ACTUARIAL RESEARCH CLEARING HOUSE
1998 VOL. 1

Stepwise recursions for a class of compound Lagrangian
Distributions

A. H. Sharif and H. H. Panjer

ABSTRACT

In this paper, Lagrangian distributions are reviewed and some of their prop-
erties are studied. Recursive methods are proposed to calculate compound
Lagrange distributions. Some examples for a sub-family of Lagrangian Distri-
butions and its compound distributions are studied.
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1 Introduction

Consul and Shenton (1972, 1973) introduced a class of discrete probability
distributions and called it the class of Lagrangian distributions. The particu-
lar name originates from the fact that these probability functions are derived
from the Lagrange expausion of a function f(t) as a power series in u where
ug(t) = ¢t and, f(t) and g(¢) are both pgf’'s of certain discrete distributions.
From a mathematical functional point of view, the Lagrange expansion is a
generalization of Taylor’s expansion. For g{t) = 1, a Lagrange expansion
becomes identical with a Taylor's expansion. This class consists of many fam-
ilies; for example: generalized Poison, generalized negative binomial, Borel-
Tanner and, Haight distributions. Kling and Goovaerts (1993), and Sharif
and Panjer (1994) have derived three step recursions for compound gener-

alized power series distributions(GPSD). Goovaerts and Kaas (1991} defined



a two step recursion to calculate compound generalized Poisson probability
functions. Goovaerts and Kaas (1991) used the fact that generalized Poisson
distributions is a compound Poisson distribution with the Borel distribution.
The Borel distribution was derived from another Poisson distributions pgf us-
ing the Lagrange expansion. The main motivation of this work came from
Goovaerts and Kaas (1991). Their idea is explored and generalized for a wider
class of distributions which includes generalized Poisson distributions as a par-
ticular case Detail derivation and discussions are given in an cxample at the
end of this article.

In this article, we first investigate the definition of a class of Lagrangian
distributions and then introduce a recursive way of calculating their probability
functions and their compound probability functions for a suitable subclass,

namely the (a;b) subclass (defined in section 3.3) of the Lagrangian family.

2 Definitions of the Lagrange distribution

In this section we will define, as in Consul (1973), two different kinds of La-
grangian probability distributions (LPD), namely (i) a basic LPD, and (ii) a
general LPD.

2.1 A basic LPD

Definition 1 Basic LPD : Let g(t) be a pgf of a discrete random variable such
that g(0) # 0, then the transformation

t = ug(t)

defines, for the smallest non-zero root of t, a new pgf t = $(u) whose ezpan-

sion in powers of u i3 given by the Lagrange’s ezpansion as

t = ¢(u)
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- x5 [(%) (g(t))'] (21)

z=1 t=0
The above pgf ¢(u) will be referred to as the basic Lagrangian pgf and the

discrete distribution represented by it, namely,

HE M) o = € N
PriX =z = (2.2)
U for & =10

as the basic Lagrangian probability distribution ( basic LPD) defined on N, the

set of positive integers. Equivalently, we can write

ig;z—x z €N

0 for =0

where g(t) = 320 g;t’ and g]™ is the n-th convolution of g;.

Note that, by definition, all basic LPD’s must have tails extending to in-
finity, and Pr(X =0) = 0.

Examples:
(1) The Borel distribution is a basic LPD generated by the Poisson distribution
given by g(t) = ¢**1 g > 0. The pf of Borel distribution, as derived from

(3.2), is
e_’\z(/\:l:)z’l

z!
For detail derivation, see Borel (1942). A practical and easier derivation is in
Tanner (1961). n
(1) The Haight distribution is the basic LPD generated by the geometric dis-
tribution given by g(t) = ¢(1 — pt)~! where p+ q = 1. A generalization of this
results could be found in Haight (1961) and is shown in table 2. |
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{(iii) The geometric distribution itself is a member of basic LPD and is gen-
erated by the simple Bernoulli distribution given by g(t) = p + g¢t, where
P+ g = 1. Note that ¢t = ug(t) = u(p + gt) gives t = up(1 — qu)™! which is a
pef for a geometric distribution. [ |
(iv) The Consul distribution:

PriX =2) = l( e )(-ﬁ-)PJU—GV“,xGN (2.3)

