ACTUARIAL RESEARCH CLEARING HOUSE 1996 VOL. 1
 Comprehensive, Intuitive, Interactive Writing (WINC):

An Actuarial Pedugogical and Problem Solving Approach
by

Russell Jay Hendel; Ph.d., A.S.A.

Health Care Finance Administration--Region III* POB 7760
Phil. PA, 19101

Presented at the 30th Actuarial Research Conference,
August 17-19, 1995,
Pennsylvania State University, Pennsylvania.

[^0]
SECTION: INTRODUCTION-The Problem

Most instructors agree that students should be familiar with the derivations of formulae as well as the formulae themselves. Instructors would furthermore agree that it is preferable that students be able to justify formulae both intuitively as well as algebraically. Finally, most instructors would agree that a superior approach to problem solving is the use of a core set of comprehensive techniques by which to attack problem domains.

The obstacles to the implementation of these pedagogical goals are well known: For example, (a) it is difficult to find sufficient problem resources at current student levels for students to practice writing derivations; (b) student skills in writing derivations are typically so poor that attempted performance of routine exercise sets (even if they did exist) would not result in significant increases in competency levels.

The purpose of this presentation is to remedy these obstacles. More specifically this paper presents semialgorithmic methods for the routine production of problem resources whose solutions require skillful writing of derivations. Furthermore, these same semi-algorithmic methods also enable students to routinely achieve success in derivation-writing exercises

The semi-algorithmicity of the methods enables instructors without special training, by following some simple procedures, to routinely produce nich challenging derivation-w riting problems. Students also, without special training, can, by following some simple procedures, routinely achieve significant success in these exercises and significantly increase their skill levets.

In summary, the basic thesis of this paper is that student capability to iNteract with new problems can be significanly increased by frequenty exposing them to Writter derivations, verbal-Inuitive justification of formulae and core sets of Comprehensive techniques by which to approach problems. Both instructor composition of problem resources for presentation and studem practice of these prohlem resources cam be achieved by semi-mechanical procedures accessible to everyone. For brevity we shall refer to this type of instruction by the acronym WINC.

An outline of the rest of this paper is as follows: In section 2 we rapidly review the educational process and current methods of pedagogy. In section 3 we very briefly explore the basic components of WINC and show how they contrast with the more traditional methods mentioned in section 2 . Sections 4,5 and 6 respectively study inhuifiveness, comprehensiveness, and writing in more detail using examples from the actuarial literature Section 7 presents a list of topics from the actuarial literature that lend themselves naturally to WINC approaches. Section 7 also contains a collection of problems from recent actuarial exams which we hope will prove a valuable resource to both the instructor and student.

> SECTION II: EDUCATION \& PROBLEM SOLVING:--What is known

The basic educational process is familiar to everybody. Of the following four items---
this paper will concentrate on pedagogy \& assessment. In other words, we suppose that the instructor is given actuarial educational goals as well as course sequences and syllabi. For any given syllabus topic we then describe the presentation modes (or problem modes) available to the instructor that relect his/her particular bias of pedagogy. In the sequel we shall equivalently use the terms presentation (mode) and problem (mode) to emphasize that our comments apply equally to classroom presentation and exams.

A rich literature exists-e.g.[Bloom], Piaget [Gredler], [Sutton \& Ennis], [Van Hiele] ---on levels of problem-presentation difficulty. In this section we present 8 levels or presentation modes of difficulty using a process which we believe is more specific and less abstract than the Van Heile and Bloom hierarchies.

For purposes of illustration we suppose an instructor is teaching the syllabus topic-compound interest--which is connected with the well-known formula

$$
\mathrm{A}=\mathrm{P} \mathrm{e}^{\pi}
$$

where P, r, t and A represent a principle value, P, that accumulates at rate r over t units of time to accumulated value A. The eight problem levels are presented below in table 1 whose interpretation should be clear. We further clarify the table's meaning by interpreting the first few rows.

MODE	PROBLEM	VERBAL PROBLEM MODE
PLUG	GIVEN P,r,t FIND A	How much will P accumulate to in t years at rate r .
SOLVE	GIVEN P,r,A FIND :	How long will it take for P to accumulate to A at rater
DECIDE	Which is a better investme	Initial deposit P at rate r 1 for tl or at rate r 2 for t 2 ?
MULTI-PART	You have P dollars. Inve have after t years.	$\%$ at rate rl and $\mathrm{q} \%$ at rate r 2 . How much will you

MULTI-METHOD Given P dollars, what compound interest rate r2 is equivalent (\& SOLVE) to the simple interest rate rl for tl years

ITERATION If P is invested at rate rl for t 1 followed by a reinvestment at r 2 for t 2 f ind A .
PROCEDURE/ If you invest $\$ 100, \$ 200, \$ 300$ etc at the end of years $1,2,3$ etc at interest rate SPREADSHEET r how much will have accumulated at the end of 25 years

TABLE 2.1: Eight basic presentationtproblem modes of pedagagy. Table interpretation is clear and further explaitsed in the text. Note that for motational purposes several "cell entries" are absen.

