
A C T U A R I A L  RESEARCH CLEARING HOUSE 
1 9 9 8  VOL. I 

Stepwise recursions for a class of compound Lagrangian 
Distributions 

A. H. Sharif and H. H. Panjer 

A B S T R A C T  

In this paper, Lagrangian distributions are reviewed and some of their prop- 
erties are studied. Recttrsive methods are proposed to calculate compound 
Lagrange distributions. Some examples for a sub-family of Lagrangian Distri- 
butions and its compound distributions are studied. 
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1 I n t r o d u c t i o n  

Consul and Shenton (1972, 1973) introduced a class of discrete probability 

distributions and called it the class of Lagrangian distributions. The particu- 

lax name originates from the fact that these probability functions are derived 

frola the Lagrange expansion of a function f ( t )  as a power series in u where 

ug(t) = t and, f(t) and g(t)  are both pgf's of certain discrete distributions. 

From a mathematical functional point of view, the Lagrange expansion is a 

generalization of Taylor's expansion. For 9(~) = 1, a Lagrange expansion 

becomes identical with a Taylor's expansion. This class consists of many faro- 

flies; for example: generalized Poison, generalized negative binomial, Borel- 

Tanner and, Haight distributions. Kling and Goovaerts (1993), and Sharff 

and Punier (1994) have derived three step recursions for compound gener- 

alized power series distributions(GPSD). Goovaerts and Kaas (1991) defined 



a two step recursion to calculate compound generalized Poisson probability 

functions. Goovaerts and Kaas (1991) used the fact that generalized Poisson 

distributions is a compound Poisson distribution with the Borel distribution. 

The Borel distribution was derived from another Poisson distributions pgf us- 

ing the Lagrange expansion. The main motivation of this work came from 

Goovaerts and Kaas (1991). Their idea is explored and generalized for a wider 

class of distributions which includes generalized Poisson distributions as a par- 

ticul~a cas(~ Dc.taal derivati~,n ~nd discussions are given in ~n ('xamt>h: at the 

end of this article. 

In this article, we first investigate the definition of a class of Lagrangian 

distributions and then introduce a recursive way of calculating their probability 

functions and their compound probability functions for a suitable subclass, 

namely the (a; b) subclass (defined in section 3.3) of the Lagrangian family. 

2 D e f i n i t i o n s  o f  t h e  L a g r a n g e  d i s t r i b u t i o n  

In this section we will define, as in Consul (1973), two different kinds of La- 

grangian probability distributions (LPD), namely (i) a basic LPD, and (ii) a 

general LPD. 

2 .1  A b a s i c  L P D  

Def in i t i on  1 Basic LPD : Let 9(t) be a pgf of a discrete random variable such 

that g(O) # O, then the transformation 

t = ~g(t)  

defines, for  the sraallest non-zero root o l  t, a new pgf t = ¢(u) whose e ~ a n -  

sion in powers of u is given by the Lagrange's e~pansion as 

t = ~(~) 
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The above pgf ¢(u) 

discrete distribution represented by it, namely, 

• =, -~. (g(t)) ~ (2.1) 
.I t i n 0  

will be referred to as the basic Lagrangian pgf  and the 

I l 19 z-I t z ~(~) (9()) l,=o • c N 

Pr(X = x )  = (2 .2 )  

0 fo'r x = 0 

as the basic Lagrangian probability distribution ( basic LPD)  defined on N ,  the 

set of  positive integers. Equivalently, we can write 

1 .q*z ~ - 1  z E N 

Pr(X = ~) = 

0 for ~,=0 

where g(t)  = ~ = o g ~ t  ~ and g~" is the n-th convolution of  gj. 

Note that, by definition, all basic LPD's must have tails extending to in- 

finity, and P r ( X  = O) = O. 

Examples: 

(i) The Borel distribution is a basic LPD generated by the Poisson distribution 

given by g(t) = c xlt-l), m > 0. The pfof  Borel distribution, as derived from 

(3.2), is 

z! 

For detail derivation, see Borel (1942). A practical and easier derivation is in 

Tanner (1961). [] 

(ii) The Haight distribution is the basic LPD generated by the geometric dis- 

tribution given by g(t) = q ( 1 -  pt) -1 where p + q = 1. A generalization of this 

results could be found in Haight (1961) and is shown in table 2. [] 
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(iii) The geometric distribution itself is a member  of basic LPD and is gen- 

erated by the simple Bernoulli distribution given by g( t )  = p + qt, where 

p + q = i. Note that  t = ug( t )  = u (p  + at) gives t = up(1 - qu) -~ which is a 

pgf for a geometric distribution. • 

(iv) The Consul distribution: 

:- -- - { l - a )  ''~, x E  N (2.3) 
d~ d: - 1 

where rn > 1 and integer and 0 < a < 1, is a member  of basic LPD generated 

by the binomial distribution with pgf g(t) = (1 - a  + at )" .  The p f in  (3.3) is 

derived using (3.2) by taking g(t )  as the pgf of a binomial distribution. For 

detail derivation, see Islam and Consul (1992). I t  can also be derived by taking 

g( t )  = (1 + o -  or) -"~ which is the pgf of a negative binomial distribution. Note 

that  for m = 1, a Consul distribution is a geometric distribution. • 

(v) Another important  dis t r ibu t ion  is the pf  of the first visit to +1 (i.e. first 

passage through 1) in n - t h  step in a random walk started at the origin. It is 

a basic LPD generated by g( t )  = p + qt 2, where p + q = 1. The substitution, 

t = ug( t ) ,  provides the pgf 

1 - i ( 1  - 4u2pq) 
t{u)  