N I-6
where m > 1 and integer and 0 < 8 < 1, is a member of basic LPD generated
by the binomial distribution with pgf g(t) = (1 — ¢ + 6t)™. The pfin (3.3} is
derived using (3.2) by taking g(¢) as the pgf of a binomial distribution. For
detail derivation, see Islam and Consul (1992). It can also be derived by taking
g(t) = (1460~ 6t)~™ which is the pgf of a negative binomial distribution. Note
that for m = 1, a Consul distribution is a geometric distribution. |
{v) Another important distribution is the pf of the first visit to +1 (i.e. first
passage through 1) in n—th step in a random walk started at the origin. It is
a basic LPD generated by g(t) = p + qt?, where p + ¢ = 1. The substitution,
t = ug(t), provides the pgf
1 - /(1 — 4u’pq)
2qu

which is samc as (3.6) in Feller (1968, page 272). .

tu) =

Having defined the basic LPD, the idea of generating new distributions
using the Lagrange expansion could be taken one step further. Let g(t)
be a pgf of a nonnegative integer valued discrete random variable such that
g(0) # 0. As in the basic LPD, consider the transformation

t = ug(t)
sothat w = 0for ¢t =0 and u=1for t =1 We can expand ¢ as a

series in powers of u with the help of the Lagrange expansion. Hence for any
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well-behaved function which is analytic on and within a given contour of ¢ on
{u,t) plane, f(t) can be expressed as a series in powers of wu. Therefore we

have the following definition in the next subsection.

2.2 A general LPD

Definition 2 Let f(t) and g(t) be pgf's of discrete random wvariables defined
on nonnegative integers, such that g(0) # 0, then f(t), with the transformation
t = ug(t), could be ezpanded in series in powers of u and is given by the

Lagrange’s expansion as

$u(uw) = Flt(w)) (2.4)

- 10+ 25 (%) o)

!
z=1 z: t=0

The above pgf $.(u) is defined as the general Lagrangian pgf and the discrete

distribution represented by it, namely,

Pr(X =0) = f(0) {2.5)
and Pr(X=z) = .:Eli(g—t) [(g(t))’g—t-f(t)] i z € N

as the general Lagrangian probability distribution ( general LPD) defined on

N . the set of positive integers.

Note that, by definition, £(u) is a pgf of a basic LPD and hence ¢, (u) is a
pef of a compound distribution. For f(£) = ¢t (equivalently having total mass
at point one), general LPD corresponds to a basic LPD; for g(t) = 1 (having
total mass at point zero), u becomes identically equal to £ and hence ¢(u)

identically matches with parent pgf f(t). For f(t) = t" (equivalently having
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total mass at point n), the general LPD becomes identical with the n—th fold

convolution of basic LPD.

Table 1: The pf of some basic Lagrange Distributions

S1. No. Description g(t) ft) pf of some basic LPD
1. Borel At —1) t Q’_‘%@X_‘_‘
2. Consul (1-0+6)™ ) ¢ ™ M%ﬂ
r-—1

Bernouli delta

3. (1 -0+6t) t (1 - g)pe!
(Geometric)
Neg.bin-delta 1—~ r

4. ( = E]) t E(zii”_:‘z—_ll(l _p)rzpz—l

(Haight) P o)
5. Geom.delta (IIT-}%) t 53(%‘;;)(1 — p)*p=-!
Examples:

(1) The generalized Poisson distribution(GPD) is introduced by Consul and
Jain (1970). For extemsive study and literature on GPD, see Consul (1989).

GPD is a general LPD generated by the Poisson distribution given by the

ng .(]“) _ (.A(l—l?»

flt) = U E s,

A > 0. and the Poisson distribution given by the pgf

(i1) The generalized negative binomial (GNB) distribution is introduced by
Jain and Consul (1971). For its characterization see Consul and Gupta (1980).
A GNB distribution is a general LPD generated by the binomial distributions

given by the pgf’s g(t) = (g+ pt)™ and f(¢)

p > 0, and m and n are positive integers.
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Table 2: The pf of n-th convolution of some basic Lagrange Distribu-

tions
o pf of n-th convolution
Sl. No. Description g(t) flt)
of some basic LPD
1. Borel-Tanner | et —1) | » %}f—.).‘u
Binom.delta
mx met+n—z_ r—n
2. (Consul) (g+pt)™ | " ( ) 2&)_;__L_
T—n
Bernouli.delta
z n g-n
3. (Geometric) (g+pt) | t" ( ) =g
zr—n
Neg.bin-delt: _ r
. EOEE () | e | BeEmmRa- g
(Haight) P
5. Geom.delta (ll:_—;%) A4 ‘"—I‘Ez-:"i)(l —-p)p"

z(z-n)(z
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Table 3: The pf of some general Lagrange Distributions

gty . f(t) pf of some general LPD
1. e/\(' - 1' A (H(f — l) #(6+ Az xrlr,A—‘lH+At)
2.

