable priors 
which artificially inflate the ranges of the Bayesian premium. In lids 
case, for examl~le, by m = 2.5 and g = 5~X) the Bayesian premium (:an 
oscillate for the variance principle 1.06% around the Bayesian premium 
obtained by a base prior ~r0(0). This R.S. decreases as far ms 0.65% when 
we use all u,~imodal distributions and a considerable reduction (38.68 
%) is obtained with Q2, indicanting tha t  the effect of the unimodal i ty  
assumption is relatively larger. 

It (:art be seen lhat  unimodali ty effecls are very important  in mod- 
elling subjective beliefs on the risk parameter.  Table II shows tha t  a 
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T a M e  I I. l - lmmds  for  t h e  B a y e s i a n  p r e m i u m  in  t h e  v a r i a n c e  p r i n c i p l e .  

I i l d i t t ' e  r e n c o  SFt~ll(~. 

It I I o.-1 I °.15 I  '.2o I 

C a s e  I 

m = 2.5 

P*-a(m~,,, X c =  355 .052  

inf (P,~(m) x c) 

~.p ( P ' ( , . )  x ,9 
r rEI ' l  

H.  ,% I 

352 .512  

360 .086  

1.06 

3,1.9.226 

36,4.060 

2.(18 

346.061 

367 .916  

3.(16 

3,12.987 

371 ,689  

4.03 

C a s e  2 

t'*-n(rnl,,, X c = 565.1%t 

i n f  ( P ~ ( m )  x c) 
~EF 1 

s .p  (t';(,~) x ~) 
rr E l " l  

1.~. ,~,,. I 

554.454  

600 .966  

.1.11 

546.502  

(:;22.153 

6 .69  

5,10.046 

637 .374  

8.61 

534.50.  () 

(349.447 

1(/.16 

U i t i m o d a l i t y  s c e n e ,  

e 0.05 O. 10 O. 15 0.2(I 

C a s e  1 

m 2.5 

I"_o~m~,,. , x  c=35595~ 

i , f  (P'~(.O x ~.1 

s.p (P;(.~) x 4 
~Er~ 

Fl. ,S'. 2 

352 .546  

357 .208  

0 .65  

3,19.270 346.10(I 

358.,105 359.551 

1.28 1.88 

343.(113 

3(30.(351 

2.47 

(?ase 2 

trz = 5 

P *  ( m )  X c = 565 .174  7t o 

in f  ( l ' ~ ( v z )  x c) 

~,,p (p' ( .~)  x ,:) 
~EF~ 

tL  S. 2 

561 .197  

575 .536  

1.26 

557.,1.(15 

583 .009  

2.25 

553 .992  

588 .686  

3 .06  

550 .630  

593 .164  

3 .76  

l / ~ d u c t i o n  in  
s e n s m v i t y  ( i n % )  

( t L S .  1 _ FI.S. 2 ) 
t,L ,~.~ x 100% 

Case 1 38 .68  38.,16 38 .56  38.71 

C a s e  2 (39.3,t 66 .36  6 4 A 6  63 .00  

significant reduction in R.S. faclor is oblained if unimodal i ty  is con- 
si(tered in the prior el;citation t)rocess. 

6 .  C o n c l u d i n g  r e m a r k s  

In actuar ia l  practice one is interested in using all a,vailable source of 
informal ;on.  Some prior beliefs could be established by pract i t ioner  
and a base prior ~r0(0) matching those requirernents is elicited. In this 
paper  we combine s tandaM and robust Bayesian tools to s tudy how the 
choice of prior can crilically impact lhe premium 1o be charged. Robust  
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Bayesian analysis assumes uncertainty on the structure function 7r0(0), 
modelling such uncertainty by considering classes of priors for which 
robustness analysis is carried out. The robustness Bayesian analysis 
must be interpreted as follows. If the model is not sensitivity the inves- 
tigator (the actuary) can be calm with your conclusions; the insurance 
company can charge the Bayesian premium. If the model is sensitivity, 
not robust, the investigator must be careful with your conchlsions. In 
this case, the results can differ markedly of your estimations. 