2qu 

which is saam., as (3.6) m Feller (1968, page 272). • 

Having defined the basic LPD, the idea of generating new distributions 

using the Lagrange expansion could be taken one step further. Let g(t )  

be a pgf of a nonnegative integer valued discrete random variable such that  

g(0) ~ 0. As in the basic LPD, consider the transformation 

t = , , g ( t )  

so t ha t  u = 0 for t = 0 and u = 1 for t = 1. We can expand t as a 

series in powers of u with the help of the Lag'range expansion. Hence for any 
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well-behaved function which is analytic on and within a given contour of t on 

(u, t) plane, f ( t )  can be expressed as a series in powers of u. Therefore we 

have the following definition in the next subsection. 

2 . 2  A g e n e r a l  L P D  

Defini t ion 2 Let f ( t )  and g(t) be pgf's of discrete random variables defined 

on nonnegative integers, such that g(O) # O, then f ( t ) ,  with the transformation 

t = ug(t), could be expanded in series in powers of u and is given by the 

Lagrange 's expansion as 

¢.{a) = f ( t (u) )  (2.4) 

= / (o )  + (g(t))-  / ( t )  
z = l  $ = 0  

The above pgf ¢.(u) is defined as the general Lagrangian pgf and the discrete 

distribution represented by it, namely, 

P r ( X  = 0 )  = f(O) (2.5) 

and P r ( X  = x) = ~. \ - ~ ]  (g(t)) ~ f ( t )  x e g 
/:=0 

as the general Lagrangian probability distribution ( general LPD) defined on 

N. the .~et of po.~Ztive in, teger,~. 

Note that, by definition, t(u) is a pgf of a basic LPD and hence ¢.(u) is a 

pgf of a compound distribution. For f ( t )  = t (equivalently having total mass 

at point one), general LPD corresponds to a basic LPD; for g(t) = 1 (having 

total mass at point zero), u becomes identically equal to t and hence ¢(u) 

identically matches with parent pgf f( t) .  For f ( t )  = t'* (equivalently having 



total mass at point n), the general LPD becomes identical with the n - t h  fold 

convolution of basic LPD. 

Table 1: T h e  pf  of some basic Lag range  Di s t r i bu t ions  

S1. No. Description g(t) 

ea(t  - 1) I. Borel ! 

L 

2. Consul (1 - 8 + St )  TM 

Beruouli.delta 
3. (1 - o + or)  

(Geometric) 

Neg.bin-delta 

4. (I-Iaight) ( ~ ) "  

f ( t )  pf of some basic LPD 

z! 

mz ) (1_0).~.+,_.0._~ x 
z: - 1 

t (1 - 0)0 ~-' 

ri'=+*-Utl.ir(,~) x- - p ) , . p ~ - t  

r~_~_=_~¢l __ p),~p~-I t :!r(z) x 

E x a m p l e s :  

(i) The generalized Poisson distribution(GPD) is introduced by Consul and 

dain (1970) .  For extensive study and literature on GPD, see Consul (1989). 

GPD is a general LPD generated by the Poisson distribution given by the 

pgf g ( t )  - ,.~(t-l) A > O. and the Poisson distribution given by the pgf 

f ( t )  = ,.~l, , I  0 > 0 .  E 

(ii) The generalized negative binomial (GNB) distribution is introduced by 

Jain and Consul (1971). For its characterization see Consul and Gupta (1980). 

A GNB distribution is a general LPD generated by the binomial distributions 

given by the pgf's g(t) = (q + pt)'~ and f ( t )  = (q + p~)" where p + q = 1, 

p > 0, and m and n are positive integers. • 
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Table 2: T h e  p f  o f  n - t h  c o n v o l u t i o n  o f  s o m e  b a s i c  L a g r a n g e  D i s t r i b u -  

t i o n s  

Sl. No. Descr ipt ion g(t) 

1. Borel -Tanner  eA(t - 1) 

2. 

. 

4. 

. 

B inom.de l t a  

(Consul) 

Bernoul i .de l ta  

(Geometr ic )  

Neg.b in-de l ta  

( H aigh t ) 

Geom.de l t a  

(q + pt )"  t" 

(q + pt) t" 

1 r 

f ( t )  
pf of n- th  convolut ion 

of some basic LPD 

~(~-~)! 

t " 

r/tX ) n(q),~.+._=p._. X 

¢ 

x ,~tq)"v*-" 
x 

X - - n  
k 

• , r t . ~ + . - . )  ~ 1  - p)r~pX-~ 
xlm-n)!FIrz) x 

:c(z-n)!r(z) ~ ~ 
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Table  3: T h e  p f  o f  s o m e  g e n e r a l  L a g r a n g e  D i s t r i b u t i o n s  

g(t) f(t) pf  of  s o m e  genera l  L P D  

1. eA(t 1) ¢#(t - 1) ~e*a=) "-'~-~#+x`~ 
.t:! 