In the plag mode the instructor illustrates the syllabus topic by presenting problems where the numerical values of P, r and t are given and then computes A . By contrast in the equation mode the instructor illustrates the syllabus topic by presenting problems where the numerical values of say A,P and r are given and then computes t . So for example, to illustrate the equation-verbal mode the instructor might present the following problem: "How long will it take for $\$ 1000$ to double at an anmal yield of 5%."

REMARKS: (a) Dual classifications (e.g. MULTI METHOD-solve) are possible. In particular every mode can be algebraic (default) or verbal(e.g. equation-verbal).
(b) Further subclassifications could have been made based on eg. whether numbers or literals are used (e.g. "Find the time for $\$ 1000$ to double at 5% " vs "Find the time to double at 5% "). This however will not be further pursued here.
(c) Table 2.1 is more specific than the Bloom and Van Heile classifications. For example it would appear that the verbal-decide mode is Bloom, level 6 --evaluation---since the problem solver is being asked to make decisions and evaluations. Closer examination however shows that all the problem solver is doing is mmerically comparing A1 and A2. The application of the previously learned skill of numerical comparison to the newly learned compound interest formula should therefore be classified as Bloom, level 3--application.
(d) The fundamental thesis of this paper can now be restated in terms of the presentation mode hierarchy given in table 2.1:

Many textbook illustrations occur in the modes of table 2.1--Bloom levels 1,2 and 3. Routine problem resources for higher problem modes seem to be absent. Furthermore even when superior problem resources exist student skill levels are frequenly too low to benefit from them. The purpose of this paper is to remedy these deficiencies by introducing three new problem modes: The Writing, Intuitive and Comprehensive modes. We fiwther provide semi-algorithmic methods for both routinely generating rich challenging writing problems (Bloom levels 4,5) as well as enabling studemts to routinely solve these problems successfully. Our thesis asserts that the reswling increased skill levels in writing imuitiveness and comprehensiveness should significantly increases student iNteractiveness with new problem situations.

SECTION 3: THE THREE BASIC IDEAS—WINC

In section 1 we briefly mentioned the three components of WINC: Writing, Intuitiveness and Comprehensiveness and indicated how skill competency in these components should increase iNferactiveness with new problem situations. Prior to giving detailed examples of these methods in the next three sections, we very briefly review here the meanings of these three components by contrasting them with other modes of pedagogical presentation.

W: WRITING: By writing we refer to the use of derivations in both instruction and assessment. In contrast to the formula method which presents formulae and only assesses the student ability to
use these formulae correctly, the derivation method seeks problems where the student is forced to use derivations. By derivations we refer to ordered sequences of equations which formally justify some formula. Clarifying examples will be presented in section 6 , along with methods to produce enriched problems. Examples 6.1 and 6.2 demonstrate that use of writing -- derivations vs formulae-- significantly increases a person's breadth of knowledge..

I: INTUITIVE: In contrast to a methodology that derives formulae algebraically, an intuitive methodology emphasizes use of verbal-intuitive equations in derivations. Clarifying examples will be presented in section 4 . Example 4.3 demonstrates that intuitiveness can significantly accelerate the presentation and learning of complex formulae. Example 4.2 demonstrates that intuitiveness can be used to unify superficially diverse results.

C: COMPREHENSIVENESS: To explain the meaning of comprehensiveness we illustrate using trigonometric identities. One type of instruction methodology would present basic methods and do enough examples so that students feel comfortable proving identities. However, an alternative method would be to present an algorithmic procedure: We would start by clearly defining the problem domain--the trigonometric identities---and then proceed to give a step by step procedure for proving or disproving any identity [Dabs and Hanks]. Of course, the algorithmic method does not always give the most elegant proof and room for human creativity is still present.

Not every domain of thought can be summarized by a comprehensive set of principles. However very often it is useful to give comprehensive principles for important subdomains of knowledge, thus allowing more time to be spent on the nonalgorithmical parts of the subject. As a simple example when dealing with the problem domain of logical argumems it is useful to know the algorithmic method of truth table methods which apply only to Oth order logic thus allowing more time to be spent on the non 0 th order logical elements of a problem domain.

Clarifying examples of comprehensiveness will be presented in section 5. Example 5.3 demonstrates that comprehensiveness can be an extremely useful tool in presenting and solving verbal problems. Another use of comprehensiveness is for student projects. That is, a challenge to good students is to precisely define a domain of problems and then give the step by step procedures and the class of identities that can be universally applied. Such studies enrich appreciation of a subject A recent example of such a search for comprehensiveness occurs with the Fibonacci numbers [Dresel, Hendel -1, Rabinowitz].

N: InTERACTIVENESS: We stated that our overall goal is to increase student interactiveness.
The fundamental assessment question is NOT, "How often can students solve the types of problems we have instructed them in," but rather, "How often can students solve new problems only resembling the ones we have instructed in." A crucial component of imteractiveness is a precise account of resembling. This will be given in section 6 .

