A Retirement Plan Based On Fixed Accumulation And Variable Accrual

by

Zaki Khorasanee, FIA, City University, United Kingdom.

Ho Kuen Ng, FSA, San Jose State University, USA.

Abstract

A new type of retirement plan is proposed, aimed at achieving a compromise between stability in cost for the plan sponsor and guaranteed benefits for the participants. The proposed plan is shown to smooth out the fluctuation in benefits that occurs in a money purchase plan.

MONEY PURCHASE PLAN

C = allocation per member (paid by employer)
$\mathbf{i}_{\mathbf{t}}=$ interest earned between time $\mathbf{t} \mathbf{- 1}$ and \mathbf{t}
Benefit arising from allocation at time \mathfrak{t} for a member \mathbf{n} years from retirement:
$\mathbf{C} \times\left(1+\mathbf{i}_{\mathbf{t}+\mathbf{1}}\right) \times\left(1+\mathbf{i}_{\mathbf{t}+\mathbf{2}}\right) \times \ldots \ldots \ldots \ldots \ldots \times\left(1+\mathbf{i}_{\mathbf{t}+\mathbf{n}}\right)$

VARIABLE ACCRUAL PLAN

$\mathbf{C}=$ true employer cost per member
$\mathbf{C}_{\mathbf{t}}=$ allocation per member at time t

$$
\text { In general: } \mathbf{C}_{\mathbf{t}} \neq \mathbf{C}
$$

Benefit arising from each allocation:

$$
=\mathbf{C}_{\mathrm{t}} \times \mathbf{g}, \text { where } \mathbf{g}>\mathbf{1}
$$

VARIABLE ACCRUAL BENEFIT

Fund arising from allocation at time \mathbf{t} for a member n years from retirement:

$$
C_{t} \times\left(1+i_{t+1}\right) \times\left(1+i_{t+2}\right) \times \ldots \times\left(1+i_{t+n}\right)
$$

At time \mathbf{t} :

- forward contract between member and employer
- accumulation of $\mathbf{C}_{\mathbf{t}}$ is sold by member to employer
- \quad price of forward contract $=\mathbf{C}_{\mathbf{t}} \times \mathbf{g}$
- \quad settlement date $=$ retirement date of member

Settlement of forwards are added to / subtracted from the allocation to the active members

HOW IS Ct CALCULATED?

$C_{t}=C \pm$ Settlement of forwards at time t no. of active members at time t

HOW IS g CALCULATED?

$\mathbf{g}=$ expected average accumulation on $\mathbf{C}_{\mathbf{t}}$
Let:
$i_{0}=$ expected average interest rate

$$
x_{\mathrm{e}}=\text { average entry age }
$$

$x_{\mathbf{b}}=$ average age of benefit payment

$$
\text { Then } \mathbf{g}=\frac{\ddot{S}_{i_{0}}^{i_{b}-x_{e}}}{x_{b}-x_{e}}
$$

POTENTIAL PROBLEMS

1) Investment returns are very poor or very good.

$$
\mathbf{C}_{\mathbf{t}}=\mathbf{C} \pm \frac{\text { Settlement of forwards at time } \mathbf{t}}{\text { no. of active members at time } \mathbf{t}}
$$

- Very poor investment returns $\rightarrow \mathbf{C}_{\mathbf{t}}<\mathbf{0}$
- Very good investment returns $\rightarrow \mathbf{C}_{\mathbf{t}}>$ tax limit
- True employer cost may have to vary from \mathbf{C} to keep $\mathbf{C}_{\mathbf{t}}$ within acceptable limits.

2) Number of active members is declining.

- Settlements spread over fewer members
- $\quad \mathbf{C}_{\mathbf{t}}$ becomes more volatile
- True employer cost more likely to vary from \mathbf{C}

PROJECTIONS FOR A MODEL PLAN

- $\mathbf{C}=1$ unit per member, paid annually in advance
- 1 active member at each age from 25 to 64
- All members enter at 25 and retire at 65

INITIAL CONDITIONS

- $\mathbf{i}_{0}=\mathbf{2 \%}$
- Asset share of member aged $\mathbf{x}=\ddot{S}^{2 \%}$

VARIABLE ACCRUAL PLAN

- $\mathbf{g}=\frac{\ddot{S}_{\frac{i_{0}}{40}}^{40}}{40}$
- $\mathbf{0} \leq \mathrm{C}_{\mathrm{t}} \leq 2$

STOCHASTIC PROJECTIONS

- Annual investment returns are i.i.d.
- $\quad \mathbf{L N}\left(1+\mathrm{i}_{\mathrm{t}}\right) \sim \mathrm{N}(0.02,0.15)$

Comparison of benefit outgo

Variable accrual plan

COMPARISON OF PLANS

Money purchase benefit is based on:

- fixed allocation
- variable accumulation

Variable accrual benefit is based on:

- variable allocation
- fixed accumulation

Advantages of variable accrual plan

- inter-generational smoothing
- security of accrued benefits
- benefit is more predictable