2. 

3. 

cA( t - l )  (q + pt),~ {~e -~'~upqn-~=Fo(1 - x, 1 - u; - r - )  
• Aqz  

o ~ for x = 0 

{ ~e-X::kpqk+22Fo(1 - x ,  1 + k ; - x - ~ )  

qk for x = 0 

4 .  
(q + pt),~ ; eM(t - 1) c - M i ~ ' ~ " ) : F o ( 1  - x , - - r e x  M~P~q) 

5. 
(q + p t )  m ; (q + p t )  n 

| k 

7. 

8. 

n + m x  ) n p:~qn+mz-z 
X 

~!r(k)t, ~ 2 l~l-x.-mx:l-x-k;-~) 

o - ~ M "  k~ p l ,  kz; - -~)  q 2 f o ~  -- x, 

r(k=+=-1)__z k®+.-1 ~ 11 ~!r(k~) "P q ~ 1 ~ - z , l - n ; 2 - k - k x ;  -~-)q 

q" for z = 0 

M+k~+z z!r(M+kz+l)r 
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(iii) The Borel-Tanner distribution is a general LPD generated by the Poisson 

distribution given by the pgf g(t) = e a(t-x), A > O, and the degenerate 

distribution given by the pgf f ( t )  = t '~, n is positive integer. For further 

detail, see Haight and Brener (1960). • 

Some examples of the basic LPD are shown in table I. More examples 

of basic LPD are shown in table 2. Taking g(t) and ](t)  to be the pgf of 

one of the common power series distributions, namely Poissoa, binomial, or 

negative binomial, we have nine possible combinations for general LPD. Their 

corresponding pf as derived by Consul and Shenton (1972) by the Lagrange 

expansion is shown in the table 3. Some results in table 3 are expressed in 

hypergeometric function whose definitions are given below. 

Def ini t ion 3 The .~o-called ge~erahzed hgperge.ometmc fuuct~ou, denote.~ by 

pF~(at,.. .,a~,; b l , " . ,  bq; z), "is defined as the series sum 

a~k' " " a~ k' z~ 

where a [k] is the ascending factorials given by 

a [k] -- a(a + 1).-. (a + k - 1). 

Def in i t ion  4 The ordinary hypergeometric function, denoted by 2Fx ( a, b; c; z ), 

is defined as the series sum 

ab z a(a + 1)b(b+ 1) z ~ a(a + 1)(a + 2)b(b+ 1)(b+ 2) z 3 
1 + - .-~.  + c(c + 1) 2! + c(c + 1)(c + 2) a! + " "  

For more information on hypergeometric function, see Slater (1966). 

More examples of the LPD pf (:an be found in Consul and Shenton (1972). 

Even though the pf of some LPD, as in table 3, are comphcated by involving 

hypergeometric functions, we will see at the end of this article that they satisfy 

a simple recursion relation. And hence their compound LPD can be calculated 

recursively. 
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2.2.1 L ink  of L P D  to  queues  and  i n s u r a n c e  

Consul (1989) described sever'M chance mechanisms generating GP distribu- 

tions. Similar reasoning can be used to show a link of a LPD to some practical 

chance mechanism that produces some real data, in particular some insurance 

data. The most important two mechanisms mentioned in Consul (1989) axe (i) 

Galton-Watson branching process and (ii) the queueing process. Consul (1990) 

used Galton-Watson branching process arguments and modeled the distribu- 

tion of injuries in auto-accidents by GP distribution which is a member of 

general LPD. Islam and Consul (1992) used similar logic to model automobile 

claims by a member of LPD, namely Consul distribution. Similar reasoning 

can be used for some other members of LPD, namely GNB distribution, for 

modeling purposes. 

Ct~nsul and Sh~!nton (1973) haw~ shown that the number of customers 

s~!rved in any busy p~rriod t~la cuuntcr will b~ a rnudom variable having a 

LPD. In an actuarial application, Gerber (1990) used this result and linked 

the GP distribution to the ruin model. 

3 Lagrange (a; b) family 

3.1 Definit ion of  (a; b) f a m i l y  

We have defined the class of Lagrange distribution. This class contains a large 

number of distributions. Of which, only a few axe shown in table 1, table 2, 

and table 3. Our intention is to study only a subclass which was determined 

by (a ;b )  family. 

P'anj~'r (1981) introduc~d a cla.s,s ~,f discrete claim frequency distributions 

who~c pf ~atisf'y the: t'oUuwing first urder difference equatiun: 

p,.,=(a+b)p,,_l for n = l , 2  . . . .  ,c~. (3.6) 
n 
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Sundt and Jewell (1981) extended the class to a larger class whose pf satisfies 

the following first order difference equation. 

b 
p ,  = (a + - )  p ,_ ,  for n = r + l , r  + 2 , . . .  , oo (3.7) 

n 

where r is a non-negative integer, 

Hence we have the following defirition of a family of discrete distribution 

whose pf satisfies the above first order difference equation. 

Def in i t ion  5 The class of  discrete distribution whose pf  satisfies the first or- 

der difference equation (3.7) will be called the (a, b) family,  where a and b are 

bott~ .~uitable co~,.~ta'l~t,~. 

