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Abst rac t  

Value-at-Risk (VaR) methodologies are particularly useful to actuaries as 
methods to quantify investment and portfolio risk. Despite the recent develop- 
ments in application and theory, there remains the problem of aggregating VaR 
measures among risk portfolios. In this paper, we use simple risk portfolios to 
discuss the abilities and shortcomings of the current methodologies for VaR, 
and suggest methodologies which can be used to facilitate the aggregation of 
VaR measures. 
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1 I n t r o d u c t i o n  

Much debate has focused on how to measure risk. The goal for financial regulators is 
to find a measure that is simple to calculate, yet accurately identifies the level of risk 
that a company is exposed to. Value-at-Risk (VaR) is a recent approach that  has been 
implemented into the risk managenmnt programs of many financial consulting firms. 
Most VaR techniques use price sensitivity methods to translate financial instruments 
into units of risk, or potential loss, based on a specified holding period, observation 
period, confidence interval and volatility of risk factors. 

1.1 Addi t i v i t y  vs. S u b - A d d i t i v i t y  

The Basle Capital Accord proposed a set of capital requirements for banks and other 
financial investment firms based on the inherent volatility of their individual assets. 
Tile requireInents were determined separately for each asset, and then added to obtain 
the capital requirements of the portfolio. Unfortunately, this method did not perinit a 
reduction in capital requirements for hedged or diversified portfolios. Thus, to account 
for the subadditivity of such risks, the Commission allowed the use of computer  models 
to calculate the risk of a portfolio, as long as the models complied with Commission 
standards. 

1.2 Other  U s e s  o f  V a R  

Tile importance of a risk measure is attributable to its ability to differentiate between 
different types of risk, as well as its ability to compare the severity of different risk 
portfolios. The application of VaR as a risk measurement tectmique has often been 
suggested for use as an aide to evaluate investment risk, to identify the optimal allo- 
cation of assets, to develop and evaluate portfolio strategies, to measure the quality 
of a portfolio, and to evaluate portfolio managers. 

2 T h e  M e t h o d o l o g i e s  

The definition of a 95%, n-day, Value-at-Risk for portfolio P, with initial value Po, is 
VaRgs~/o(Pu), such that 

Pr(L,, < VaRgsr~(Po)) = 0.95 

o r  

Pr(L, ,  > VaRgs~(Po)) = 0.05 
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where L,, is the loss random variable for the  portfolio, L,, = P0 - P, .  
Market  factors, such as, domest ic  and foreign interest  rate  structures,  exchange rates,  
stock prices and inflation rates ,  are examples of risk factors which may have an impact  
on the financial risks of a portfolio. There  are many methods which use these marke t  
factors to determine the dis t r ibut ion of L,,. These  methods can be classified into three 
model types: the historical model, the analyt ic  model  and the simulation model. 

2 . 1  H i s t o r i c a l  

In the historical approach,  using a one day holding period, previous one day fluctu- 
ations in marke~ factors are used to model  possible fluctuations to current market  
factor values. Al ternat ive  profi t / loss  realizations are valued based on these fluctu- 
ations and a distr ibution for profi t / loss  can be obtained from these realizations to 
produce a confidence interval.  

Histor ica l  Mode l :  
Fa = (f(,,a), f(2,d), ..., f(k,d)) ~he vector of observed risk factor values on day 
d = O, - 1  .... , - n  
P ( F )  = the value of a portfolio, using the factor values F. 