A1) (g4 pt)

Pz e npg" L Fo(l — 2,1 —n

n

z! ' AgqT

for z =20

k

. Alt—1) . (11__—_1%)

Qi o0 kpght?, Fo(l — 2,1 + ki —£)

for z=90

* (g +pt)m ; eME—1)

M (Mg ~
e Mi——:—g!——leo(l -z, ~mz; #q)

(g+pt)™ ;5 (g+pt)"

n+mz

n x nN+mI—I

n+maz P4
z

oo (B8

PR Rl ~ o —ms 1 — z — k; _i)

E_M‘M'q"“‘zﬁ'o(l -z, kz; —§)

z!

np* g th L, Rl - 2,1 —n:2 —k — ke —5)

z=0

M T(kz+M+z+l) 2 Mikz
Mtkstz 2T(Mykz+1) P 9

340




(1i1) The Borel-Tanner distribution is a general LPD generated by the Poisson
distribution given by the pgf g(t) = =Y X > 0, and the degenerate
distribution given by the pgf f(t) = ¢, n is positive integer. For further
detail, see Haight and Brener (1960). n

Some examples of the basic LPD are shown in table 1. More examples
of basic LPD are shown in table 2. Taking g(t) and f(t) to be the pgf of
one of the common power series distributions, namely Poisson, binomial, or
negative binomial, we have nine possible combinations for general LPD. Their
corresponding pf as derived by Consul and Shenton (1972) by the Lagrange
expansion is shown in the table 3. Some results in table 3 are expressed in

hypergeometric function whose definitions are given below.

Definition 3 The so-called generalized hypergeometric function. denotes by
o Falar, -+, ap by, -+, by 2), is defined as the series sum
oud a[lk]...ag‘]i’i
k]
CRRSPEEY

k=0 b

where al® is the ascending factorials given by
all = ala+1)---(a+k—1).

Definition 4 The ordinary hypergeometric function, denoted by 2 Fi(a, b; ¢; 2),
s defined as the series sum

1+ abz a(a+1)b(b+1)22 + a(a+1)(a+2)bb+1)(b+2)2*
c 1! cle+1) 2! clc+1)(c+2) 3!

For more information on hypergeometric function, see Slater {1966).

More examples of the LPD pf can be found in Consul and Shenton (1972).
Even though the pf of some LPD, as in table 3, are complicated by involving
hypergeometric functions, we will see at the end of this article that they satisfy
a simple recursion relation. And hence their compound LPD can be calculated

recursively.
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2.2.1 Link of LPD to queues and insurance

Consul (1989) described several chance mechanisms generating GP distribu-
tions. Similar reasoning can be used to show a link of a LPD to some practical
chance mechanism that produces some real data, in particular some insurance
data. The most important two mechanisms mentioned in Consul (1989) are (i}
Galton-Watson branching process and (ii) the queueing process. Consul {1990)
used Galton-Watson branching process arguments and modeled the distribu-
tion of injuries in auto-accidents by GP distribution which is a member of
general LPD. Islam and Consul (1992) used similar logic to model automobile
claims by a member of LPD, namely Consul distribution. Similar reasoning
can be used for some other members of LPD, namely GNB distribution, for
modeling purposes.

Cousul and Shenton (1973) have shown that the number of customers
served in any busy period of a counter will be a random vanable having a
LPD. In an actuarial application, Gerber {1990} used this result and linked
the GP distribution to the ruin model.

3 Lagrange (a; b) family

3.1 Definition of (e;b) family

We have defined the class of Lagrange distribution. This class contains a large
number of distributions. Of which, only a few are shown in table 1, table 2,
and table 3. Our intention is to study only a subclass which was determined
by (a;b) family.

Panjer (1981) introduced a class of diserete claim frequency distributions

whose pf satisty the following first order difference equation:

b
pn=(a+;)p,._l for n=12,...,00. (3.6)

342



Sundt and Jewell (1981) extended the class to a larger class whose pf satisfies

the following first order difference equation.
b
p,.:(a-}-—’;)p.\_l for n=r+1,r+2,...,00 (3.7)

where r is a non-negative integer.
Hence we have the following defirition of a family of discrete distribution

whose pf satisfies the above first order difference equation.