In the literature, this family with r = 1 is popularly known as "'(a, b) class". 

For arbitrary r, we will call it "general (a, b) class". The family of frequencies 

given by Panjer (1981) is a subclass of the (a,b) class with r = 0 and is called, 

in the actuarial literature, the (a, b, 0) subclass. The subfamily with r = 1 and 

Po = 0 is called, in the literature, the (a,b, 1) subclass. 

Sundt and JeweU (1981) showed that the only non-degenerate members of 

(a, b, 0) subclass are Poisson, binomial, geometric and negative binomial. The 

pf, pgf, and possible values of a and b in terms of the parameters of the dis- 

tributions of this subclass are shown in the table 4. The members of (a, b, 1) 

subclass include logarithmic distributions, extended truncated negative bino- 

nfial (ETNB) distributions, truncated Poisson, truncated binomial, truncated 

g~:tml~:tri(:, and trul,:ated negative binomial and zer()-modified mass of these. 

In addition (a,b, 1) subclass includes another family of distribution with pgf, 

p(z)  = 1 - (1 - z) •, 0 < a < 1. Since this class has an infinite mean and, in 

fact, infinite moments of all orders, this distribution is not of much interest in 

insurance contexts (see Punier and Willmot (1992) p-250). The pgf and pf of 

the (a, b, 0) subclass are shown in table 4 and will be used later in this article 

to find pgf and pf for a basic LPD. 
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Table 4: T h e  p g f  o f  (a,b, 0) class  o f  c l a im  f r e q u e n c y  

Nanl(, I r~tlig,/~ 

Poissou [0, oo ) A" e-  ~ 

Binomial [0, N] 

P- l Pgf 

,) N 0"(1 - O) ~ - "  
~z 

Geometr ic  [0, co) (1 - p)'p~" 

Negative [0, c~) F(n  + r)  t 1 
Binomial r (~)n!  ' "  - P)'P'* 

eA(t - l) 0 A 

0 (1 - 0 + Or) N ~ 

1•  p 0 

( ] ~ / ~ ) "  p (r  - 1)p 

Sundt  (1992) in t roduced a class of discrete claim frequency distribution 

whose pf satisfies the following higher order difference equation. 

m bi 
t',, = ~-~(a,+ - ) p , , _ i  f o r n = r +  1 ,7"+2 . . . . .  c~ (3.8) /l a=| 

where r is a non-negative integer while m is a strictly positive integer. With  

the convention that  p,~ equals zero for n < 0. Hence we have the following 

definition. 

D e f i n i t i o n  6 The class of discrete distribution whose pf  satisfies the m - t h  

order difference equation {3.8) will be called Sundt's ( a ; b )  family where a 

and b are both suitable vectors of m constants. To emphasize the value of r 

sometimes this family will also be called (a ;  b; r)  family. 

By definition, two pgf f ( t )  and g(t) with g(0) ¢ 0 are needed to generate 

a Lagrange PDF.  If pgf f ( t )  and g(t) bo th  belong to a particular family of 

distributions, they will define a subfamily of Lagraage PDF.  Heuce we have 

the fbllowilag definition. 
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Def in i t ion  7 Let the pgf's f ( t )  and g(t) belong to Sundt's (a ;b )  family with 

g(O) # O. We will call the family of Lagrange PDF generated by them as the 

L a g r a n g e  (a;b) fami ly  

Note that the (a; b) family contains the (a, b) family since the second is a 

particular case of the first for m = 1. 

3.2 Probability generating function of (a, b) family 

The probability generating function of the (a, b) class is given by the following 

theorem. 

The or e m 3.1 For members of the general (a, b) class, the pgf, P(z),  is given 

by the differential equation 

- -  - - -  n . - ( a  + ) p n - ,  z ' * - ' .  ( 3 . 9 )  P' (z) 1 - az 1 - az ,,=l 

P r o o f  : First rewl'it¢: (3.7) in the fbrm 

np,, = [a(n - 1) + (a + b)]p,,-t 

Then multiply both sides by z n-1 and sum over n = r + 1,r  + 2 , . . . oo .  On 

simplification we get the result. o 

Note that,  from the general results, we can easily get the pgf for (a, b) class 

and for its two subclasses. Taking r = 1, we have the pgf for (a, b) class as 

P(~) 

,_o ~'-V' _ [p,-(=+b~,,0 [ ( ,-. ~ ]  ,-.=1 a+b ] 1 -  ~ z - , , . )  ] 

] [1- eb,.-,,] for 

(3.1o) 

a = O  

For (a,b, 1) subclass with p0 = 0, the pgfis given by 
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P(~) 

1 - a  ° Pt  _EL. (1+ o.)-o+b 

eb ( ' - x ) (1  -4- ~) - ~ for a : 0 

For 7' = II. P(z)  satisfies ttw simple differentiM equation 

(3.11) 

P'(z) - a + b  P(z) (3.12) 
1 - - a z  

and hence the pgf for the (a, b, O) subclass is given by 

.+b 
1 - a  a o#o 

e b(*-l) for a = 0 

P(,) (3.13) 

For a < 0, a = 0 ,  and 0 < a < 1, P(z) becomes pgf of binomial, Poisson, 

and negative binomial distributions respectively. Note that  for the (a, b, 0) 

subclass, 

and 

PO 

e -b ~ r  a = O  

(a + b)(1 - a) ~'~ 

be -t '  f o r  a = 0 

while for the (a, b, 1) subclass, 

po = 0 
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and Pl  z 

k 1-1~-o)~ ] 

be-b 
f o r  a ~- 0 

and p,  is given by (3.7) for all n > 1. The above initial values will be required 

later in this article when we generate recursions for LPD. 

