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1. Integer Functions 

For a real number t, let I t ]  denote the ceiling of t, which is the least integer greater 

than or equal to t, and let ~_tJ denote thefloor of t, which is the greatest integer less than or 

equal to t. Some authors write [t_] as [t]. If T = T(x) denotes the random variable of the 

future lifetime or the time until death of a life now aged x, then [TJ = K, the curtate-future- 

lifetime of (x), and IT]  is the time until the end of the year of death of (x). Because 12T 

is the time, measured in months, until the death of (x), we see that [12T] is the time, 

measured in months, until the end of the month of death of (x), and hence ; - [ 1 2 T ]  is the 

time, measured in years, until the end of the month of death of (x). Similarly, r52T]/52 

gives the time, measured in years, until the end of the week of death of (x), and so on. 

Thus we have, for each positive integer m, 

A~n~) = E[v ~ ] ,  (1 . l )  

"0~1= Era ,m)]  
a~ I_ r°"%[ J' (1.2) 

and 

a~ = E a  

For two positive numbers s and t, we define 

t m o d s  = t -  sLt/sJ 

(1.3) 

(1.4) 
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and 

t pad s = s l - t / s ]  - t .  (1.5) 

The quantity "t mod s" is the (nonnegative) remainder when t is divided by s, while 

"t pad s" is the least nonnegative addition to t so that the result is divisible by s. The term 

rood, short for modulo, is standard mathematical usage. In defining pad, we are 

borrowing from computer science, in which the term padding means the adding of blanks 

or non-significant characters to the end of a block or record in order to bring it up to a 

certain fixed size. 

Actuarial Mathematics [formula (3.6.1)] defines the random variable 

S = T - K = T - LTJ = T m o d  1. (1.6) 

Since S is the fractional part o f T ,  we have 0 _< S < 1. We make the assumption that 

P r ( S = 0 )  = 0; (1.7) 

hence 

with certainty. 

I s 7  = l (1.8) 

2. T h e  U D D Y A  A s s u m p t i o n  

The assumption of a uniform distribution of deaths throughout each year of age (or 

each policy year) may be characterized as follows: for each positive number t, t not an integer, 

= ( F t ]  - t ){~x+ltj + (t - LtJ)~x+[tq 

= ( tpad  1)~xd_tj + ( tmod  1)~x+[t]. (2.1) 

Dividing (2.1) by ~x and rearranging yields 

tPx = L,jPx - ( t - L t J ) L d q x .  (2.2) 

Differentiating (2.2) with respect to t, we obtain 
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d 
dt  tqx = t_qlq~, (2.3) 

o r  

d tqx = ttjiq~ dt. 

Let I(.) denote the indicator function: 

I ( ~  = 
1 if E is  true 

0 if E is false 
4 

The proof of the following lemma will be given in the next section. 

(2.4) 

Fae tor iza t ion  Lemrna  Let g be a periodic function with period 1, and let 

fit) = ~- 'ajI( j  < t_<j+l ) ,  (2.5) 
J 

where {aj } are constants. It follows from the UDDYA assumption that 

I; E[g(r)  f(T)] = E[g(S)] Eft(T)] = [ g(s) ds] E[f(T)I. (2.6) 

In defining the function f in (2.5), the inequality "<" in the indicator function can be 

replaced by "<" and "_<" can be replaced by "<". The factorization formula (2.6) holds as 

long as f is a step function with step size = 1. In the context of life contingencies, we 

usually consider step functions of the form 

f(t) = f([tJ),  t > 0, 

o r  

Under UDDYA, because 

f(t) = f([-t]) ,  t > 0.  

el 
E[g(S)] = Jo g(s) ds, 

the expectation E[g(S)] is the average ofg(s), s ~ [0, I]. 

[mt] 
periodic function [-t~ - ~ with m = 4 .  