Definition 5 The class of discrete distribution whose pf satisfies the first or-
der difference equation (3.7) will be called the (a,b) family, where a and b are

both suitable constants.

In the literature, this family with = 1 is popularly known as “(a, ) class”.
For arbitrary r, we will call it “general (a,b) class”. The family of frequencies
given by Panjer (1981) is a subclass of the (a, b) class with 7 = 0 and is called,
in the actuarial literature, the (a,b,0) subclass. The subfamily with » = 1 and
po = 0 is called, in the literature, the (a,5,1) subclass.

Sundt and Jewell (1981) showed that the only non-degenerate members of
(a,d,0) subclass are Poisson, binomial, geometric and negative binomial. The
pf, pgf, and possible values of a and b in terms of the parameters of the dis-
tributions of this subclass are shown in the table 4. The members of (a,b,1)
subclass include logarithmic distributions, extended truncated negative bino-
mial (ETNB) distributions, truncated Poisson, truncated binomial, truncated
geowetric, and truncated negative binomial and zero-modified mass of these.
In addition (a,b, 1) subclass includes another family of distribution with pgf,
plz) =1—-(1-2)% 0 <a <l Sioce this class has an infinite mean and, in
fact, infinite moments of all orders, this distribution is not of much interest in
insurance contexts (see Panjer and Willmot (1992) p-250). The pgf and pf of
the (a, b,0) subclass are shown in table 4 and will be used later in this article

to find pgf and pf for a basic LPD.
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Table 4: The pgf of (a,b,0) class of claim frequency

[ Name l range Pn pgf a b
[ =T T - j
Poisson | [0, 00) %;e“’\ Mt =1) 0 A

N
Binomial | [0, N} ( )0"(1—9)N-" (1—g+opn | g8 | (ML)
n

Geometric | [0, co) 1-p)yp" ]1—__—1% p 0

Binomial

Negative r 1-
(0, c0) ip'{;%?)(l—p)'p" (1= p | (r=Dp

Sundt (1992) introduced a class of discrete claim frequency distribution

whose pf satisfies the following higher order difference equation.
m b:’
P = Z(a. + =) pu; form=r+17r4+2...., oo (3.8)
=1 H

where 7 is a non-negative integer while m is a strictly positive integer. With
the convention that p, equals zero for n < 0. Hence we have the following

definition.

Definition 6 The class of discrete distribution whose pf satisfies the m—th
order difference eguation {3.8) will be called Sundt’s (a;b) family where a
and b are both suitable vectors of m constants. To emphasize the value of r

sometimes this family will also be called (a3 b;r) family.

By definition, two pgf f(¢) and g(t) with g{0) # 0 are needed to generate
a Lagrange PDF. If pgf f(t) and g(t) both belong to a particular family of
distributions, they will define a subfamily of Lagrange PDF. Herce we have

the following definition.



Definition 7 Let the pgf’s f(t) and g(t) belong to Sundt’s (a;b) family with
g(0) £ 0. We will call the family of Lagrange PDF generated by them as the
Lagrange {a;b) family

Note that the (a;b) family contains the (a, ) family since the second is a

particular case of the first for m = 1.

3.2 Probability generating function of (a,b) family

The probability generating function of the (a, b) class is given by the following

theorem.

Theorem 3.1 For members of the general (a,b) class, the pgf, P(z), is given
by the differential equation

/ a+b 1 ” b n—
Ple) -2 py = Lo von [pn S P
n=1

Proof : First rewrite (3.7) in the form
npn = [a(n — 1) + (a + b)] pa-i
Then multiply both sides by z"~! and sum over n =7+ 1,7 +2,...00. On

simplification we get the result. a

Note that, from the general results, we can easily get the pgf for (a,b) class
and for its two subclasses. Taking r = 1, we have the pgf for (a,b) class as

(1) ¥ - oot [1 - (1)
P(z) = (3.10)
dle-1) _ [ax;blm] [1 _ eb(z—n] for a=0

For (a,b, 1) subclass with py = 0, the pgf 1s given by
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a

i atd
(L) " 0+ &) -2
P(z) = (3.11)
eb==1)(1 4 21) — &L for a=

For v = (. P{:z} satishes the simple differential equation

, b
Plz) = 2% p(y) (3.12)

1—az

and hence the pgf for the (a, b,0) subclass is given by

P(z) = (3.13)

Fora<0, a=0,and 0 < a< 1, P(z) becomes pgf of binomial, Poisson,
and negative binomial distributions respectively. Note that for the (a,b,0)

subclass,

(1-a)
Po =
e? for a=0
and
(a+b)(1 - a)*"
P =
be~t for a=0
while for the (a, b, 1) subclass,
p = 0
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(!a+b!!1—uﬁ$—")
1-1-a)%F

{1"'5—4;} for a=0

—e—

and po=

and p, is given by (3.7) for all » > 1. The above initial values will be required
later in this article when we generate recursions for LPD.