We now proceed to give mature examples of the above three presentation modes.

SECTION 4: INTUITIVE: Illustrative examples

EXAMPLE 4.1: The following multiple life identity

$$
{ }_{n} q_{x y}^{1}=n_{n}^{q} x^{2}+{ }_{n} p_{y} n_{n}^{q}
$$

is derived both verbally (Exercise 830 of [Bowers et al]) and algebraically (Equation 8.8.4). The verbal derivation interprets the meaning of the actuarial symbols and uses the law of the excluded middle:

The life (x) can die first before (y) and 11 years (left side)
by either
(i) (y) dying second before n years (first summand on the right side)
or (ii) (y) surviving n and (x) dying before n (second summand on right side).

TABLE 4.1: Verbal derivation/interpretation of the above mudriple life identity.
Other multiple life formulae can be derived similarly. This formula illustrates the principle that intuitiveness enhances recall ([Hendel-2]) Note the skillful pedagogic technique of presenting the algebraic derivation in the text--equation 8.84 -and requiring a verbal derivation in the exercises-exercise 8.30 . Such algebraic-verbal pairings are common in [Bowers et al], other texts are encouraged to follow suit.

EXAMPLE 4.2: The well known reserve fornulae can be derived by purely algebraic means. The following verbal derivation is also possible:

RESOURCES EQUALS REQUIREMENTS

RESOURCES $======>$ New preniums, previous resenves

REQUIREMENTS $\Rightarrow=\Rightarrow$ death benefits, future reserves

EQUALS $==>$ with respect to forces of imerest, mortality

New premiums	$=$	$\pi_{\mathrm{h}-1}$
Previous Reserves	$=$	V
New Reserves	$=$	$\mathrm{h}^{\mathrm{h}-1} \mathrm{~V}$
Benefits	$=$	b
Present value (forces of interest)	$=$	v
Mortality/ Survival	$=$	$\mathrm{q}_{\mathrm{x}+\mathrm{h}-1}, \mathrm{p}_{\mathrm{x}-\mathrm{h}-1}$

TABLE 4.2a: A verbal derivation of the basic reserve formula The derivation uses the form of a comext free grammar

The above derivation is written in the form of a context free grammar[Lewis and Papadimitriou]. It could also be written as a (formal) derivation [Mendelson].

TABLE 4.2b: Table 4.26 rewrites table $4.2 a$ in the form of a formal derivation.
We briefly introduce some technical terminology that will prove useful in the sequel: Table 42 b is a 3 line derivation. Line I is the bold equation of table 4.2a. The left side of Line 2 is derived from the left side of line I using the following derivation (or reason) from table 4.2a:

RESOURCES $===>$ new premiums, previous reserves

In the sequel both the grammatical derivation (with yicld rules represented by "=" and "======>") as well as the formal logic derivation with line mumbers and reasons will be freely used. Although more formal accounts are possible the above should suffice.

The reserve example allows a restatement of the utility of imuiliveness: An algebraic derivation of reserves can only derive one particular formula (in this case the above reserve formula). However the more plastic intuitive derivation can be used to derive other reserve formulae such as those with return of premium or expense reserves: In all cases the same initial verbal equation--RESOURCES=REQUIREMENTS --- is used.

EXAMPLE 4.3: For the more skeptical reader we offer equation 7.3.4 [Bowers et al]

$$
\bar{s} \bar{V}\left(\bar{A}_{x: n}\right)+\bar{P}\left(\bar{A}_{x: n}\right) \bar{a}_{x+s: t}=E_{x+s} \bar{v}_{s+t}\left(\bar{A}_{x: n}\right)+\bar{A}_{x+s: t}
$$

as a "convincing example" of a formula that can "only" be understood intuitively (but not algebraically).

SECTION 5: COMPREHENSIVE: Ihustrative Examples

The basic attributes of comprehensiveness were mentioned in section III in connection with the trigonometric identities. Illustrations of comprehensiveness require three items:
(a) A precise definition of the problem domain,
(b) A (complete) set of techniques by which to approach them,
(c) A procedure for using the complete techniques to solve the problem.

EXAMPLE 5.1: (MULTIPLE DECREMENT LIFE TABLE PROBLEMS): 5.1(a) Problems in this domain are characterized by the fact that they give numerical values for certain values of x and n for the five functions-- $l_{x+n}\left(\underline{\theta},{ }_{n} d_{x}^{(j)},{ }_{n} q_{x}^{(1)}, p_{x}^{(j)},{ }_{m} q_{x}^{(j)}\right.$-and request computation of the numerical
value of one of these five functions for some other specific value of x and n and j. (j may be an integer or τ (all decrements); we however do not allow superscript primes (single decrement probabilities in multiple decrement environments)).
5.1(b): The three fundamental identities governing / are the following: (i) $1_{x, n}=1_{x}-{ }_{n} d_{x}$ (ii) $1_{x+n}=1_{x} p_{x}$ $p_{x+1} \ldots p_{x+n-1}$ (iii) $\left.\right|_{x+n}=0$ if $x+n$ is at least equal to the maximal attainable age.