(2.7) 

See Figure 1 for a graph of the 

309 



1.00 

0.75 

0.50 

0.25 

I I I I I I 
0.00 0.50 1.00 1.50 2.00 2.50 3.00 

f 3 

Figure 1. Graph of the periodic function ~tl /4t[ 
4 

Consider an insurance policy with death benefit depending only on the policy year 

of death (or the age last birthday at death). That is, there is a sequence of nonnegative 

numbers bl ,  b 2, b3 .... such that the death benefit is bj if death occurs in policy year j  (of if 

the age at death is x+j - l ) .  Moreover, assume that the death benefit is payable at the end of 

the m-thly time interval in which death occurs. Then the insurance's present value random 

, m T  ' 

Z = b;T 1 v T .  (2.8) 

variable is 

We define the single premiums 

and 

Consider the step function 

and the periodic t~nction 

!mTl 

A(m) = g [b iT  1 v ~ ] ,  (2.9) 

A = E[biT 1 vET]]. (2.10) 

f(t) = b i t  2 v F'~ 

= Eb j+ tv i+ l  I f j < t < _ j + l ) ,  
j_>o 

(2.11) 

g(t) = ( l + i )  ~ ~ .  
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Then 

W(T)1 = A, 

EMT) f(T)1 = E[biTi v Y ] = A(m), 

and 

E[g(S)J = E[(l+i)lmG]. 

Now under UDDYA, S is a uniform random variable on [0, I]; hence we have 

E[g(S)] = ji(l+ i)lAydds 

= j; + jf + “’ + j; 
1” 

= 
I o’ (1 + i)‘-” ds + 5;’ (l+i)‘-* ds + ... + ji (1 + i)‘-1 ds 

m /” 
m-l 

= ,4u (l+i)‘-G i 

= $ lm) 
‘q 

(2.12) 

i =- i(m) (2.13) 

Hence, by the Factorization Lemma, we have 

Acrn) = + A, (2.14) 

which is (4.4.6) of Actuarial Mathematics. 
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3. Average Value Theorem 

Let k be an integrable periodic function with period p. Then the value of the 

integral 

'v y+p k(t) dt 

is independent of the lower limit y. The average value of the function k is 

Avg(k) = 1 fy+p k(t) dt. (3.1) 
p~y 

The following theorem is reminiscent of the weighted mean value theorem for integrals in 

elementary calculus. 

Average Value Theorem 

h(t) = ~ c j I ( d j < t - < d j + p ) ,  
J 

where {c j} and {d j} are two sequences of constants. Then 

S?~ k(t) h(t) dt = Avg(k) S;~ h(t) dt. 

Let k be an integrable periodic function with period p, and let 

(3.2) 

(3.3) 

Proof The left-hand side of (3.3) is 

which is the right-hand side of (3.3). 

J 

= j~. cj[;ad, ~+p k(t)dt] 

= ~ cj[p Avg(k)] 
J 

= Avg(k) ~ cjp 
J 

= Avg(k) ~ cj [f_~I(dj 
J 

< t ~_ d j + p )  dt I, 

IIIII 
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To apply the Average Value Theorem to prove the Factorization Lemma,  we 

consider  

k(t) = g(t), 

which is a periodic function with period = 1, and 

h(t) = f(t) LqFq ~ 

= __  ~ c j  jlqxI(j < t _< j + l ) ,  
j>_o 

which is a step funct ion with step size = 1. Then 

I ?~  k( t )  h(t)  dt = E[g(T) f(T)], 

Avg(k)  ; g[g(S)], 

and 

I?~  h(t)  dt = Elf(T)]. 

(3.4) 

(3.5) 

4. Increasing Insurances 

Let n be a positive integer. Then 

(m) r ~ ]  
A ~- = E [ I ( T < n )  v 

×:nI  ) 

and it fol lows from (2.14) that 

(m) i 
A I _ _ A l _ 

x:n I i (m) ~:n I " 

Interchanging the order of differentiation and expectation, we have 

3 (m) vr_~2 ] 
A ' -  = E l i ( T <  n ) [ - ~  

38 x:ol 

= (iCm)A)C,m. 
x n  I 

Thus differentiating (4.2) with respect to 8 yields 

(4.1) 

(4.2) 

(4.3) 
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i 0 A ' -  + 
-( |(m)A)('n! = i (m) x:nJ ~:.[ O~ ~O~i i (m))  x:~ 

- i& , (IA)~.] + ~ 0(5 i ( m ) )  x:nl' 

Since 

we have 

O r  

Hence 

from which it fol lows that 

(I' m'A)(l"~ 
x n  I 

i (k) = eg/k 
1 + -  2- 

i (k) 
~ i ( k )  = e~/k = 
~ d (k)' 

0 1 
0-g ln[i(k)] = d -T~" 

0 i (k) 1 1 
a-g ln[T~] = d ~u d (m)' 

i [(IA)lx:~ - ( d  d (m) A 1 -  = ~ 1 ) x : n l ] "  (4.4)  

Wi th  m = o~ and n = ~ ,  the lef t-hand side of  (4.4) becomes  (I-A)~ ; this gives the last 

formula  in Section 4.4 of  Actuarial  Mathematics (p. 124). 

