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ABSTRACT
Estimation of parameters of the two-parameter Pareto distribution is considered in this
paper. It is known that, if a random variable X has the Pareto distribution with parameters & and

4 then V= ln(l + R ) has a exponential distrtbution with mean 1/c . The above property is

used to develop a method of estimation based on minimization of a distance function such as the
Kolmogorov-Smirnov distance. Simulation examples are provided.

1. INTRODUCTION

The two-parameter Pareto distribution is a commonly used model in reliability and risk
modeling. Minimum variance unbiased estimates of the parameters of Pareto distribution are not
known. In this paper, we propose and investigate a method of estimation of the parameters of the
Pareto distribution. This method is based on minimization of the Kolmogorov-Smirnov distance
between the empirical cumulative distribution function (cdf) and the cdf of the Pareto
distribution.

2. THE MODEL

The two-parameter Pareto distribution has the probability density function (pdf)

flera)= =0 >0, (w>01>0), (2.1)
i

and the cdl’

VAR
F{x)=1- . (2.2)
( ) [ L+ xJ
It is known (Panger) that if Y has a Pureto distribution PARETO (x.%) then the random variable

X
)':/’i{l+ ) ] (2.3)
A

has an exponential distribution with mean 1/a .
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3. PROPOSED ESTIMATION METHOD

Let x..x,.---.x, be an independent random sample from the pdf (2.1). The steps of the
proposed estimation method are given below:

(hH Input an initial search interval (1. //) for the parameter # .
2y Sal,=Hl-1
k=0618= golden ratio

by = 1Al
b, = 1k,
(3 Compute y, =In l+{\:’ )
A

X
3, = u{1+ o )
Ay

for i=12,---n.

(4)  Compute (2, )= S r=12

(5)  Compute D(%,)= Supi Fla)= Flna(a,)on, =12,

where F(x) = sample cdf.
(© 1t D0 < D3, ) then I1= 3, else L=1,.

The steps (1)-(6) are the steps for the univariate minimization method for Golden Section Search
(Ravindran et. al, 1987). Steps (1)-(6) are repeated until 7, < desired tolerance.
4. SIMULATION EXAMPLES

In this section, we present two examples generated by computer simulation. In both of
these examples. the following input values were used: n=25. a =15, A =8.

Computer simulation is used to provide examples of the proposed estimation method.
The simulation experiment is described below:

() Generate #.u,,---.2, from a uniform distribution over the interval (0. 1).
(2) Transform u, to generate observations v, from the exponential pdf with mean
1/c, as follows:
1 .
vo=— f{nu, =12, n.
u
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3 Generate x.x,,---.x, from the Parcto distribution (2.1) as follows:

x, = Afe" 1)

EXAMPLE 1: The simulated sample of 25 observations, sorted in increasing order, is given
below:

0.06, 0.14, 024, 032, 1.41, 1.61. 1.83, 2.74, 2.84, 3.06, 3.54,
3.94, 4.16. 438, 4.67, 6.11, 7.52, 10.77, 11.20.11.42, 13.74,
16.61. 21.82, 36.39, 52.22

For the above sample. the estimates obtained from the proposed method are:
i =198, %.=1002, D=009

EXAMPLE 2: The simulated sample of 25 observations, sorted in increasing order, is given
below:

0.42,1.02,1.59,1.64,191,1.97,2.40, 2.83,2.98.4.51,4.58,
7.54,8.22,8.79, 10.31, 10.77, 13.24, 14.19, 24.06, 24.83. 41.26,
52.88,57.61,61.73,191.77

I'or the above sample, the estimates obtained from the proposed method are:

G =128, L=1045, D =009

min
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