Fo = today ' s  risk factor values 

A F a  = Fa -- Fa-I  One day factor changes 

Po : P ( F o )  

Pd = p( Fo + A Fd) 

V a R l - ~ , ( P o ,  n)  = Po - (((1 - a )  × n ) th  smallest value of Pal) 

2 . 2  S i m u l a t i o n  

An al ternate  method,  the  simulation method  requires a distr ibution for changes in 
each market  factor including correlations between factors. Normal and lognormal 
distr ibutions are often used, with correlations derived from historical data. Given 
factor distributions,  Monte  Carlo simulation is used to obtain simulated changes in 
the market  factors, which are used to obtain a profi t / loss distr ibution and confidence 
intervals in the same way as in the historical  method.  
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S i m u l a t i o n  M o d e l :  
P,.(F = (f~, f2,.-., fk)) --= the joint density function of the risk factors. 
P = the portfolio value. 
Derive P r ( P  = p), the distribution of the portfolio value using simulation 
techniques and use this to determine VaR(I_~,)(Po). 

2.3 Analytic 

A more restrictive approach, the analytic method decomposes the portfolio into el- 
emental instruments each of which is exposed to only one market factor. A set of 
distributions for changes in the market factors is used to calculate the VaR and the 
portfolio variance. Since tile portfolio is the sum of the elemental instruments, if the 
market factors have a joint normal distribution, then the portfolio is also normaUy 
distributed. 

A n  a l y t i c / V a r i a n  ce- Cova r i an  ce M o d e l :  
Let. PI,, Pt~ .... , PS~ be the decomposition of Portfolio P into component 
securities. 
Then, 

k 

i=l  

Assuming that  the component securities are related through a known co- 
variance structure, using multivariate Normal techniques, the portfolio 
distribution can be approximated, and VaRo_~)(Po ) calculated. 

3 T h e  P r o b l e m s  

Even though these models seem intuitively reasonable and they are easy to explain, 
their tractability is based on the assumption that the percentile VaR measure is 
subadditive. Unfortunately, it is possible to show that VaR, as with all percentile 
measures, can be superadditive. This leads to the conclusion that  VaR is not a 
consistent measure, and should be used with caution. 

3.1 Super-Additivity 
Consider two risks P1 and P~, with loss random variables Lt and L2 respectively. 
Suppose that  the support of each loss covers more than three percent, but less than 
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five percent of the risk factor distribution, and that the support of the two losses are 
disjoint. Equivalently, suppose that the following three conditions hold: 

0.03 < Pr(L1 > 0) < 0.05, 

0.03 < Pr(L~ > 0) < 0.05, 

Pr(L1 > 0 and L2 > 0)=0. 

The first two conditions imply that VaRgs%(PI) = 0 and VaRzs%(P2) = 0. As well, 
the three conditions together imply that 

0 . 0 6 < P r ( L l + L 2  > 0) < 0 . 1 0  

and therefor, VaRg~%(P1 + P=) > O. 
In the combined portfolio (P1 + P2), the support covers more than five percent of the 
risk factor distribution, and the 95% VaR value is positive, and greater than the sum 
of the two individual VaR values. Thus, VaR as a percentile measure is superadditive. 

3 .2  Manipulating VaR 

To show that this method allows the 95% VaR value to be reduced for any arbitrary 
portfolio, it must be possible to partition the portfolio so that each partition has a loss 
distribution with a support which covers less than 5% of the joint risk distribution. 
Using derivatives, simple combinations of calls and puts, it is possible to partition any 
portfolio, as long as the joint risk distribution is kItown in advance. In this way, it is 
possible to decompose any risk portfolio, with positive VaR value, into sub-portfolios, 
each having a VaR value of zero, As the percentile for the VaR value increases, more 
sub-portfolios may be needed; however, it is always possible to obtain a zero value 
for VaR. As a result, knowing the distribution of risk factors, the value for VaR may 
be arbitrarily chosen. 

