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1. Introduction

In this note we present an approach in which a defective renewal equation is solved in
terms of a related compound geometric distribution. The advantage of this approach is
discussed. We then apply this approach to a defective renewal equation which involves the
time of ruin, the surplus before ruin and the total deficit at the time of ruin. We show
how to compute the moments of the time of ruin as well as the joint distribution of the
surplus before ruin and the deficit at the time of ruin. Two 1mportant cases in terms of
claim size distributions are considered in detail. First, we consider exponential claim size
distributions. We then consider a combination of two exponentials. The moments of the

time of ruin are given in both cases.

2. A general defective renewal equation

Defective renewal equations have been widely used in the analysis of the surplus process
in the classical risk model. In this section we present an approach which expresses the
solution of a defective renewal equation in terms of the tail probability of a compound
geometric distribution.

Consider the following equation

1 1
dlu) = m/ﬁ dlu — 2)dG(x) + H(w),u >0, (1)

1
1+ 43
where 3 > 0, G(z) is a distribution function which usually represents some claim size
distribution in risk theory, and H(u) is a differentiable function for u > 0.

To solve (1), we introduce an associated compound geometric distribution. Let

K(u) = i Ao )G (w) )
Z1+81+8 ’ “
Then K (u) is the solution of the integral equation

L
1+7

1

= m/{; ]X(U - J)dG(l‘) +

K(u) Gu). (3)
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It can be shown (Lin and Willmot, 1997) that the solution ¢(u) in (1) can be expressed

1o o H(0)-
é(u) = “E/o K(u = )H'(@)dz + 5H() = ==K (u), (4)

which may be verified by the Laplace transform. This formula has several advantages. A
closed-form solution is available for three important classes of distributions: exponentials,
combinations of exponentials and mixtures of Erlangs. We will discuss the first two classes
in later sections and the class of mixtures of Erlangs is discussed in Lin and Willmot (1997}.
The tail of a compound distribution can be evaluated or approximated fairly easily. The
asymptotic formula is available when the moment generating function of the claim size
distribution exists (Gerber, 1879). More accurate approximations such as one given by
Tijms are also available (Tijm, 1994). Simple upper and lower bounds can be obtained

even when the claim size distribution is subexponential (Willmot, 1994; Lin, 1996).

3. Applications to ruin theory

In this section we apply our result in the previous section to ruin theory. Consider
the classical continuous time risk model, where the number of claims from an insurance
portfolio is assumed to follow a Poisson process N, with mean A. The individual claim sizes
X1, X5, ..., independent of Ny, are positive, independent and identical random variables
with common distribution function (df) P(z) = 1 — P(z) = Pr{X < z). The aggregatc
claims process is {Sy; ¢ > 0} where Sy = X, + Xo+ - -+ Xy, (with 5y = 0if NV, = 0). The
insurer’s surplus process is {Uy; ¢ > 0} with U; = u + ¢t ~ S; where u > 0 is the initial
surplus, ¢ = Ap1(1 + #) the premium rate per unit time, and 8 > 0 the relative securily
loading, with moments p; = [;° z/dP(z) for j = 0,1,2, ...

Define T = inf{¢; U(t) < 0} to be the first time that the surplus becomes negative and
is called the time of ruin. The probability ¥/(u) = Pr{T < oo} is called the probability
of (ultimate) ruin. Two nonnegative random variables in connection with the time of ruin

are the surplus immediately before ruin U(T—), where T'— is the left limit of T and the
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ruin |U(T)|. See Bowers et al (1986, Chapter 12) for details.
Gerber and Shiu (1997a) define

o(u) = E{e"Tw(U(T-), [U(T))) KT < oo)} (5)

where w(z(,23), 0 < ),2, < 00, is a nonnegative function, (I < o) = 1, T < oo, and
I(T < oo} = 0 otherwise. This function is useful in the sense that many functions in ruin
theory can be viewed as a special case. For instance, if 6 = 0 and w(zy,z3) = 1, ¢(u)
becomes the probability of ruin and if § = 0 and w(z, ) = Iz, < y), for fixed y, ¢(u)
becomes the distribution function of the deficit at rmin.

Gerber and Shiu (1997a) show that the function ¢{u) satisfies the defective renewal

equation

u o0 A 00 oC
$lu) = %/ o(u ﬂ)/ f’"’(y’z)d}“(y)dl'%-—(f"“/ wﬂ/ w(z,y — )dP(y)dr, (6)
- Jo T C n T

where p = p(d) is the unique nonnegative solution of the equation
cp — 6= A= A\p(p). (7)

The equation (6) is in the form of (1). In Lin and Willmot (1997), we identify the parameter
and the functions 8, G(x), and H{u) in {1). In fact,
e”’/ e P (y)dy

E(I) Ry - —
[T e Py
0

z 20, (8)

f= g — 1, (9)

where Pj{y) = L

r1

~i
=
=

[m8

e‘"‘/me“"/ww(r,y - z)dP(y)dx

o0 ;
| e Py

0

Hu)=
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We remark that only the function H(u) depends on the function w(z;, 25}

With different choices of w(x,, z2), we are able to obtain the distribution of the deficit
at ruin, the distribution of the surplus immediately before ruin and the Laplace transform
of the time of ruin. The Laplace transform of the time of ruin can be used to calculate the
higher moments of the time of ruin. In previous research, the calculation of the moments

of the time of ruin has been limited to the first moment.