For notational convenience we have omitted superscripts. Similar rules can be written down for the other life functions. In total nine rules suffice (the other five rules are the following: the relations between: (iv) p and q (v) l, d and ${ }_{n} q_{x}(v i) l_{1} d$ and ${ }_{n i} q_{x}$ (vii) $q^{(t)}$ and the $q^{(v)}$ (viii) $d^{(r)}$ and the $d^{(i)}$ and (ix) ${ }_{n} d_{x}$ and $d_{x}, 0 \leq i \leq n-l$. These nine rules form a comprchensive rule set for this domain.
5.1(c). The procedure for "solving" a life table problem is to "write down" in the table the problem's given values and then repeatedly use the above 9 rules to generate "new table values" until the problem's requested value is found.

REMARKS: We deliberately defined the problem class in such a way so as to avoid "superscript primes" (single decrement survival probabilities in multiple decrement environments). If we allowed "primed survival probabilities" then the above set of rules would not suffice; they would have to be augmented with the various single-multiple decrement "ratio rules" (e.g.[Bowers et al, 9.5.9]

EXAMPLE 5.2: (INSURANCE ANNUITY PROBLEMS) 5.2(a): Problems give values of insurances and annuities (but not reserves and premiums) for various ages and periods and request calculating the value of an insurance or annuity for some other specific age and period. $5.2(b): A$ comprehensive set of six identities are the relationships between the following: (i) insurance and anmuities, (ii) pure and ordinary endonments, (iii) continuous and discrete insurances (under UDD), (iv) recursive formulac (e.g. relating $A_{x: n}$ and $A_{t: m-1}$), (v) "initial volues" of annuities and insurances (e.g. $a_{x ;}, A_{x,}$---both continnous and discrete), (vi) whole and term insurances. $5.2(\mathrm{c}$): The procedure to solve problems is to repeatedly use applicable identities on the given values to derive new values until the value requested in the problem is found

The next example combines comprehensiveness with inhitiveness.
EXAMPLE 5.3: The following table gives a comprehensive set of correspondences (i.e a "dictionary") useful for functional interpretation in verbal maximum likelihood problems. The meaning of the table should be clear. The analysis into problem domain, rules and procedures $(\mathrm{a}, \mathrm{b}$ and c) should be clear and will be omitted.

VERBAL:	FUNCTIONAL	LIFE FUNCTIONS
DIED dTt	f(t)	
D) 2 ED BY	F(t)	${ }^{9} \times$
SLRLTEED TO $x+t$	$\mathrm{S}\left(\mathrm{x}^{+} \mathrm{t}\right)$	$\mathrm{S}(\mathrm{x}+\mathrm{t})$
ENTERED STLDYAT x	DIVIDE $\mathrm{HY} \mathrm{S}(\mathrm{s})$	c.g. $\quad \mathrm{S}(\mathrm{x}+1) \mathrm{S}(\mathrm{x})$

TABLE 5,3: A comprehensive list of verbal-furtional correspondinces for maximum jikeifiood problems. The wsage of this toble as an aid in sobving problems should be clear Nok that the last wo lives of the table could be combined into one; they were separated to emphasize the diference between problens on mewhoms and oliter entries at an age

The use of comprehensive correspondence tables for verbal problems may be controversial (e.g. the argument "let the students think for themselves"). However I have found such devices extremely useful with students at all levels. Furthermore comprehensiveness does not preclude further problem complexity. For example, a standard procedure to enrich maximum likelihood problems is to assume a uniform force model with different forces of mortality operating in different years.

REMARKS: (a) (Historical note) Comprehensive identity lists for the proof of trigonometric identities may be found in [Dabs and Hanks]
(b) In any given problem domain there is no one "right" set of comprehensive rules. Thus the finding of such comprehensive sets of rules makes excellent student projects. The hard part is the accurate definition of the problem domain
(c) In example 5.1 we had to expand the traditional multiple life table with its four functions $\left(\mathrm{l}_{\mathrm{x}}, \mathrm{d}_{\mathrm{x}}\right.$, $\left.q_{x}, p_{x}\right)$ to include ${ }_{n}\left(q_{x}\right.$. Such "minor changes" are common in these problems. (Provisions for ${ }_{n} d_{x}$ and ${ }_{n} q_{x}$ for $n>1$ should also be made).