For  posi t ive integers k and m, to evaluate 

= ~ - - v  " j ,  (4.5)  

we use the identity 

= ( f - ~  - -  L ~ ) ( l + i )  D'? ~ v  Fvl (4.6) 

Taking  expectat ions and applying the Factorizat ion L e m m a  yields 

(I(k)A)(x m ) -  (I(m)A)(~ m) = E [ ( ~  - -  [ - ~ ) ( l + i ) ' - c ~ - ~ ] A x  . (4.7)  

The term (l(m)A)Ix m) can be evaluated  using (4.4) with n = oo. 
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5. A n n u i t i e s - D u e  

Because 

• .(m) /i = a~ ,, (5.]) 

and 
/ i ( m )  _ / i ( m )  = v [ T ] g ( m )  (5.2) 

we have 

a~:(') ii x - a~"(m) 
fT1--%l 

= E[vfT]] E[g(m) ] 

(5.3) 

by the Factorization Lemma and (1.8). Now under UDDYA, it follows from (2.12) that 

• I -I"s' 1 • .~rn) _[(1+1)  '~ - 1  

s[ m) - 1 
_ II 

d~m) 

i_i~ml 

i~m)dCm) 

= [~(m), 

which is (5,4.13) of Actuarial Mathematics. Hence (5.3) can be written as 

(5.4) 

..(ml /i~ m)/ix - ~(m)Ax, a I 

which is (5.4.14) of Actuarial Mathematics. 

The quantity 
= 

(5.5) 

can be interpreted as follows. Prior to the year of death, the annuity-due pays m payments 

of l /m each year. In the year of death, between one and m payments of l /m are made, 
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depending on the date of death. Accumulate with interest the "non-payments" forward to 

the end of the year. Then the expectation of the sum of the accumulated values is 13(m). 

Under UDDYA, [~(m) I I ..,m) ~ = Jo S~-T~ ,.L.,. Integrating by parts yields 

I ~ -.(m) 
~(m) = s - S Cl STT,,,1, 

-~- s = O  t-Tf 
I i  -- .'(rn) 

= - s (3 STT~ (5.6) 

because ~¢-~"~ = O. The right-hand side of (5.6) is a Riemann-Stieltjes integral. Since 0l 
m - I  

1 ~} Z ( l + i )  1 - ' ,  O < s <  I - - - ,  (5.7)  
j = rmsl m m 

we have 
m -  I - 

~(m) = ~ ~ J  ( l + i )  ~ " (5.8) 
)= ~ m 2 

( m ) . . \ (  m j  = (I 

To reconcile this formula with (5.4), we can use the compound-interest identity 

(I(q)g)~ '1 = d(~ (5.9) 

6. A n n u i t i e s - I m m e d i a t e  

The analysis in the last section can be extended to annuities-irlmlediate. Consider 

a(.,3 = a ~m~ vLTJ a (m) 
~ + ~,°-LTJ I 

= s(m}a vLTJ a (m) 

Taking expectations and applying the Factorization Lemma yields 

a(rn) = s(--m)ax + E[v LT]] E [ a ( m ~ l  x "ll 

~(rn) EIa(rn)l 

= ax + L 

With the definition 

(6.1) 

(6.2) 
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(6.3) 

we can rewrite (6.2) as 
a(m) = p) a 

x 11 x + (1 +i) A, y(m). (6.4) 

The quantity y(m) can be interpreted as follows. Prior to the year of death, the 

annuity-immediate pays m payments of I/m each year. In the year of death, between 0 and 

m-l payments of I/m are made, depending on the date of death. Discount with interest the 

payments made, back to the beginning of the year of death. Then the expectation of the 

sum of the discounted values is y(m). 

Under UDDYA, y(m) = ji ai% d s, which can be evaluated by an integration by 
8” 

parts as follows: 

y(m) = -1: a%, d(l -s) 
m 

= 
I d (1 - s)da’$. (6.5) m 

because ac”) = 0. To evaluate the Riemann-Stieltjes integral on the right-hand side of 
01 

(6.9, we note that 
Lm\J 

a’% 
““‘XI 

= -$“A, +l. (6.6) 

Hence 

(6.7) 

= (Dfm)afG. 
m 

It follows from the formula 

n - a’“’ 
nl (D(‘)aG) = ___ 

/m) 

that 
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T(m) - i~., , 

d Ira) - d 

= 'i{m~d~,,,~ - 

Therefore,  Exercise 5.18 in Actuarial Mathematics follows from (6.4). Formula (6.7) 

shows that TOn) can also be interpreted as the discounted value of m - 1 payments.  The 

sum on the right-hand side of (6.7) is the discounted value at time k, of m - 1 payments  

with the amount  ~ paid at time k + J Z ,  j = 1, 2, 3 . . . . .  m - l .  See the right half  of  
m m 

Figure 2. 

