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ABSTRACT: When does a financial transaction have a unique yield rate, or a 

unique rate in some interval, such as the positive reals? We survey various results 

concerning this problem, and provide a unifying approach together with some new 

insights. 

1. INTRODUCTION 

Given a financial transaction we are often interested in the number of internal rates of 

return, (yield rates) and their location. From an actuarial point of view, the fundamental 

question is to identify those transactions with a single yield rate, or a single rate in 

some interval such as the positive reals. In this paper we are concerned with this 

counting problem . We will not deal here with possible interpretations when there are 

multiple yield rates. This issue has been extensively discussed elsewhere 

This question of identifying single rate transactions was raised recently by the 

Canadian Institute of Actuaries in an attempt to clarify a section of the Canadian 

criminal code which makes it a offense to advance money at a effective interest rate 

exceeding 60% per annum. While this involves an old mathematical problem, the 

basic facts are not that well known among the actuarial profession, The actuarial 

literature contains some but not all of the major results. Various papers appeared in 

the finance literature in the 1970's, often reproving known facts. The mathematical 

literature of course has a great deal of material, as at one time, the problem of finding 

roots of equations played a dominant role in mathematics. However it is not that 

simple to seek out and identify the important results from a financial perspective. The 

main purpose of this paper a to survey the pertinent facts and to provide some 
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unifying approach. A key result is Theorem 3.4. Although the formula given there 

was known to Laguerre [3] we are able to provide a financial setting for the statement 

and relate it to the main facts on identifying unique yield transactions. In section 4 

we describe various methods which have been used for counting roots, and indicate 

how they are all related to a certain fundamental array. 

2. THE BASIC PROBLEM 

Given a sequence of periodic cash flows 

Co, cl ..... CN 

we associate the polynomials 

(2.1) 

and 

f(x) = 
N 

i=~c i  xi 

N 
N-i 

g ( x )  = Ci X = X N f(x 1) (2,2) 

For x > -1, f(x) equals the present value of the payments at a periodic effective 

interest rate of x-1-1, and g(x) equals the accumulated value at a periodic effective 

rateof x-1 .A  yield rate ( also called internal rate of return ) of the transaction i sa  

number i > -1 such that (1+i) -1 is a root of f(x) = 0, or equivalently such that (1+i) is 

a root of g(x) = 0. We are therefore interested in positive zeros of f(x) or g(x). For 

certain applications one may wish to confine attention to positive yields These 

correspond to zeros of f(x) which lie in the interval (0,1) or zeros of g(x) which lie in 

the interval (1,oo). 

We will sometimes want to write g expanded about a general point. Recall 

that for any real number r 
I k l  

g(x) : ~-~ 
g(i)(r) 

0 i! (x'r)i (2.3) 
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and replacing g by g(k) gives 

g(lfk)( r) 
i! C4 , k=O,l, . . . . N (2.4) 

An important role in our approach is played by the balance functions. For any 

x > -1, and nonnegative integer k we let 

h(r) = = iio Ci rN-r 

the outstanding balance at interest rate i = r-l. We consider this defined for all 

nonnegative integers k by taking ck = 0 for k larger than N. It is often convenient to 

invoke the recurrence relation 

bk+dr) = r Mr) + ck+; (2.5) 

We close this section with some general remarks about locating zeros of 

polynomials 

Note that a procedure which locates zeros in (0,l) is sufficient to locate all zeros , 

Applying the procedure to the polynomial with the coefficients reversed, locates zeros 

in (1,~) Then, reversing the sign of the odd coefficients gives us the polynomial f(-x) 

and the positive zeros of this are the negative zeros of the original. 

The best known method for estimating the number of zeros is Descartes rule of signs 

which says that the number of sign changes in (2.1) exceeds the number of positive 

zeros by an even integer. Lower bound tests are available as well. Suppose, for 

example, that you want to count zeros in (0,l). Choose any sequence of points yf, 

Y2 ,ym in (0,i) and look at the sequence 

f(O), f&l) I...1 f(Ym ), f(t) 

The number of sign changes in this sequence gives an obvious lower bound. 
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The reader should note that when counting sign changes in a sequence we ignore 

zero entries. For example, the sequence (-10,0,2,0,-3) has two sign changes. 