SECTION 6: WRITING: W: Illustrative Examples

This is the most fruitful of the presentation modes that are studied in this paper. The terms writing, derivation or essay shall be used interchangeably

EXAMPLE 6.1:

$\mathrm{Cx}^{(1)}$	$=\int \mathrm{p}_{\mathrm{x}}{ }^{(\mathrm{t})} \mathrm{u}_{x+1}{ }^{(1)} \mathrm{dt}$.	Density-cumulative
	$=\int p_{x}{ }^{(1)} u_{x+1}{ }^{(1)} p_{x}^{(2)} d t$. $M 1$ - $-5 D$
	$=\mathrm{q}_{\mathrm{x}}^{\prime}(1) \int_{1} \mathrm{p}_{\mathrm{x}}^{(2)} \mathrm{dt}$.	WDI-density
	$=\mathrm{q}_{x}^{\prime}(1)\left[\left(1-\mathrm{q}_{x}^{+(2)}\right) \mathrm{dt}\right.$.	..(D)D-fractional
	$=q_{x}^{\prime(1)}\left(1-q_{x}^{\prime(2)} / 2\right)$.	Integration

TABLE 6.1(a): Example of a dervation (equation 9.6 .3 in (Bowerset al) The notaion and terninology for derivations was ilhusfated in example 4.2 above. Thus we could say that line 4 of the above derivation is derived from lite 3 by applying the formula , $P_{*}^{\prime 2}=\left\langle-1 q^{\prime 2}{ }^{(2)}\right.$ whose justification (or cuason) is the (IDD assumption on fracional ages.

A crucial component of uriting problem composition is the skillful construction of problems whose solution requires a similar equation derivation that differs from a given one in say one or two limes. Heuristically we may say that the constructed problem breaks the derivation by modifying a given line. We immediately clarify with problem 150-8-21-- (Problem 21, exam 8, course 150 in \mid ACTEX -.Course 1501)---which requires modifying line 4 of the above derivation by replacing the (IDD) assumption with a point mass assumption.

PROBLEM 150-8-21(slightly reworded) A multiple decrement table has 2 decrentents, (1) and (2). DECREMENT (2) OCCURS ONCE A YEAR 3 f-ths OF THE WAY THRU THE YEAR OF AGE. Decrement (1) in the associated single decrement table is uniformly distributed over each year of age. You are given, $p_{x}^{(t)}$ and $q_{x}^{(2)}$. Find $q_{x}^{(1)}$.
(The actual probicm asks for $d_{k}{ }^{(1)}$ and gives, $d_{k}{ }^{(1)}$ and, $1_{x=1}{ }^{(1)}$. It further uses deaths and withdrawals vs decrements (1) \& (2))

SOLUTION:

$\mathrm{q}^{(1)}$	$=\int p_{x}{ }^{(7)} u_{x+1}{ }^{(1)} d t$.	Density-cumulative
	$=\int p_{x}^{\prime}{ }^{(1)} u_{k} \cdot 1{ }^{(1)} p_{x}^{\prime}{ }^{(2)} \mathrm{dt}$	MD-SD
	$=q_{x}^{(1)} \int_{t} p_{x}^{(2)} d$	UDD-density
	$=\mathrm{q}_{\mathrm{s}}^{1}{ }^{(1)} \int_{0,5,5,75} 1 \mathrm{dt}\left(1-\mathrm{q}_{x}^{(2)}\right) \mathrm{dt} \ldots$Poimt-Mass

Table 6.1(b): Soiution to probicm 150-8-21. The similarin between ahles $6 / 1 / a)$ and $6 /(6)$ is further purswed in the text
It is immediately seen that the problem solution presented in table 6.1 b modifies line t of the derivation presented in table 6.1 a by replacing the UDD assumption with a Point-Mass assumption Equivalently we can say that table 6.1 lb breaks table 6.1 a at line 4 .

REMARKS: (a)Pedagogy theory would describe the above problem-solution as an example of the challenging analysis stage--Bloom, level $/ \boldsymbol{l}$--perceiving a learned item in terms of component parts.
(b) Our methodology is semi-algorithmic---Problem 150-8-21(reworded version) simply takes an equation derivation and creates a new problem by an appropriate assumption that breaks the dervation by modifying a line at an appropriate point. And nevertheless, it is a challenging problem.
(c) The actual version of problem 150-8-21 (vs our reworded version) has the added attribute of naturality-the multiple decrement derivation nature of the solution is partially disguised by consideration of withdrawals and deaths coupled with a plausible real world withdrawal assumption. While we posit that the construction of challenging, pedagogically useful writing problems is semialgorithmic, nevertheless, the construction of natural problems requires the artistic skill and creativity traditionally associated with such problems.

EXAMPLE 6.2: Table 62 below gives the standard intuitive verbal derivation for the continuous whole life insurance formula under constant force assumptions. The solution to problem 150-9-5 below modifies this derivation.

Fair value for
Whole life insurance $=$ Expected cost of insurance...Fair-Expected

$$
\begin{aligned}
& \text { = Actuarial value ...Expected }=\text { Achuarial } \\
& =\text { Expected (present value).....................................Actuarial=Expected present } \\
& =\mathrm{E}(\mathrm{PV}(\mathrm{t}) \mathrm{f}(\mathrm{t})) \text {)..Functional notation }
\end{aligned}
$$

TABLE 6.2: Verbal intuitive derivation of the whole life insurance formula under constant force assumptions.
PROBLEM 150-9-5 (reworded): Find the value of a continuous whole life insurance issued to (50) with mortaltiy following DeMfoure's law ($\omega=100$), with death benefit $b_{1}=1000-0.1^{2}$ and with simple interest of 1%.