Obviously all members in the (a, b, 0) subclass which are truncated at zero
are members in the (a, b, 1) subclass. Since the (a,b,0) subclass is the simplest,
the subsequent results will, at first, be derived for that class and commment will

follow, if necessary, for the other subclasses.

Katz (1963) considered a family of discrete distributions, known as Katz

famaly. which has pgf

Plz) = (1—“)5 (3.14)

1-a:z
It is obvious that a < 0, a = 0, and 0 < « < 1 give rise to binomial, Poisson
and negative binomial distributions. In fact, the Katz family is identical with
our (a, b,0) subclass. In the rest of this article, we will find suitable recursions

for compound Lagrange distribution for the (a;b;0) subfamily.

3.3 Probability generating function of Sundt’s (a;b)
family.

Having previously defined Sundt’s (a; b) family, we have the following general

theorem for its pgf.

Theorem 3.2 For members of Sundt’s (a;b) class, the pgf. P(z), satisfies the

dufferential cquution

P(z)(1 - i_": a:z")
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m X A r m bi
= Z(m.- + )27 P(2) + Z n{p,, - z(a; + ;) p,,_,} P
=1 n=1 =1

Proof:

First multiply both sides of (3.8) by nz""!. Then sum over n and simplify,

and the results follows by rearrangement. o
The pgf is given by simple integration. In particular, it (1 — 1%, a;2*) has
m distinct non-zero roots whose reciprocals are a;, as, ...,a, such that
m X m
(1-3az") = JI(1 - a2)
=1 i=1
m b, i—1 m .

and il B (3.15)

(1-X%, a2 = (1 - aiz)

then for r = 0, the pgf satisfies the differential equation

’

P'(s) _ TRy +b)a!
PG) ©  (I-Thad)

(3.16)

and hence the pgf is given by

a, +9
m ( 1-a, oy
=1 \l-a,z

m b ‘_
e{z.‘=| += 1)} when a; = 0 for all ¢

Note that for m = 1, a; = a and f; = b, and then P(z) becomes identical
with the pgf of (a,b,0) family, the results derived earlier.
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3.4 Probability generating function and pf of the La-
grange (a;b) family
3.4.1 PGF for the basic LPD (a;b) family

Let g(t) be a pgf of a member of Sundt’s (a;b) family. From the definition
of the basic LPD, we need gy = g(0) # 0. It will be clear in the following
theorem that to get a suitable explicit functional equation of a pgf of a basic
LPD, we must need that the ratio of g'(¢) and g(t) be free of g(t) and must
be the ratio of polynomials in ¢ only. This is possible when g(¢) is a pgf of a

member of Sundt’s (a;b) family. Hence we have the following theorem.

Theorem 3.3 Let g(t) be the pgf of a discrete pf of Sundt’s (a;b) family with
go > 0, then the pgf of basic LPD, ¢(u), satisfies the following first order
ordinary differential equation:

ud () (1 - f:[(,: + l)a, + b,-]qs(u)‘) = ¢(u) (1 —~ ia,(ﬁ(u)i) (3.17)

1=l =1
Proof : Since g(t) belongs to the (a; b; 0) family, we have from (3.17)
g(t) _ LI (ai+b)t!
g(t) 1 -3, et

and by definition we have

$(u) = ug(é(u))

Taking logarithm of both sides and differentiating with respect to u we have

() g@) o o
u.</>—(u_)—__¢;—(t_)u¢(u) =1

LW TR (e +h)
$(u) (1 -, ait)
where t = ¢(u). Hence cross multiplying and simplifying we have the desired

results. =

u¢'('u) =1

or

349



Corollary 3.1 For a basic LPD generated by a member of the (a3b) class,

the pf satisfies the following recursion.