It is important to realize that any method can run into difficulties in the case of multiple 

zeros. For example, if a polynomial has a zero of multiplicity two at a point xo, a small 

perturbation of f can give a polynomial with no zero at that point, but any given 

numerical procedure could fail to distinguish these two cases if the change is 

sufficiently small. 

3. Y I E L D  R A T E S  A N D  B A L A N C E S  

The number of yield rates is closely related to the pattern of balances. The 

following theorem summarizes the basic facts. 

THEOREM 3.1 

(a)(i) If forsome r > 0 ,  bk(r)-<0, k =0,1 .. . . .  N - l ,  and bN( r )=0 , then  r-1 is the 

unique yield rate 

(ii) If for some r>0 ,  bk(r)-<0, k - 0 , 1  ..... N - l ,  and bN(r)>0, then there is a 

unique yield rate i, and moreover, i is greater than r-1 

(b) If there is exactly one sign change in the sequence of coefficients 

co, cl ~ c2 ..., CN 

there is a unique yield rate. 

(c) If there is exactly one sign change in the sequence of partial sums 

N 
C0, C0+Cl , C0 +c1+c2 ..... ~-' Ci 

b" 
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there is a unique positive yield rate. 

REMARKS Part (a)(i) is well known and intuitively obvious from an actuarial point of 

view. Multiple rates arise when there are mixed elements of both borrowing and 

lending present. In this case, the balance never becomes posit ive and the 

transaction is strictly a lending transaction. Part (a)(ii) follows by continuity. As we 

increase r ,  the nonpositivity of the balances together with (2.4) implies that the final 

balance will become zero. Part (b) of course is even better known and typifies the 

usual loan transaction. It follows immediately from Descartes rule of signs, but it can 

also be viewed as a special case of part (a). Suppose that the sign changes from 

negative to positive. There must be at least one yield r, and balances can never 

become positive, for this would necessarily occur after the sign change and then the 

final balance could never become zero. Part (c) is not as well known and is the 

source of some confusion. Note that the condition implies a unique positive y ie ld ,  

but there can be several negative yields. The statement appears a few times in the 

actuarial literature, but as far as we can see, without proof. 

As a generalization of Theorem 3.1, we have the following. It appears to be 

new as far as the actuarial or financial literature goes, but a similar statement 

appears as a strictly mathematical theorem in [3 ]. 

THEOREM 3.2 

Consider the sequence 

bo(r), bl(r) ..... bN(r) 

(a) If there is exactly one change in the sequence there is exactly one yield 

rate greater than r- l .  

(b) If all terms of the sequence are of the same sign, there are no yields greater 

than r-l. 
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REMARK . Theorem 3.2(a) implies all of Theorem 3.1. Taking r = 1, gives part (c) 

and taking r = 0 gives part(b). Part (a) follows as well, after noting that (2.4) and 

the nonpositivity of balances imply that for any s < r,we must have bs < 0. 

A unified proof of all these results will now be obtained. We first invoke a theorem of 

Laguerre who generalized the rule of signs from polynomials to power series. 

THEOREM 3.3 (Laguerre) 
OO 

Suppose that f(x) = ~.  ci x i has radius of convergence p > 0. 
i ----1 

Suppose that C , the number of sign changes in the sequence (ci) is finite. 

Then if Z is the number of positive zeros of f(x) ( including multiplicity) 

(i) Z < C 

(ii) Provided that p =,~o, or that the series diverges for x = p, C-Z is 

even. 

See [4] for details. One uses Rolle's theorem to show that the number of positive 

zeros is finite, and then invokes the fact that a function analytic in a disk has a 

powers series expansion which converges in the disk, to reduce the problem to the 

polynomial case. 

In the classical case of a polynomial, p = ,~, and the parity check given in (ii) always 

holds. 

The unifying result we mentioned above is 
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THEOREM 3.4 

Given any polynomial f(x) and r > 0 

o o  

f(x) I ~  1 (1-xr) = bk ( r )  x k f o r  x < r 

ProoL Straightforward calculations. 