Obviously all members in the (a, b, 0) subclass which are truncated at zero 

are members in the (a, b, 1) subclass. Since the (a, b, 0) subclass is the simplest, 

the subsequent results will, at first, be derived for that class and comment will 

follow, if necessary, for the other subclasses. 

Katz (1963) considered a family of discrete distributions, known as Katz 

family, which has pgf 

1 - ~  
P(z) = ( ~ )  (3.14) 

It is obvious that a < 0, c~ --- 0, and 0 < a < 1 give rise to binomial, Poisson 

and negative binomial distributions. In fact, the Katz family is identical with 

our (a, b, 0) subclass. In the rest of this article, we will find suitable recursions 

for compound Lagrange distribution for the (a; b; 0) subfamily. 

3.3 Probabil i ty generating function of  Sundt's  (a;b) 

family. 

Having previously defined Sundt's (a; b) family, we have the following generM 

theorem for its pgf. 

T h e o r e m  3.2 For member,~ of Sundt's (a; b) class, the pgf, P(z),  satisfies the 

(hjff:'re~tml ,:q ~a/.,m 
rn 

P'(z)(1 - ~ aiz') 
i = l  
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m ) 
~ ( i a i  + bi)z'-iP(z) + ~ n p,~ - ~'~(ai + b_i) p,~-i z '~-' 
i=1 i=1 n 

P r o o f :  

First  multiply both sides of (3.8) by nz "-l. Then sum over n and simplify, 

and the results follows by rearrangement .  [] 

The  pgf is given by simple integration. In particular,  if' (1 - 2-~i=1 . . . .  aiz t') has 

m distinct non-zero roots whose reciprocals are a l ,  a2, . . . , a , ~  such that  

rrl 

( 1 -  _- 1 I ( 1 -  
i=1 i = l  

Y']i~I biz'-I =- ~ /5i (3.15) 
and (1 - Zi'_-i ai zi) i=l (1 - oa ' z )  

then for r = O, the pgf  satisfies the differential equation 

e ' ( z )  X%i(ia,  + bl)z ' - '  

P(z) (1 - E~%I ai zi) 
(3 .16 )  

and hence the pgf is given by 

" l  4 ~1 
-, ( ~ ) < , ,  

[ i = l  \ 1-o~il ) 

PCz)  = 
¢ 

~t~"=' ~ " ' - ' t  when a, : 0 for ~ i 

Note tha t  for m = 1, ai - a and fll -- b, and then P(z) becomes identical 

with the pgf of (a, b, 0) family, the results derived earher. 
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3.4 Probabil i ty generating function and pf  of the La- 

grange (a; b) family 

3.4.1 P G F  for  t he  bas ic  L P D  (a ;b )  f ami ly  

Let g(t) be a pgf of a member  of Sundt 's ( a ;b )  family. From the definition 

of the basic LPD, we need go = g(0) ~ 0. It will be clear in the following 

theorem that to get a suitable explicit functional equation of a pgf of a basic 

LPD, we must need that the ratio of g'(t) and g(t) be free of g(t) and must 

be the ratio of polynomials in t only. This is possible when g(t) is a pgf of a 

member  of Sundt 's ( a ;b )  family. Hence we have the following theorem. 

T h e o r e m  3.3 Let g(t) be the pgf of a discrete pf  of Sundt's (a;  b) family with 

go > O, then the pgf of basic LPD, ¢(u), satisfies the following first order 

ordinary differential equation: 

( ) ) u¢'(u)  1 - ~-~[(i + 1)a, + bile(u) i = ¢(u) 1 - ai¢(u) i (3.17) 
~ : 1  Z : I  

P r o o f  : Since g(t) belongs to the (a;  b; O) family, we have from (3.17) 

g'(t) E ~  (in, + b,)t i-1 
g(t) 1 - Ei~l a, ti 

and by definition we have 

¢(~) = ~g(¢(~)) 

Taking logarithm of both sides and differentiating with respect to u we have 

¢'(~) g'(t)u¢'(~) = 1 
" ¢ - ~  g(t) 

¢'Cu) ~i~i (ira + b,)t i-1 u¢'(u) 1 
OI" 1 / - -  - -  

¢(u) (1 - EIZI ai t~) 

where t = 4~(u). Hence cross multiplying and simplifying we have the desired 

results. [] 
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C o r o l l a r y  3.1 For a basic LPD generated by a member of the (a ;b)  class, 

the pf  satisfies the following recursion. 