In this paper we show the advantages of bringing together the more 
commonly used methods of robust Bayesian methodology along with 
a practical situation in credibility theory using Poisson no compound 
model. This approach allows for slightly more flexibility than standard 
Bayesian methods in credibility theory allowing competitive situations 
with the same prior information. If only mean and/or  unimodality prior 
information is available and a base prior is elicited, g-contamination 
classes here considered to yield robust, range of Bayes premium to be 
charged. 

Even though the model is very robust, the consideration of uni- 
modality does significantly reduce the sensitivity of the Bayesian pre- 
mium arising from a base prior re0. Therefore, unimodality turns out 
to be very convenient for modelling subjectiw,' beliefs about the risk 
parameter. 

Acknowledgements 

Authors want to express their appreciation to the I)irecci6n General de 
hlvestigaci6n Cientffica y Tdcnica, Spain, for its support under grant 
PB95- 1194. 

References 

Berger,  .I.O. (1985). Statistical I)ecision Theory and Bayesian Analysis. Springer, New York. 
Berger, J.O. (199,1). An Overview of Robust  Bayesian Analysis.  Test, 3, 5 124. (with dis- 

cussion) 
Berger, J.O. and O ' t l agan ,  A. (1988). Range of Posterior Probabili t ies for the Class of 

Unhnoda l  Priors with Specified Quantiles.  In Bayesian Statistics 3 (3.M. Bernardo,  
M.tf.  DcGroot ,  I).V. Lindley and A.F.M. Smith,  ed~.). Oxford University Press, New 
York. 

Eichenauer,  J; Lchn, J. and Rettig, S. (1988). A gamma-min imax  result in credibility theory. 
Insurance: Mathernatics ,¢,c Economics, 7, 49 57. 

Gerber,  l |. (1979). A n Introduction to 7vfathematical Risk Theory. S.S. l Iuebner  Foundat ion  
for Insurance Education,  University of Pennsylvania,  Philadelphi.  

l le i lmann,  W. (1989). Decision Theoretic Foumtat ions of Credibility Theory. Insurance: 
Mathema t i c s  & Economics, 8, 77 95. 

Klugman ,  S.A. (1992). Bayesian Statistics in A ctuaril Science: with l';mphasis on Credibility. 
Kluwer Academic Publishers,  Boston. 

11 



1'; Gdmez-I)dniz, F J. V~izquez-Polo and A. ltermindez-Bastida 

I~avine, M. (1991). Sensitivity in Hayesian Statistics: the t)rh~r and lhe Likelihood. ,lournal 
of the American Statistical Society', 86, 400 403. 

Makov, [_7.I~]., Snfith, A.F.M. and Liu, Y.t[. (1996). Hayesian Methods in Actuarial Science. 
The Statistician, 45, 4, 503 515. 

Scollnik, D.P.M. (1995). The Bayesian Analysis of Generalized Poisson Models for Claim 
l:requency Data Utilising Markov Chain Monte Carlo Methods. ActlJarial 1{esearch 
(?leaving lIouse, 1, 339 356, 

Sivaganesan, S. (1988). Ilange of Posterior Mea.snres for Priors with Arbitrary Contamina- 
tions. Corn muuications in Statistics and Theory Methods, 17,5, 1591 - 1612. 

Si vaganesan, S. (1991). Sensitivity of Some Posterior Summaries when the Prior is 1 lnimocla] 
with Specified Quanliles. The Canadian Journal of Statistics,19, 1, 57 65. 

Sivaganesan, S. and ]~erger, J.O. (1987). I{anges ~f Posterior Measures for Priors with 
Unirnodal Contaminations. Technical Report ~ 86-41. Department of Statistics. Purdue 
University. 

Sivaganesan, S. anti Berger, J.O. (1989). ttanges of Posterior Measures for Priors with 
IlnirnodM Contaminations. The Annals of St~ti.~tics, 17, 2, 868 889. 

12 