We now note that Theorem 3.4 together with Descartes rules proves all assertions, 

since the positive zeros of f(x) which as less than l /r ,  are exactly the same as the 

zeros of the function f(x)/(1-xr). Note also that the power series has a singularity at 

the point l /r, so the parity check in Theorem 3.3 holds. 

The case when 1# is a root of f leads to part (a)(i) of Theorem 3.1 . The reason we 

are able to make a global statement here is explained by the fact that in this case the 

power series appearing in Theorem 3.4 is actually a polynomial. 

4 A FUNDAMENTAL ARRAY 

In this section we survey some methods for counting roots which are related to the 

following array of numbers. The first row is found by writing down the partial sums of 

the coefficients as in Theorem 3.1(c). We include all coefficients, taking Ck = 0 for k 

greater than N, so this row is really inf inite, although it stabilizes at a constant. The 

second row is found by writing down the partial sums of the first row, and we continue 

to iterate the process. 

These arrays appear in [3] where there are several examples. Laguerre also 

observed the connect ion with the well known Fourier-Budan method.(described 

below). They are used in by Uspensky in his textbook [7] to describe what he claims is 

a little known procedure attributable to Vincent. More recently, these arrays were 

rediscovered by J.R. Pratt, [5] [6]. Pratt's work, motivated by financial applications, 

provides the most extensive contributions to this tool. He develops new algorithms 

together with theoretical justifications. 
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Let cii denote the entry in the ith row and jth column where we number the row 

starting with 1 and the columns starting with 0. Then 

Cij = the coefficient of xJin the expansion of f(x) ( 1 - x )  i 

and therefore, the number of sign changes in any row gives an upper bound to the 

number of zeros of f(x) = 0, in the interval (0,1) This generalizes Theorem 3.1(c), 

which considers just the first row of the array 

It iS not necessary to compute complete rows to get an upper bound. We can verify that 

g(k)(1 ) 
Ck+l ,N-k - k! (4.1) 

so by (2.3) the (N+l)st-diagonal,  that is running from Cl,N to CN+I,0 gives the 

coefficients of g when expanded about the point 1. Hence, the number of sign 

changes on this diagonal gives an upper bound to the number of zeros of g in 

(1 ,  °0 ) which are the zeros of f in(0,1). 

Pratt uses more general paths, and shows in fact that we can get an upper bound by 

counting sign changes on any path which starts in column 0, and ends in row 1 at a 

column k >_ N. The key to this is his observation that in moving from one row to the 

next, we perform successively the following. Insert the sum between any two numbers, 

and then delete one of the numbers. Neither operation can add new sign changes so 

the number of changes decreases or stays the same as we continue adding rows. It 

follows that any row which lies beneath a path of the type described , has fewer sign 

changes than on that path. Pratt's procedure usually gives a very quick and efficient 

method of estimating the number of zeros. 

As an example consider 

f ( x ) = - l + 3 x - 5 x  2 +6x 3 

We obtain the array 
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-1 2 -3 3 3 3 ..... 

-1 1 -2 1 4 7 ...... 

-1 0 -2 -1 3 10 ...... 

The first row has three sign changes indicating either one or three zeros in the 

interval (0,1). The second row adds no new information, but from the third, we see 

there is a unique root in this interval. We do not need all these entries however and 

can see this just from the path -1, 0, -2, 3 running from c3,o to cl,3 

Pratt shows that the exact upper bound will eventually be reached if one goes far 

enough in the array. Moreover, in the multiplicity free case he gives a method for 

choosing the sequence in (2.6) so that the lower bound will eventually equal the 

upper bound. This provides a stopping rule to the procedure which therefore becomes 

an exact algorithm for counting the zeros of multiplicity free polynomials. 