SOLUTION: (Sketch) The derivation in table 6.2 is modified in the fifth line: The present value function is simple interest instead of the usual compound interest and the benefit function b_{t} has been picked out of a hat in such a way that the resulting integrand can be integrated.

Example 6.2 is useful in clarifying the utility and nature of writing problems. PROBLEM 150-9-5 is not intrinsically difficult but it WILL stump the formula student. The problem whether presented in class, homework or on exams encourages students in developing the skills of analysis into component parts and the capacity to generalize component parts by replacing them with similar parts.

REMARK: We suggest that the above analysis may give definitional insight into the difference between rote learning vs. conceptual learning:

When using the formula method of instruction for each "formula" learned there can be basically only one 'type' of problem with that formula (in the plug, or solve', or decide ...mode--the point being that we regard two problems as being of the same 'type' if they use the same formula). Thus the ratio between "types' of problems that can be solved" and "formulae learned" is 1 . We therefore term this type of learning as rote since, as the one to one ratio suggests, you can only solve what you learned..

On the other hand suppose each line in, say, table 6.1a can be modified in only two ways (independent of each other). There are five lines: Hence since each line can be modified in two ways there are ten formulae to learn. However, the total number of problems that can be made (one for each distinct derivation) is $2^{3}=32$. Thus the ratio of problems that can be solved to formulae learned is 3.2. If lines could be broken in more than 1 way (or if we had started with a derivation that had more than five lines) then this ratio increases further.

We therefore term this type of learning as conceptual since more can be solved than was learned. In conclusion we see that the ability to compose and solve Writing problems--particularly when derivations are based on Intuitive formulae and the totality of Comprehensive techniques available (which maximizes the degree by which derivations can be modified)--- enhances student iNteractiveness with new problems.

SECTION 7: FURTHER EXAMPLES--Iseful classroom ldeasproblem lists

In the preceeding six sections we have --reviewed the educational process,
--carefully defined traditional modes of presentation,
--introduced three further problem modes--W/NC,
--presented clarifying examples for WINC,
--argued that WINC enhances increased interactiveness,
--suggested a definition of interactiveness.
The primary purpose of this section is to show how to implement the introduction of the WINC presentation modes in the upper level sequence 100 actuarial courses---courses 150, 151, 160 and 165. The section also contains problem collections of use to both students as well as instructors who thru skillful, classroom, problem selection can enrich subject appreciation by suggesting a more refined development of the syllabus.

For reasons of space we have mostly restricted ourselves to illustrations of the immifive-writing mode For purposes of completeness we include some examples of comprehensiveness.

These examples of writing will be presented using comtext free grammars and formal derivations as illustrated in tables 4.2 a and 4.2 b . Table 7.1 below repeats and further develops example 4.2 and will be used to review and illustrate our notation.

TABLE USAGE: (a) Grammar interpretation (4.2a): Root level equations are presented in bold; level one equations (the next level down) are in bold $==>$ italics, level two equations are in italics $=\approx=>$ non italics. Tables 4.2 a and b illustrate the method of transforming comext free grammars into formal derivations.

TABLE USAGE:(b) Curriculum design and developmem. By checking the course 150 text for the table 7.1 topic, we see that reserve formulae are developed in chapter 7 (basic formula), sections 14.2 (general expense theory) and 143--14.4(types of expenses). This illustrates the curriculum technique of spiral design.

TABLE USAGE: (c) Problems: Problems may involve (c1) the plug mode-- based on duration of reserve, payment years, duration of insurance, survival model distribution etc. (problems 150-13-28. $10-23.8-13,12-28$), (c2) the iterative mode using recursive formulae [Bowers et al 7.8] (problems 150-8-14, 13-5. 11-13.14-17), (c3) the solve mode, using the seven types of reserve formulae- retrospective, prospective--etc. [Bowers et al, exercise 7.5]), (problems 150-8-15. 10-13, 14-10, 11-23, 13-16, 11-314-30, 12-8. 9-20) (c4) total grammar development, using expense reserves (10-15, 11-2, 10-9, 8-26, 9-26. 14-6, 13-9-note: these problens are sypically premium, not reserve, but were included here since the principles are related). Note that further augmentation of both the grammar and problems could be done by e.g. including modified reserve techniques (150-12-20, 8-25. 13-25. 11-21, 10-25. 14-26, 13-7.9.-28, 8-24, 12-10. 11-15).