po =0
p1 = C (the constant of integration in (3.18)) (3.18)
a;th;
mo(l- a.) s where oy, B;'s are given by (3.17)
™ b
e (Z'=' ' ) forall a;=0
{3.19)
n—1 "
= 1 ; b . ; {1+1}) .
Iz ”~1{§ i+ 1)a; + ;ypypny §up" } (3.20)
for n =23, .
where
p;('.“) = Epup:f_v for i=1,2, ...,m
=l

Proof : Equate coefficients in (3.18) and rearrange to get (3.21). The
initial values follow from the pgf P(z) derived earlier. a

Note that the calculation of p‘(’“) does not need p,, for i > 1, since py = 0.
Obviously, for large m, the scheme loses its practicality. But for m = 1, the
recursions is simple as is shown in the following corollary, and it works for

some popular distributions as wentioned in the examples followed.

Corollary 3.2 For a buswe LPD generated by a member of (a,b V), the pf

satisfies the following recursion.
po =0
(1- a)l:d for a#0

P =

e for a=0
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g
P = - {L {2a + b)y - a]pyp,,_y} for n =23 .. ..

nw— 1 ot

Proof : The results follow from the previous corollary putting : =1. O

Examples:

(i) Borel distribution:

(i) Consul distribution:

The results could be verified for the basic LPD shown in table 1.

3.4.2 PGF for the general LPD (a;b) family

Let g(¢) be a pgf of a member of (a; b; 0) family and f(¢) be a pgf of a member
of (a;b) family. Then the pgf of general LPD generated by g(¢) and f(¢) is

given by

$.(u) = D piu” (3.21)

n=0

= f(¢(u))

Where ¢(u) is the pgf of basic LPD. Note that p;, could be calculated recur-

sively in a two step recursion, namely

Step I : @(u) = 12, pou” where p, is calculated by the recursion (3.21).

Step IT : p;, could be calculated using Panjer’s recursion, since f(t) belongs to
(a; b) family.

Thus we have two independent methods of calculating the pf for the La-
grange (a3 b) family. The first method is the direct calculation by using the
Lagrange expansion as explained in section 3.2 earlier in this article. The sec-

ond method is the two step recursion as explained above. Both of the methods
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have their merits and demerits. The main advantage of the second method
is that it helps to derive a recursion for the compound (a;d) family. In the
following section, the idea of two step recursion is exploited to find a recur-
sive way of calculating compound Lagrange PDF for Lagrange (a;b) family.
Iv Step I we wall find recursion for compound basic LPD with the help of
an auxiliary sequeunce and in step 11, we will use Panjer’s recursion to finally

calculate pf for the compound Lagrange (a; b) family.

4 Compound Lagrange (a;b) family

Let X be a non-negative integer valued random variable, namely claim severity,
with m, = P(X = z) where z is non-negative integer. If the claim frequency
follows a distribution of Lagrange (a;b) family then the total claim distribu-
tion follows a compound Lagrange (a; b) family. The pgf of a compound basic
LPD is given by

Plu) = $(Mx (w)

where Mx (u) = Y. m,u’ is the pgf of the random variable X. By definition the
pel of the Lagrange distribution, ¢(u) should satisfy a differential equation

and hence we have the following theorem.

Theorem 4.1 Let the pgf g(t) belong to the (a3b;0) family. If ¥(u) is the
paf of a compound basic LPD generated by g(t) and Mx(u), where Mx(u) is
a pgf of a non-negative integer valued random variable X, then v(u) satisfies

the following differential equation.

¥ {1- 3+ e+ spia} = vt {1 - S anptar | 34 (a2
Proof : By definition

P(u) = Mx(u)g(¥(u))
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Taking log and differentiating both sides with respect to u we have

P g, . Mx'(y)
o) " gt = M)
Substituting the value of §’/g we have
Wi TR, i+ bt I iy = Mt
¢ (u) =20 ap(u) My (u)

Now by cross multiplying and rearranging, we have the required results. 0O

Note that for My (u) = u, (that is X is degenerate at one) ¥(u) is identical
with ¢(u) and this theorem reproduces the previous theorem. Now by equating
the coeflicients, we have a recursive relation to calculate compound basic LPD.

Hence we have the following theorem.

Theorem 4.2 Let the pgf g(t) belong to the (a3b;0) family and ¥(u) =
T, aiu’ be the pgf of a compound basic LPD generated by g(t) and Mx(u),
where Mx(u) is a pgf of a non-negative integer valued random variable X.