As mentioned, this array can be applied to the Fourier-Budan method, a well known 

refinement of the sign rule. For any real number r, (2.3) shows that the sequence of 

sign changes in the sequence {f(r), f'(r), f"(r), ... ,f(N)(r) } give an upper bound to the 

number of zeros in ( r, oo). In fact a stronger statement is possible, namely, that the 

quantity (sign changes-zeros)  decreases as r increases. Hence given r < s, if we 

compute the number of sign changes in the derivatives at r, and subtract from this the 

number of sign changes in the derivatives at s, we get an upper bound for the 

numbers of zeros in the interval (r,s). ( See [1] for a derivation and [2] for some 

financial applications). To implement the Fourier-Budan method for the interval (0,1) 

we compute the array of the polynomial with reversed coefficients, that is of g. From 

(4.1) we see that the (N+l)s t  diagonal gives the number of sign changes in the 

sequence { f(k)(1)}, which we then subtract from the number of sign changes in the 

sequence of original coefficients, to arrive at an upper bound. 

Vincent's method is also based on this observation regarding the (N+l)st  diagonal 

Let us define for any polynomial p, of degree N the polynomials Pl and P2 given by 
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pl(x) =p(x+t), p2(x) = ( l+x) N p( [ l+x] 1) 

AS noted above the coefficients of P2 are on the (N+l)st  diagonal of the array 

constructed for p, and those of Pl are on this diagonal for the polynomial obtained 

from p by reversing the coefficients. The Vincent method simply iterates the calculation 

of diagonals to produce a branching procedure. Starting with f we calculate the 

polynomials 

f i l l2 . . ,  ik 

where each ij is 1 or 2. (For example, f121 is the polynomial Pl where p is f12.) We 

terminate branches where there are no sign changes or one sign change, indicating 

either no positive zeros or exactly one positive zero respectively. If all branches 

terminate, we obtain an exact count on the positive zeros. Moreover, by working 
backwards we can narrow down their location. For example if fi~i2-. • ik2 has a zero 

in (a,b), then f i l i2 . . -  ik hasazero  in ( [ l +b ]  -1,[1+a] -1 ) while if f i l l 2 - - - i k l  

has a zero in (a,b), then fili2-. • ik has a zero in ( a + l ,  b+l)  

Consider the following example, which appears in [7 ] 

f(x) = 7- 7x + x 3. 

We produce the following sequences of coefficients. 

Sign changes 

f l :  1, -4, 3, 1 2 

f2: 1, 7, 14, 7 0 

f11: 1, 5, 6, 1 0 

f12: 1, -2, -1, 1 2 

f121 : -1, -1, 2, 1 1 

f122: -1,-2, 1, 1 1 

All branches terminate, and we know we have exactly two positive zeros. To locate 

them more precisely we note that 
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f121 has exactly one zero in ( 0, o~,) implying that 

f12 has exactly one zero in ( 1, ,,o) implying that 

fl has exactly one zero in ( 0, 1/2) implying that 

f has exactly one zero in (1, 3/2), 

and 

f122 has exactly one zero in ( 0, oo) implying that 

f12 has exactly one zero in ( 0, 1 ) implying that 

f l has exactly one zero n ( 1/2, 1) implying that 

f has exactly one zero in ( 3/2, 2). 

Vincent proved that for the multiplicity free case, all branches terminate and an 

exact count of positive zeros is obtained. 

As a final result based on the array, we have the following theorem, which appears to 

be new. 

THEOREM 5.1 Suppose that the first row of the array for f has C sign changes. 

Then for any nonnegative integer m, and any k _< m+N, the number of zeros of the 
k-th derivative of the function xmg in the interval (1,~) is less than or equal to C. 

Proof As we have noted, the sequence { g(k)(1): k = 0,1 .... } has at most C sign 

changes, and (2.4) establishes the result for m = 0. Observe now that the original 

definition of N and hence of g is ambiguous, since we did not specify that aN was 

nonzero. By adding zero coefficients, we get the same result for x m g replacing g. 

We see from this that the simple procedure of Theorem 3.1(c) cannot select all 

polynomials with unique zeros in (0,1) but only a very special class. 

For completeness we mention another classical method of counting zeros, namely the 

procedure of Sturm, which we are not going to discuss here. The interested reader is 

referred to [1]. This procedure gives an exact count of the number of zeros, ignoring 

multiplicity. For example, the method would return a count of 1 for f(x) 
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(x-2) m . Aside from the fact that this method usually involves a great deal of 

calculation, the ignoring of multiplicity means that it is not that practical for the 

purpose of locating unique yield transactions, 
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