Even if VaR must be evaluated for an entire portfolio, there would be incentive to 
find other portfolios that would also benefit from trading risk partitions, so that  each 
portfolio would show a large loss over a very small partition of the risk factors dis- 
tribution. For example, when it is used as a regulation requirement, or an evaluation 
criterion, there is an incentive to obtain a specific VaR value by manipulating the 
portfolio. Unfortunately, this may work against the origiual purpose for having a risk 
measure, and the results may be to promote portfolios with extreme, but localized 
risk, as opposed to diversified portfolios with reduced tail risk. 
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4 P o s s i b l e  S o l u t i o n s  

As VaR has been accepted by tile major i ty  of risk managers,  and has developed a large 
following, it would be difficult to radical ly change the risk measurement  procedure. 
Although a change might me advantageous,  there are tools available to investigate 
tile validity of the value produced by VaR. These tools s tudy the tail  risk of a loss 
dis tr ibut ion and by using variations on these tools, it might be possible to ascertain 
the validity of a VaR measure.  

4 . 1  T h e  E x t r e m e  Value  M e a s u r e  [2] 

VaR is an ext reme value statist ic.  As such, it  is impor tan t  to understand the proper- 
ties of this type of s tat is t ic  in order to improve our understanding of our VaR results. 
The definition of a p-percenti le,  x v is: 

xp = F-X(p) = i , d { ~  • r<  F ( x )  > p}, 

Based on a sample of n da ta  points, X1, ..., X,,, the empirical distr ibution of the 
random variable X is defined as: 

# { i  : 1 < i < n  a n d X i  <_ x}  
F,,(x) = ,x  • TO. 

n 

Defining the order stat ist ics for this dis tr ibut ion as 

x( , ) , , ,  = , , ~ a , ( x ,  . . . .  , x , )  > x(=),,, >_ ... >_ x(,,).,, = m i , ~ ( x ~ ,  ..., x , , ) ,  

then x v can be approximated  by 

n - k n - k + 1 
~p,,, = ET'(v) = x ( ~ ) , , , ,  - -  <_ ,, < 

~b n 

By the Central  Limit Theorem, it is possible to show tha t  

(z~, p(1 - p) 

from which we can obta in  approximate  confidence intervals for the es t imated per- 
centile. 

As well, if X1, ..., X,, are Lid, the  binomial model  for an order statist ic can be used 
to produce percenti le confidence intervals, 

P ~ ( x j , , ,  < ~ ,  < x , , , )  = ~ v"-~(1 -p )"  fo~ i < j. 

The resulting confidence intervals can help to identify the accuracy of a VaR value. 
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4 . 2  M e a n  E x c e s s  F u n c t i o n  

Related to the mean future lifetime random variable of actuarial science, the Mean 
Excess Function (MEF) is a functional representation of the tail of the loss distribu- 
tion. Using this function, it is possible to identify fat tails and anomalies that occur 
in the tail of the aggregate loss distribution. 
The Mean Excess Function (MEF)[2] is defined as 

~(~,) : ~ ( x  - ~ , ) x  > ~), 

and the Empirical Mean Excess Function is defined as 

E?-~(Xi  - ~)+ ~.(~)  = 
Ei~=l l{x,>u} 

By plotting the MEF for some common distributions that have the same mean and 
95th percentile, it is easy to see how the MEF can be used to identify long tailed 
distributions. The Pareto is has the fattest tail, and the Lognormal is also known for 

Mean Excess Functions (Mean and 95%ile Constant 

el 

N0 rmal[4 .S ,4 .905g~-- -~- .~ .~  

o 

2' 4 6 8 10 
value 

Figure 1: MEF for two parameter distributions with Mean = 4.5 and x05% -- 8.143 

its heavier tail, the Gamma has a lighter tail, and the Normal distribution is known 
for its short tail. Thus, the slope of the MEF in the tail of the distribution can bc 
used to evaluate the severity of the tail risk. 
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5 C o n c l u s i o n s  

It may be nice to have a risk measure that everyone is willing to impleinent; however, 
there is no point to having that risk measure if it can bc manipulated. Thus we must 
find some way to verify the risk measure, or develop a new measure that does not 
allow itseff to be manipulated. Extreme Value theory and the Mean Excess Function 
are suggested as ways to supplement the current VaR techniques. These suggestions 
lnay improve the current techniques; however, it is extremely important that we still 
seaa'ch for consistent risk measures [1]. 
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