1 9 o = 0  

p: = C (the constant of integration in (3.18)) (3.18) 

Pn 

m I'L:=.I ( 1  - o~,) ° ,  

' l ' t - -  1 i : 1  y : l  

for n = 2 ,  3, . . . , ~  

where cq,fl~ 's are given by (3.17) { 

for all m = 0 
(3.:9) 

~ ( t  ' * ( / + l  - 2~ ,P,, ) (3.20) 

where 
n - - I  

p:(i+,) = ~pup . i_u  for i =  1, 2, . . . , m  
y=l 

P r o o f  : Equate coefficients in (3.18) and rearrange to get (3.21). 

initial values follow from the pgf P(z)  derived earlier. 

The 

[] 

Note that the calculation ofp~ (i+1) does not need p ,  for i > 1, since p0 = 0. 

Obviously, for large m, the scheme loses its practicality. But for m = 1, the 

recursions is simple as is shown in the following corollary, and it works for 

some popular distributions as mentioned in the examples followed. 

C o r o l l a r y  3.2 For a basic LPD g~7~c'rated by a member of (a,b, 0), th~ pf 

satmfies the following recursion. 

p0 = 0 

J (:-~)~ for ~#o 
Pt 

e -b for a = 0 
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1,,, : [ { 2 , , + b ) u - ~ , j p ~ p , , _ ~  f , , , -  ? , , = 2 .  3 . . . . .  

P r o o f  : The results follow from the previous corollary putting i = 1. [] 

Examples: 

(i) Borel distribution: 

(ii) Consul distribution: 

The results could be verified for the basic LPD shown in table 1. 

3.4.2 PGF for the general LPD (a; b) family 

Let g(t) be a pgf of a member of (a;  b; 0) family and f(t)  be a pgf of a member 

of ( a ;b )  family. Then the pgf of general LPD generated by g(t) and f(t) is 

giw~n by 

¢.(u)  = f-~p~,u" (3.21) 
n~O 

= / ( ¢ ( . ) )  

Where ¢(u) is the pgf of basic LPD. Note that p~, could be calculated recur- 

sively in a two step recursion, namely 

Step I : ¢(u) = E,~°°=o p,, u" where p~, is calculated by the recursion (3.21). 

Step II : p~ could be calculated using Panjer's recursion, since f(t) belongs to 

(a;  b) family. 

Thus we have two independent methods of cMculating the pf for the La- 

grange (a ;b)  family. Tile ill'st method is the direct cMculation by using the 

Lagrange expansion as explained in section 3.2 earlier in this article. The sec- 

ond method is the two step recursioa as explained above. Both of the methods 
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have their merits and demerits. The main advantage of the second method 

is that it helps to derive a recursion for the compound (a; b) family. In the 

following section, the idea of two step recursion is exploited to find a recur- 

sire way of calculating compound Lagrange PDF for Lagrange (a;b) family. 

It, St~p I. w,' will tim[ t~'~'ur.~i¢,n for compound basic LPD with the help ~t" 

ax, auxiliary sequeztce asld m step II, we will use Panjer's recursion to finaily 

calculate pf for the compound Lagrange (a; b) family, 

4 Compound Lagrange (a; b) family 

Let X be a non-negative integer valued random variable, namely claim severity, 

with rn= = P(X = x) where x is non-negative integer. If the claim frequency 

follows a distribution of Lagrange (a; b) family then the total claim distribu- 

tion follows a compound Lagrange (a; b) family. The pgf of a compound basic 

LPD is given by 

¢(u) = ¢(Mx(u)) 

where Mx (u) = ~ m,u ~ is the pgf of the random variable X. By definition the 

pgf ~f the Lagzang¢: distribution, ~(u) shuuld satisfy a diffez~aLtiM equation 

and hence we have the following theorem. 

T h e o r e m  4.1 Let the pgf g(t) belong $o the (a;b; 0) family. If ¢(u) is the 

pgf of a compound basic LPD generated by g(t) and Mx(u), where Mx(u) is 

a pgf of a non-negative integer valued random variable X, Shen ~b(u) sa$isfies 

the following differential equation. 

¢'(u) 1 - ~-~[(i + 1)a, + b,]¢(u) ~ 
i = l  

P r o o f  : By definition 

= ¢(u) { 1 -  ~ Mx(U)Mx(u) (4.22) 

~(u) = Mx(~)g(~(u) )  
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Taking log and differentiating both sides with respect to u we have 

~b'(u) g'(~b(u))¢,(u ) _ Mx'(u) 

¢(u) g(¢(u))  Mx(u) 

Substituting the value of g'/g we have 

' " i Mx'(u) -~, (u) E~=~( (,, + b~)¢(~,)'-~¢,(u ) 

Now by cross multiplying and rearranging, we have the required results. [] 

Note that for Mx (u) = u, (that is X is degenerate at one) ¢(u)  is identical 

with ~b(u) and this theorem reproduces the previous theorem. Now by equating 

the coefficients, we have a recursive relation to calculate compound basic LPD. 

Hence we have the following theorem. 

T h e o r e m  4.2 Let the pgf g(t) belong to the (a ;b ;0 )  family and ¢(u)  = 

oo i ~i=o aiu be the pgf of a compound basic LPD generated by g(t) and Mx(u), 

where Mx(u) is a pgf of a non-negative integer valued random variable X.  