RESERVES $=====>$ RESOURCES, ACTUARIALLY EQUALS, REQUIREMENTS

RESOURCES $=============>$ payments, (last year) reserves, loadings
ACTUARIALLY EQUALS $====>$ with respect to: imerest, mortality
REQUIREMENTS $==========>$ benefits, (this year) reserves, expenses
Expenses $========>$ Per premium dollar, Per policy, Per year, Fixed

TABLE 7.1:Comext free grammar for reserve problenis in course 150. Some good problems are treserve defintions) 150-13-28, 10-23, 8-13, 12-28, (tecursive formulae) 8-14, 13-5, 11-13,14-17, (vetrospective-prospective) 8-15, 10-13, I4-10, 11-23, 13-16, 11-3, 14-30, 12-8, 9-20 \{expense reservespremiemis)(10-15,II-2,10-9,8-26,9-26, I4-6,13-9).

EXAMPLE 7.2:

VERBAL PREMIUM PROBLEMS:--COUIRSE 150
EQUIVALANCE PRINCIPLE $======>$ PAYMENTS, BENEFITS
PAYMENTS $=========>$ Single, stream, comtinuous, discrete BENEFITS $======\Rightarrow$ benefits, premium-return, expenses

Premium-return $====>$ With Interest, Without Interest Expenses $\quad=====\gg$ Per Premium Dollar, per Policy, per Year, Fixed

TABLE 7.2: Contexffre grammar for verbal premium problems in course 150. Some good problems are 150-11-30. 14-4. 12-1. 8-11,12-24,8-12,17-2, 10-9, 8.26, 9.26, 14-6, 13-9\& $14-18$. Note dat these problems are chassified in the verbat-writing-inutitive mode.

EXAMPLE 7.3:

EXPECTED VALUE AND VARIANCE OF (AGGREGATE CLAIMS): COURSE 151

AGGREGATE AVERAGE/VARIANCE $====>$ Function of CLASS, n, q, DISTRIBUTION

 DISTRIBUTION $=================\Rightarrow$ Known, Discrete

TABLE 7.3: Context free grammar for aggregate averageivariance problems. Note that the above derivation includes the following four sinuations : Aggregate Average equals (i) ngb, (ii) \sum nqb, (the sum being over all classes), (iii) $\sum n q j$ where μ is given and (iv) Enqu, where μ must be computed by formula from paramelers. Similar remarks can be made for the variance. Some good
 1 and II). Many of (heses problems are in the solve mode-e.g. they may involve 'solving' a generating function for its parameters.

SURVIVAL EQUATION $\Longrightarrow \Longrightarrow$ By: MODEL, DISTRIBUTION, DATA , DECREMENTS

```
BY MODEL =-===-==-=-==========>> Moment model, maximum likelihood
BY DISTRIBUTION ASSUMPTIONS }==>=>\mathrm{ Type A,B,C (linear, hyperbolic...)
BY DATA INFO ============> Conplete, incomplete
BY DECREMENT TYPES =============> Single, Double
```

Moment model $===============>$ Actuarial, Hoem, Schwartz Lazar
TABLE 7.4: Contea free grammar for estimation of mortality probabilites. Note that the grammar is fdeliberately incomplete).further items coukd be inchuded-for ewmple, tie Kaphan: heier or the Nelson taten estimates. A how 27% of the recent exam problems
 by the three momentmetheds-mumotht actuarial Hexth) 160 -5-8, 2-11. 5-19.6-17.3-7.3-11 (ordinary moment-using calendar dates
 distihution assumbtionss t-2 $7-10,+-1, f-1$.

EXAMPLE 7.5:

PROFIT/LOSS PROBLEMS: COU/RSE 151

TYPICAL PROBLEM: Find the security loading yelding a 5% chance of loss MODEL SOLUTION:

$\mathrm{P}(\mathrm{S}>$ Expected claim $)=0.05$....................Premian (harged sexpected security (Or loading) with security

$\theta=1.645 \mathrm{o} / \mathrm{E}(\mathrm{S})$
Algebra
TABLE 7.5: Formal derivation for the "security loading for profft" problem described above. This problem spansover 10% of

 3-4, +5, 5-6, 2-4, 7-5, 3-6. Problem wordings can equivalemfly as for obtaining profin, avoiding lass etc. ...

EXAMPLE 7.6: INSURANCE-ANNUHTY PROBLFMS: For purposes of completeness we give two examples of comprehensiveness. Expanding on example 5.2 we give the following comprehensive list of nine insurance-amuity-premium identities: The standard identities between (i) insurances \& annuities (ii) whole \& term, (iii) recursive formulae, (iv) initial values, (v) pure endowment \& endowment. (vi) contimuous \& discrete, (vii)present \& accumulated value, (viii) fractional period \& anmal period, (ix) premium-insurance-anmuity. Some good problems are 150 -10-3, 11-29, 13-13, 10-27, 13-10. 11-5, 8-9, 13-23, 12-30, 14-1, 14-28. Note that formulae from other protlem domains, such as those relating d-i- δ, may be necded.

EXAMPLE 7.7: MAXIMUM LIKELIHOOD PROBLEMS: We present sample problems for the maximum likelihood verbal problems mentioned in example 5.3. The interested reader is thereby afforded the opportunity to assess the usefullness of using finction-verbal dictionaries (table 5.3) in verbal problems. Problems come from two courses: Traditional/IIE 160-3-16. 4-11. 2-20. 3-20, 7-15. 4-3. 1-14. 1-2, and 165-1-10, 165-3-10, 165-8-10, 165-6-11, 165-2.10, (with constant force assumption) 160-1-1, 160-6-13.