Also let

LLMX

Zé.u =

1=0

then the compound pf a; can be calculated recursively using

a = { :
T R (G+

ai + b-']jaf)}

m i-1 ) i .
{306+ Do+ 6] L yaast, + 3 sy - 3. a3 0t )
=1 y=1 y=1 rd

=1
(4.23)
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fori=h+1h+2,...,00, and

the initial value is given by
a; =0 fori<h

ap, = mpg(0) for h >0

and for h = 0, the initial value is given implicitly by
ag = mog(cwo)

where € can be calculated recursively first using

1 ) -1
& = o ((1 + R)mipn — J_Z:;)ﬁsmwh—j) , (4.24)
i=0,1,2,...
b = h
h = min{z :m,=Pr(X =1z)>0}
and
b0 = hoglD

0 for h=0

= U for h>0. andj < (i + 1)h

which i3 independent of a;.

Proof : The results follows from previous theorem just by equating coef-

ficients and rearranging. 0
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Note that for a family of Poisson type with a = 0, the above recursion to
calculate a; simplifies to

1
a; = - - -
’ {J—h—JE?;lb.'ab}

m -1 ] J
X {Z b yayail, + 30 fu"i—v}
y=1

=1 y=1

forj=h+1,h+2,...,00.
Corollary 4.1 For g(t) belonging to (a,b,0) family, a; could be calculated
recursively by

o = {(2a + b) Ei;i ya,a;_y + }:';=l fyaj—y —a Zi=0 fyaﬁy
7 ]—h—(2a+b)]ao

(4.25)

forj=h+1h+2,...,00, and

where initial values and §; 1s calculated as in the previous theorem and

fooz;2 = ha;2
0 for h=90
= 0 for h>0, andj<2h

hzﬁ;ﬁ ayaj_y, for h>0, and j>2h

which is independent of a;.

Proof : The results follows from previous theorem just by taking : = 1.
Note that o}l = a;-,. o
Also note that for a Poisson family, a = 0, and the above recursion to

calculate o; simplifies to

= {b Z;:: yoya;_y + Ei:l &a;y}
? J—h-bjao

(4.26)
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forj=h+1.h+2,... .,

By choosing suitable values for a and b from table 4 we can have recursion
for the compound Borel distribution, the compound Consul distribution or the
compound negative-delta distribution. Finally we are in a position to get two
step recursion for compound general LPD. Let 1).(u) be the pgf of a compound
general LPD generated by the pgf's f(t), g(t), und Mx(u), such that

where ¥(u) is as in theorem 3.4.1, then the pf of compound general LPD is
given by the following theorem.

Theorem 4.3 Let the pyf g(t) belong to {a;b,0) family, the pgf f(t) belong
to (a3 b) famuly and ¥.(u) = T2, viu' be the pgf of a compound general LPD
generated by f(t), g(t) and Mx(u), where Mx(u) is a pgf of a non-negative
integer valued random variable X. Also let

uMy (u) N
Mr(w) 2

Then the compound pf v; can be calculated recursively by the following two

step recursion.
Step I : P(u) = T2, 0, u™ where a,, 13 calculated by the theorem 3.4.1.

Step II : Compound general LPD given by ¥.(u) = 12, v;u' could be calculated

by Panjer’s recursion since Y. (u) = f(32, anu™).

Examples

Generalized negative binomial (GINB) distributions : Let N, a claim

count variable, be a GNB random variable and Z; be the i-th claim amount
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discrete random variable. Then the total claims variable
S=Z1+2Z:+---+ 2y

is a compound GNB random variable. Our aim is to calculate the pf of §
using the fact that a GNB random variable is a compound binomial sum of
Consul distributions. Under the usual assumptions of Z,, Z,, ..., Zy are i.i.d.
for given N and the distribution of N is free of Z's, the pgf of a compound

GNB distribution is given by
Gs(u) = (1 —6+ 9Gc(u))k (4.27)
were C'o(u), the pgf of a compound Consul distribution, is given implicitly by
Golu) = (1 —6+ 0Gc(u))ﬁGz(u) (4.28)

and Gz(u) is the pgf of claim amount distributions. Our aim is to use (3.36)
to find a recursion for compound Consul distribution and then use (3.35)
to evaluate a compound GNB distribution using Panjer’s (1981) results for
compound binomial.

