ACTUARIAL RESEARCH CLEARING HOUSE 1998 VOL. 1

A Retirement Plan Based On Fixed Accumulation And Variable Accrual

by

Zaki Khorasanee, FIA, City University, United Kingdom.

Ho Kuen Ng, FSA, San Jose State University, USA.

Abstract

A new type of retirement plan is proposed, aimed at achieving a compromise between stability in cost for the plan sponsor and guaranteed benefits for the participants. The proposed plan is shown to smooth out the fluctuation in benefits that occurs in a money purchase plan.

MONEY PURCHASE PLAN

C = allocation per member (paid by employer)

 i_t = interest earned between time t-1 and t

Benefit arising from allocation at time t for a member n years from retirement:

$$C \times (1 + i_{t+1}) \times (1 + i_{t+2}) \times \dots \times (1 + i_{t+n})$$

VARIABLE ACCRUAL PLAN

C = true employer cost per member

 C_t = allocation per member at time t

In general: $C_t \neq C$

Benefit arising from each allocation:

$$= C_t \times g$$
 , where $g > 1$

VARIABLE ACCRUAL BENEFIT

Fund arising from allocation at time t for a member n years from retirement:

$$C_t \times (1 + i_{t+1}) \times (1 + i_{t+2}) \times \dots \times (1 + i_{t+n})$$

At time t:

- forward contract between member and employer
- accumulation of C_t is sold by member to employer
- price of forward contract = $C_t \times g$
- settlement date = retirement date of member

Settlement of forwards are added to / subtracted from the allocation to the active members

HOW IS Ct CALCULATED?

 $C_t = C \pm \frac{\text{Settlement of forwards at time } t}{\text{no. of active members at time } t}$

HOW IS g CALCULATED?

 $g = \text{expected average accumulation on } C_t$

Let:

 i_0 = expected average interest rate

 x_e = average entry age

 $x_{\mathbf{b}}$ = average age of benefit payment

Then
$$\mathbf{g} = \frac{\ddot{S}\frac{i_0}{x_b - x_e}}{x_b - x_e}$$

POTENTIAL PROBLEMS

1) Investment returns are very poor or very good.

$$C_t = C \pm \underbrace{Settlement of forwards at time t}_{no. of active members at time t}$$

- Very poor investment returns $\rightarrow C_t < 0$
- Very good investment returns $\rightarrow C_t > tax limit$
- True employer cost may have to vary from C to keep C_t within acceptable limits.
- 2) Number of active members is declining.
- Settlements spread over fewer members
- C_t becomes more volatile
- True employer cost more likely to vary from C

PROJECTIONS FOR A MODEL PLAN

- C = 1 unit per member, paid annually in advance
- 1 active member at each age from 25 to 64
- All members enter at 25 and retire at 65

INITIAL CONDITIONS

- $i_0 = 2\%$
- Asset share of member aged $x = \ddot{S} \frac{2\%}{x-25}$

VARIABLE ACCRUAL PLAN

$$\bullet \qquad \mathbf{g} = \frac{\ddot{S}_{40}^{i_0}}{40}$$

• $0 \le C_t \le 2$

STOCHASTIC PROJECTIONS

- Annual investment returns are i.i.d.
- $LN(1+i_t) \sim N(0.02, 0.15)$

Variable accrual plan

COMPARISON OF PLANS

Money purchase benefit is based on:

- fixed allocation
- variable accumulation

Variable accrual benefit is based on:

- variable allocation
- fixed accumulation

Advantages of variable accrual plan

- inter-generational smoothing
- security of accrued benefits
- benefit is more predictable