Also let 

uMb(u) - ~_,~,u' = 7r(u) 
Mx (u) i=o 

then the compound pf c U can be calculated recursively using 

{ ' } 
a j  = j - h - E , ~ I [ ( i  + 1)a, + b,]j(~o 

~ 1  j - 1  "i ""  J . , ( i+1)11 

-- 11=I s r ~ l  i = l  IJ=O 

(4.23) 
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for j = h + l ,h  + 2, . . . , eo, and 

the initial value is given by 

ai --= 0 f o r i < h  

ah = mhg(O) for h > 0 

and for h = O, the initial value is given implicitly by 

no = m o g ( a o )  

where ~, can b~, calc'~dctted "recur.~ively first uszng 

(i = __1 (i + h )mi+ h -- E ( imi+h-J  ' 
mh j=o / 

i = O, 1, 2 . . . .  

~o = h 

h = ~ i n  {~  : , ~  = P ~ ( X  = ~) > Ot 

and 

(oCt~{i+~) = nai" .(i+l) 

I O for h = O  

0 for h > O  

. ~ i - lh  .i for h > O, n 2...,y=h OtllOtj-y 

which is independent of aj. 

(4.24) 

and j < (i + 1)h 

and j > ( i + l ) h  

P r o o f  : The results follows from previous theorem just by equating coef- 

[] ficients and rearranging. 
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Note that  for a family of Poisson type with a = 0, the above recursion to 

calculate % simplifies to 

o~j = 
{ 1 } 

j - h - j Ei~=l blalo 

" i=1  tt=l y=l  

for j = h + l , h  + 2 , . . . , o o .  

C o r o l l a r y  4.1 For g(t) belonging to (a, b,O) family, % could be calculated 

rcc~tr.~ively by 

{(2a + b) j-1 j J .z 
Eu=t ya ,%_,  + Ey=, ~ % - ~  - a Eu:o ~uaj-y} (4.25) 

% =  j - h - ( 2 a + b ) j a o  

for  j = h + l, h + 2, . . . , oo, and 

where initial values and ~i is calculated as in the previous theorem and 

¢0~;  2 = h ~ ;  2 

0 for h=O 

0 for  h > O ,  a n d j < 2 h  

j - h  h ~u=h au%_u for  h > O, and j >_ 2h 

wh'tch is independent of %.  

P r o o f  : The results follows from previous theorem just  by taking i = 1. 

Note tha t  ct~l_ v = %_y. [] 

Also note tha t  for a Poisson family, a = 0, and the above recursion to 

calculate a i simplifies to 

j-x j 
{bE~x ya,,,~j_, + E,=x ~,aj_,} (4.26) 

% = j - h - bjao 
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f o r j  = h +  1,h + 2 , . . . , o o .  

By choosing suitable values for a and b from table 4 we can have recursion 

for the compound Borel distribution, the compound Consul distribution or the 

compound negative-delta distribution. Finally we are in a position to get two 

step recursion for compound general LPD. Let t~.(u) be the pgf of a compound 

general LPD generated by the pgf's f(t) ,  g(t), and Mx(u), such that 

¢.(u) = f(¢(=)) 

where ¢(u)  is as in theorem 3.4.1, then the pf of compound general LPD is 

given by the following theorem. 

T h e o r e m  4.3 Let the pgf g(t) belong to (a ;b;  0) family, the pgf f(t)  belong 

to (a;  b) famdy ,L~td ~/,.(u) = Z,~=0 v,u' be the pgf of a compou,td general LPD 

generated by f(t) ,  g(t) and Mx(u), where Mx(u) is a pgf of a non-negative 

integer valued random variable X.  ALso let 

_ 

Mx(u) ~=o 

Then the compound p/ vj can be calculated recursively by the following two 

step recursion. 

Step I 

Step II 

: tb(u)= ~,~=oct, u" where ct, is calculated by the theorem 3.,4.1. 

: Compound general LPD given by ¢.(u)  oo --- ~i=0 vlu could be calculated 

by Panjer '~ recur~zon since g,.(u) = f(~,~--o a,,u"). 

E x a m p l e s  

Generalized negative binomial (GNB)  distributions : Let N, a claim 

count variable, be a GNB random variable and Z~ be the i-th claim amount 
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discrete random variable. Then the total claims variable 

S=ZI +Z~+...+ZN 

is a compound GNB random variable. Our aim is to calculate the pf of S 

using the fact that a GNB random variable is a compound binomial sum of 

Consul distributions. Under the usual assumptions of Z1, Z~ . . . . .  ZN are i.i.d. 

for given N and the distribution of N is free of Z~,s, the pgf of a compound 

GNB distribution is given by 

as( , , )  = 1 - 0 + oao(,~) (4.27) 

were Go(u), the pgf of a compound Consul distribution, is given implicitly by 

Gc(-)  (1 0 + OGc( . ) )"  = - G z ( u )  (4.28) 

and Gz(u) is the pgf of claim amount distributions. Our aim is to use (3.36) 

to find a recursion for compound Consul distribution and then use (3.35) 

to evaluate a compound GNB distribution using Panjer's (1981) results for 

compound binomial. 