Let us take logarithm of both sides of (3.36) and differentiate with respect

to u. We have

Golu) _  PB8Gc(u) Gy(u)
Ge(u)  1—8+0Gc(u)  Gz(u) (4.29)
Rearranging we have
uG(u){1 -8+ 6(1 - HGe(w)} = Go(w){l~ 6+ 6Go(u)} 2
Gz(‘u.)
(4.30)
Let us define the sequences {a,} and {r,} given by
Gelu) = ) apu” (4.31)
n=0
uGz(u) & "
and Galu) —"gor,,u (4.32)
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The coefficients r,, depend solely on the known probability function {pf) of
Z. Let my,=PlZ;=n], n=0,1,2,...; and

Mmog=my; =--+=mu_; =0, my >0

So we have
~ R
u) = Z mpu” = u" z Marht” (4.33)
neh =0

Hence, from (3.40), cancelling u” from both numerator and denominator
on the left hand side and transposing the denominator to the right hand side

we have

(0 + hjmogsu {Z — } {fj r,,un}

n=0 n=0 n=0

Now comparing coefficients of u™ we have
(n+R)mnph =Y rjmpn.; for n=0,1,2,...
=0
Then the sequence {r,} can be evaluated recursively as follows:

1
Ty = {(n + h)ymgep — Z T My he J} for n=0,1,2,... (4.34)

LT

with h = min{y . m; > 0}. Note that ry = k.

Having evaluated the sequence {r.}, we are in a final stage of evaluat-
ing the desired sequence {ay}, the compound Consul probability distribution.
Comparing the coefficients of ™ in (3.38) we have

(1-0na, +6(1 — ZJa,an ==Y ajrn;+6 Y aj’r._;(4.35)
3=0 =0 5=0
Hence rearranging we have the recursion in its most general form :
5ol(L — 8)a; + 8a5Jra; + 72 8lh + (B - Djlajan-;

n (n—R)(1—8) —nb(B — 1)(10
for n=h+1,h+2,... (4.36)

Il

where a*? is the second order convolution of ay,.
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Now the initial values ay, a;,. . ., as will be determined from the definition

of Go(u). Since by definition,
[
Gelu) = (1 —6+ 9GC(u)) Galu)
we have
x 00 B ( x
{E anu"} = (1 -6+4 Z anu") {Z m"u"}
n=0 n=0 n=h
Now comparing the coefficients of u™ we have for £ > 0
Ay = Qf = +*+» = QAx_1 =0 and ap = (l—B)ﬁm;,
For h = 0, the value of «ay is given by the implicit relation

Qapg = (1 -0 + 0ao)ﬁmo

Even though g does not have an explicit expression in mg, 6 and 3, it has a
unique value given by the above relation where uniqueness is guaranteed by
the GNB distribution parametric restriction namely 63 < 1.

Finally, the compound GNB distribution given by Gs(u) = Y v;u’ = (1 —
H+ 05, mu")*. is evaluated in the second step by application of Panjer’s

recursion for compound binomial distributions. In our case it is given by

" ,(Tm—i{ (k+ 1)i = hosvy-

with the starting value P(S = 0) = G5(0) = vo = (1 — 8 + bap)*. |

Note that a similar recursive scheme for compound generalized Poisson

distributions were derived by Sharif and Panjer (1995).

5 Comments and further research

Our two step recursive scheme for compound Lagrange distribution is simple.

Computationally it is more efficient as compared to some other schemes found
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in the literature for some specific members of the family, such as, Goovaerts
and Kaas (1991), and Ambagaspitiya and Balakrishnan (1994). Also our re-
cursion is a generalized result in the sense that h could be any non-negative
(including zero). Our approach could be easily used to write down exact re-
cursive relations for all the members of Lagrange (a;b)-family, in particular
for all the members shown in the table 1, table 2 and table 3, to evaluate their
compound distributions.

The general Lagrange probability model was originally developed in the
ficld of reliability specially in queueing theory. It had its application in find-
ing the distribution of a busy period in a queueing model. The generalized
Poisson model, a popular member of the family, has been used in several other
statistical research areas most specifically, biostatistics. Consul (1990) used
it to model the distribution of injuries in auto-accidents. Consul (1989) de-
scribed several chance mechanisms generating this distribution. An actuarial
application of the GPD can be found in Gerber (1990) where it is linked to
the ruin model.

Because of the peculiarity of being embedded in a Lagrange expansion,
the Lagrange distributions have not been very popular. We believe that our
through treatment of the distribution and our efficient algorithm to calculate
its pf and its compound pf might entice more actuaries to use the Lagrange

distribution 1 actuarial research.
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