(6.8) 

7. or(m) 

We can use the relationship 
1 

or(m) = - -  + [~(m) + 7(m) 
i n  

to show that 

and 

(7.1) 

a~"Im~ : 0t(m) ~i - ~3(m) (7.2) 

a~m' = o~(m)a~ + y(m) .  (7.3) 

(cf. Exercise 5.19 in Actuarial Mathematics). It follows from (7.1), (5.8) and (6.7) that 

ct(m) can be interpreted as the value of 2m - 1 cash flows, with valuation date being the 

mid-point  of the occurrences of  the cash flows. In Figure 2, the valuation date is k. There 

are m -  1 increasing cash flows from the year before time k, their accumulated value at time 

k being 13(m). There is one cash flow of amount l /m at time k. There are m - 1 decreasing 

cash flows from the year after time k, their discounted value at time k being 7(m). See also 

(7.11 ) below. 
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1/4 
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[3(4) 'y(4) 

Figure 2. The 7 cash flows contributing to at(4) 

Let n be a positive integer. Consider an n-year annuity-certain with payments of  

l /m in each m-th of a year. Between successive policy anniversary dates, there are exactly 

m-1 payments of l/re. Under the UDDYA assumption, we can partition these m-1 

payments into a stream of m-1 increasing cash flows (with accumulated value of ~(m) at 

the later anniversary date) and a stream of m - I  decreasing cash flows (with discounted 

value of 7(m) at the earlier anniversary date). Hence, for an n-year annuity-due, we have 

~i (--m) = o ~ ( m )  - ~ ( m ) ( l - v n ) ,  (7.4) ol a~ 

and, for an n-year annuity-immediate, 

a Lm) = a ( m )  + n[ a~ y (m)( l  - vn). (7.5) 

Each of [3(m)(l - v n) and y(m)(1 - v n) is an adjustment term for both year 1 and year n. 

Putting n = FT] in (7.4) and taking expectations, we have 

E[/i eml ] = o~(m) ~i - [3(m)(1 - Ax). (7.6) 
[ rTllJ 

By (5.1), the left-hand side of  (7.6) is ~S ~) ~ .  It follows from (5.5) and (7.6) that ~j 

~i !m) = /:iS m) ~i - ~(m)Ax = o~(m)fi  - [3(m), (7.7) 
x 1[ 
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which is (7.2). Note that on the right-hand side of (7.2) [or of (7.7)] there is no 

adjustment term for the "loss" of annuity payments in the year of death. Under the 

UDDYA assumption, the increasing stream of cash flows in the previous paragraph is 

exactly the strewn of e.wected cash flows to be lost in the year of  death. However,  there is 

an adjustment term, -[3(m), for year 1. Also note that, in (5.5) [or in the middle expression 

of  (7.7)], there is an adjustment term, -~3(m)Ax, for the year of  death, but none for year 1. 

Similarly, putting n = LTJ in 17.5) and taking expectations yields 

E [ a  (''1 ] ,_ ~ = ot(m)ax + y ( m ) [ 1 - ( l + i ) A x ] .  (7.8) 

"~') a it follows from (6.4) and (7.8) that Since the left-hand side of (7.8) is s l ,,  

(rn) 
a x = 

which is (7.3). 

With n = 1, (7.4) becomes 

h~- m~ = a ( m )  - 11 

s(m) a x + y(m)(l+i)Ax 

ct(m)ax + "f(m), 

~ ( m ) ( l - v )  = ¢x(m) - d~(m) (7.9) 

which is Exercise 5.49 in Actuarial Mathematics. Formula (7.9) can be also deduced by 

substituting A x = 1 - d i i  into the middle expression of(7.7). 