EXAMPLES 7.8: MISCELLANEOUS: We close with a collection of problem classes whose underlying grammars are one level (besides the root). For example the moment generating function of the loss variable can be stated in terms of the "first-loss" variable (root level) or the "claims" variable (level one). These uriting problems are best developed thru spiral curriculum and offer a moderate degree of challenge to students encountering writing for the first time

LINEAR REGRESSION: Ordinary (root), \& Logarithmic (level one)-coursi: 160 UTILITY OF PREMIUMS: Without reimbursement, with reimbursement- COURS: 151
RUIN As a function of adjustment coeficient; As a function of security loading- COURSE 151
FORFEITURE: Without loan and pure endowment and with them---COURSE 150
ADJUSTMENT COEFFICIENT EQUATION: Without reinsurance and with--COURSE 151
CLOSENESS $\mathbf{M}=\mathbf{A}$ function of $\mathbf{F}, \mathrm{h}, \mathrm{s}, \mathrm{M}-$ Function of w, v, u, the Δ operator, powers-course 160 MGF OF \mathbf{L} : As a function of \mathbf{L}_{1}; As a function of X--coursi: 151

BIBLIOGRAPHY:

[ACTEX] ACTEX Study Manuals Course 150 Examination. (Fohme II). (1991). Fdited by G.Crofts, M Gauger and I) London ACTEX Publications Winsted Conm.
---....----..........---- Course 151 Examination. (1993). Bdited by G. Crofts and M. Gauger. ACTEX Publications: Winsted Conn
.-.-.....--..............-.-. Course 160 Examination (1994). Fdited by D I.ondon ACTVX Publications. Winsted Conn.
-------------------------. Course 16.5 Examination. (1992). Edited by D. London. ACTEX Publications: Winsted Conn.
[BLOOM] Bloom S. B., Engelhart M D., Furst E. J., Hill W. H, Krathwohl, Editors. Taxonomy of Educational Objectives. The Classification of Educational Goals. Handbook I: Cognitive Domain. (1956). D. McKay Publishing Co. N. Y., N.Y.
[BOWERS ET AL] Bowers, Gerber, Hickman, Jones and Neshitt Acharial Mathematics (1986). Society of Actuaries: Itasa, Illinois.
[DABS \& HANKS] Dabs D., and Hanks R. A Modem Course on the Theon of Equatons. (1980) Passaic, NJ: Polygonal Publishing House
[DRESEL] Dresel LA.G Transformations of Fibonacci I ucas ldentities in Proceedings of the 5 th International Conference on Fibonacci Numbers. Bergum, Phillippou and Iforadam editors. (1993) Kluwer Academic Publishers: Dordrecht, Netherlands pp 169-184
[GREDLER] Gredlet M E Leaming and Instruction. Theory into Practice. Second Edition. (1992) Macmillan Publishing Company: N.Y., N.Y.
[HENDEL-1] Hendel R I A Shbonace Problem Classification Scheme Useful o Undergraduate Pedagogy in Proceedings of the Sh Imernational Conference on Fithonacci Numbers. Bergum, Phillippoa and lloradam editors (1993) Kluwer Academic Publishers: Jordrecht, Netherlands. pp 189-304.
[HENDEL-2] \qquad Letter to the Editor Comersations-News and Information for Actuarial Education. (Vol 1) Number 3. B Hearsey, Editor. (1995) pg 6.
[LEWIS \& PAPADIMITRIOU] Lewis IIR and Papadimitrisu C H. Elements of the Theory of Computation. (1981) Prentice Hall Inc.: Englewood Cliffs, N.J.
[LONDON-1] London D. Graduation The Revision of Estimates. (1985) ACTEX Publications: Winsted Conn
[LONDON-2] London D. Survival Hodels and their Estimation (1989) ACTEX Publications: Winsted Conn
[MENDELSON] Mendelson E Antroduction to Mathematical Logic. (1964) D. Van Nostrand Company, Inc. Princeton, NJ
[RABINOWITZ] Rabmowiv: Algonthmic Manipulation of Fibonacci Identities in Preceedings of the 6 th International Conference on Fïbonacci Numbers. Bergum, Phillippou and Iloradam editors (to appear 1996). Kluwer Academie Publishers Dordrecht, Netherlands.
[SUTTON \& ENNIS] Suton R E and Ennis R H Logical Operations in The International Encyclopedia of Teaching and Teacher Education, M. Dunkin Editor (1987) Pergamon Press: Oxford. pp 380-392
[VAN HIELE] Van Hiele, P. M. Sincure and Insight A Theory of Mahematics Education (1986) Academic Press: Orlando, Florida.

[^0]: * Partially written witile visiting the University of 1 oussille