Let us take logarithm of both sides of (3.36) and differentiate with respect 

to u. We have 
c'~ ( u ) /3 O C c ( ,, ) c 'z  ( ,, ) 

- + - -  ( 4 . 2 9 )  
Gc(u) I -  e + 8Gc(u) Gz(u) 

Rearranging we have 

UG'c(U){1 - 8 + 8 ( 1  - 13)Gc(u) } Cc(~){1-e+eCc(~)} .C~(~) 
C z ( ~ )  

( 4 . 3 0 )  

Let us define the sequences {a.} and {r.} given by 

Co(-) =~o~u" 
n=O 

oo  

, , c ~ ( , , )  _ E,'.,," 
and Gz(u) .=o  

(4.31) 

(4.32) 
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The coefficients r ,  depend solely on the known probability function (pf) of  

Z. Let r n , ~ = P [ Z i = n ] ,  n = O , 1 , 2 , . . . ; a n d  

m o  ~ m l  : ' ' '  : m h - i  -~- 0, m h  ~ 0 

~ W~ ~ h .~V¢ '  

Gz(u)  = re ,u"  -- u h m,+hU" (4.33) 
n = h  n=tO 

Hence, from (3.40), cancelling u h from both numerator  and denominator  

on the left hand side and transposing the denominator  to the right hand side 

we have 

(n + h)mn+hU n : mn+hU n rnu n 
n = 0  ~.n:O ) k n - - 0  ) 

Now comparing coefficients of  u" we have 

n 

(n + h)m~+h = ~ r j m , , + h _ j  for n = 0, 1 , 2 , . . .  
j=O 

Then  the sequence {rn} can be evaluated recursively as follows: 

1{ } 
r n  = - -  ( n  + h)rc~,n+h -- r j r a ,  n + h _ j  

?ll'h 1=0 

for n = 0, 1,2 . . . .  (4.34) 

with h = m i n { j  : mj > 0}. Note that  r0 = h. 

Having evaluated the sequence {r,,}, we are in a final stage of  evaluat- 

ing the desired sequence {an}, the compound Consul probability distribution. 

Compar ing the coefficients of  u n in (3.38) we have 

n ~ n *2 
( 1 - O ) n a , + O ( 1 - ~ ) ~ _ ~ j a j a , _  j = ( 1 - 0 )  ,.-, a j r , _ j  + 0 y ] ~ j  r,,_j(4.35) 

j=o j=o j=o 

Hence rearranging we have the recursion in its most  general form : 

E j=o  [(1 - 0)aj  + ~ j = l  
O~ n : 

- h ) ( 1  - 0 )  - - 1) 0 

for n : h + l , h + 2 , . . .  (4.36) 

where a~ ~ is the second order convolution of a,,. 
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Now the initial values a0, a x , . . . ,  ah will be determined from the definition 

of Gc(u) .  Since by definition, 

w{t [lave 

ol,,u '~ = 1 -  O + O ~ a,~u '~ m,.,u" 
n=O / 

Now comparing the coefficients of u" we have for h > 0 

a 0 = a l  . . . . .  ah-1 = 0  and a h = ( 1 - - 0 ) ~ m h  

For h = 0, the value of a0 is given by the implicit relation 

a0 = (1 -- 0 + Oao)~mo 

Even though a0 does not have an explicit expression in m0, 0 and ~, it has a 

unique value given by the above relation where uniqueness is guaranteed by 

the GNB distribution parametric restriction namely Off < 1. 

Finally, the compound GNB distribution given by Gs(u)  = ~ v j u  j = (1 - 

0 + 0 ~,~,:(j ,~,,'u")k is ~waluated in the second step by apphcation of Panjer 's  

recursion fbr compound binomial distributions. In our case it is given by 

0 J 
vj = 1(1 - 0 + Oao) ~--~{(k + 1)i - j } a i v j - i  

i=1 

with the starting value P ( S  = O) = Gs(O) = v0 = (1 - 0 + Oao) k. • 

Note that  a similar recursive scheme for compound generalized Poisson 

distributions were derived by Sharif and Panjer (1995). 

5 C o m m e n t s  and further research 

Our two step recursive scheme for compound Lagrange distribution is simple. 

Computation'aLly it is more efficient as compared to some other schemes found 
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in the literature for some specific members of the family, such as, Goovaerts 

and Kaas (1991), and Ambagaspitiya and Balakrishnan {1994). Also our re- 

cursion is a generalized result in the sense that h could be any non-negative 

(including zero). Our approach could be easily used to write down exact re- 

cursive relations for all the members of Lagrange (a; b)-family, in particular 

for all the members shown in the table 1, table 2 and table 3, to evaluate their 

compound distributions. 

The gener',d Lagrange probability model was origin-,dly developed in the 

field of refiabifity ~pt:ciMly ill qucueing theory. It h~d its application ill filL(l- 

ing the distribution of a busy period in a queueing model. The generalized 

Poisson model, a popular member of the family, has been used in several other 

statistical research areas most specifically, biostatistics. Consul (1990) used 

it to model the distribution of injuries in auto-accidents. Consul (1989) de- 

scribed several chance mechanisms generating this distribution. An actuarial 

application of the GPD can be found in Gerber (1990) where it is linked to 

the ruin model. 

Because of the peculiarity of being embedded in a Lagrange expansion, 

the Lag'range distributions have not been very popular. We believe that our 

through treatment of the distribution and our efficient algorithm to calculate 

its pf and its compound pf might entice more actuaries to use the Lagrange 

distx'ibuti(m in ~ct, um'iM research. 
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