With n = 1, (7.5) becomes 

a j " "  = a ( m ) v  + 7 ( m ) ( 1 - v ) ,  

Or 

s~m) = or(m) + i ~ m ) .  1L 

Both (7.9) and (7.10) can be explained in terms of cash-flow decomposition. 

a ( m )  
1 

= - -  + 13(m)  + ~ m )  
m 
/t(m)g] (m) (DIm)~]~_~) 

= U h - - ~  + x /11 

f 'Di ,~)a]  ("1 

(7.10) 

(7.11) 

Note that 



Also, it follows from (5.4), (6.8) and the formula 
1 1 1 

m d (m) i °") 

that 
i - d  id 

o c ( m ) -  i(,,~dC,~ = i~,,~d~m, (7.12) 

which is (5.4.12) of Actuarial Mathematics. 

8. A p p o r t i o n a b l e  A n n u i t y - D u e  

Let s be a positive number, not necessarily an integer; we define 

(m I - v s 

a~ ) --- d(m) • 
(8.1) 

This definition extends the usual definition for ~i ~m) where s is a positive integer. Then , 

g[~Lm)] ____. zlmJ (8.2) 
L TI J ux ' 

which is the single premium for an apportionable life annuity-due of 1 per year payable in 

installments of l /m at the beginning of  each m-th of  a year while (x) survives (cf. Section 

5.5 of Actuarial Mathematics). It follows from (8.1) that 

/ i . (m)  _ a(m) = v T ;.(m) 

Taking expectations and applying (1.2) and (8.2) yields 

× _ a(m) ] (8.4) 

The amount of refund at T, the time of death of (x), is 

£i (m) (8.5) 

Note that 

I Tl/m_~ _ T = T p a d  1~__ (8.6) 
m m 

is the time between death and the next payment date. 

It follows from (8. l) that 
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s] d lint asl ~ 

1 

malT~ml a~. 

Hence expression (8.5), the amount of refund at the time of death, can be rewritten as 
1 

marT~m ~ ab77-"1' 

which is an expression that can be found in (5.5.3) of Actuarial Mathematics. 

(8.7) 

(8.8) 

(8.9) 

9. E n d o w m e n t  I n s u r a n c e  a n d  T e m p o r a r y  L i f e  Annu i t i e s  

For two real numbers s and t, let sat  denote the minimum of s and t. Replacing 

~mTi by ~mTI An and T by TAn,we  can extend much of the analysis above from whole 
m m 

life insurance to n-year endowment insurance. For example, in place of (1.1), (1.2), and 

(1.3), we have 

A/"~=, ,, E[v ~ '-~^ ° ] , (9.1) 

and 

respectively. 

a ~  = E a 

"(m)-- E[a~m} ] 
a o,- k ~ . l J '  

(9.2) 

(9.3) 

10. C o m p l e t e  A n n u i t i e s - I m m e d i a t e  

Parallel to the notion of the apportionable annuity-due is that of the complete 

annuity-immediate; see Section 5.5 of Actuarial Mathematics. Let t be a positive number, 

not necessarily an integer; we define 

a(m~ 1 - v t 
,I - i (m) ( 1 0 . 1 )  



and 

S "  - (1 + i )  t -  1 
i(ra) (10.2) 

Then 
o ( m )  

a~ = E[ a~ ) ] .  (10.3) 

It follows from (10.1) and (10.2) that 

a ~  ) - a (m) = vTs (m) (10.4) 

Taking expectations and applying (10.3) and (1.3) yields 

o(m) a (m, = E[vTS,m) - ].  

The adjustment payment at time T is s ~m~ Note that T-~I" 

T l m T l _ T m o d !  
m m 

(1o.5) 

(1o.6) 

is the time between the last payment date before death and the date of death. 

Let n be a positive number divisible by l/m, or n rood l /m = 0. Replacing T by 

TAn and /mT] by ImTiAn in (10.3) and (10.4), we have 
m m 

o ( m )  ( m )  
= E[a ] (10.7) 

and 
a(m) , ( m )  = v T ^ n  s ! m )  

( T ^ n ) - ( k ~ ^ n l [  " m " , -  I 

(lO.8) 

Observe that 

{ T  L"'T] i fT  < n  
= ° 

n = O  i fT>_n 

Since s(- m) = 0, the right-hand side of (10.8) can be simplified as ol 

v Ts (')  I ( T < n ) .  

Hence it follows from (10.8), (10.7) and (9.3) that 

(~o.9) 



Also note that 
"'lml o(m) a zl/ax:;] = i(m)/d(m) 

= (1 + i) I/m, 

which is Exercise 5.28.e of Actuarial Mathematics, 

(lO.lO) 
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