4. The joint distribution of surplus before ruin and deficit at ruin
In this section, we give the joint distribution of the surplus before and the deficit at

ruin using the formula (1). For any fixed z and y, choose

lv I S I, S Y
w(zy, 1) = ] (11)
0, otherwise

Noting that § = 0 implies p = 0, the function H(u) defined in (10) can be written as

follows: if u < x,

H(u) = A_(lj_ﬁ)e,,u/:ehpz, /:‘erdP(Ig)dzl
= [Pi(u) - Pi(u+y)] - [Pufz) - Pi(z +y)]; (12)

ifu >z,
H(u) =0.

With a little algebra, we have the joint distribution function of U(T—) and |[U(T)|, F(z, y|u)-

(;?UOI Y{u — 2,)P(x))dz; — J& o(u — )P(z; + y)dz)
+ Y4 (Py(z + 1) - Pila) - Py, s<u
lp(u) - (v +y)] + § I ¥(u+y — z)dPi(z1)

+ ¥[Pi(z +y) - Pi(z) ~ P(y)) - 3Pz +y) ~ A2)), z>u
(13)

F(z,ylu) =
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The formula for the moments of the time of ruin involves the solutions of a sequence of
defective renewal equations. We present our results without derivation. Interested readers
can refer to Lin and Willmot (1997} for details.

Let #y (1) = E{T*I(T < o¢)}. Thus, the k-th moment of the time of ruin is

()

lua)’

where 1(u) is the probability of ruin, or v (u) is the unconditional k-th moment of the

time of ruin. It is worth to point out that when & = 0, ¢{u) = K(u).

The unconditional mean time of ruin is given by

7 *—L u“‘v — ) (x)dx ! rrr—ﬂ—*“‘u
gg@;.wﬁ{ﬁ w(u UQ(MJ+A ()dr %ﬂg(%. (14)

The unconditional &-th moment of the time of ruin is given recursively by

k uo G oG

(1) = —— {/ (- .r)u*rk,l(r)(hrJr/ Yo (2)dr = ’l,‘"(“)/ '(J,!k,l(,z')rl:lt} . (18)

At Lo u 0

5. Exponential distribution

The exponential distribution is one of the simplest distibutions but it has been used
widely due to its nice propertics and simplicity. [n this case, the claim size distribution
P(x) is defined as P(z) = ¢ #*. Then, G(z) = ¢ #*. Thus,

K(u) = Ce™ 't (16)

where

ﬁﬂ“# By N P Jt
T1+837 146 prpl+E

and
1 i 1

C= = .
1+8 ptul+d

It can be shown by induction that

ko 3
V() = e ™ Z Cyx (B

7=0 gt
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The coefficients C, 4 satisfy the following recursion relations:

— k(1 +6) 5!
; C 18
Cox L'ug Z ikl (18)
and for 7 =1,2,--- &,
k146 1 -
c,,k:_cmp_[ugcj Lk 1+zczk i (19)

=7

with Y¥7! = 0 and Cy = C. The first two moments can be easily derived using (18) and
(19).

. 1405 1
Cor = cpf o E;L_H’
N (1) R SR
T T 146 "0 e
Thus,
- 1 —Ru
E{TI(T < o0)} = [ et CM)Q(RU)JE ,
which is in agreement with Gerber (1979, p.138).
Also,
— 2(1 + 0) . 2(1 + 6)?
Coa = =g Cor O] = =g
N (Y LI (14 99)
Che = “————6!162 [1+8C01+C11]~ 2031+ 0)
o 20+6)2 1 . 2(1+86)
2 cud® 146 " 2pet
2 ; 1426 146 (Ru)?y
E{ 2[ T - ° /] 2 " (R - > Ru
(TI(T < ool} = a0+ + gty Je

6. Mixture or combination of two exponential distributions
The combination of two exponential distributions is useful in approximating the tail of
a compound distribution as pointed out by Tijms (1994). In this case we may assume that

the claim size df is a mixture of two exponentials, i.c.

P(x) = qe 7 + (1 — q)e ™7,
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0)™! Ik 1 —q)p;!
= glp+ m)j(ij(Llll)q)(ﬂ + )7V f=+ 0)(1(1’ + uqf)l" :El - Z;I(; +pg)t b
and
V= (1~g")u+q
Then,
K(u) = Cre~ Ry 4 Cpe v, (20)

where R; < Ky are two positive roots of the quadratic equation
(L+ B R = [V + Bt + )| R + By, = 0,

and
W~R1 C‘ RZ_‘IJ
(1+8)(Re—R) ° 7 (1+8)(R - Ry)’

The form (20) for A (u) actually holds more generally than for combinations of expo-

C]Z

nentials, as derived above. Sce Tijms (1994), for example. Furthermore, in cases where
explicit evaluation of K (u) is complicated or not possible, the Tijms approximation may
be used, and it is also of the form (20). This approximation is quite accurate as long as
beta is not too large, and is convenient for analytic purposes. In particular, substitution
of (20) into (4) leads to a relatively tractable approximation. The results in the remainder
of this section require only the form (20) for K(x), and do not require the claim size df to
be a combination of two exponentials.

The unconditional k-th moment can be expressed as
d R Ry
d,'k(u) = Z [AjykGR b + B]JCC* 2 ]—' (21)
3=0 '

The coefficients A;, B,k are obtainable recursively, similar to the method used in the

exponential case above. For example, the mean of the time of ruin is

E{TI(T < 20)}
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1
= —_:{;5{Cfue"‘1“ + szue_R""
C C,Co(R? + RY)

1+ 6)R,  RiRy(R; — Ry)

C1Co(R2 + R2
40 G, 1Co( RY + 2)]8—R2u}.

e fr 4 -
| [(1 +6)Ry  RiRy(R; — Ry)

7. Concluding remarks

In this paper, we present a solution of a defective renewal equation in terms of the tail
of a compound geometric distribution. With this approach, we are able to obtain the joint
distribution of the surplus before ruin and the deficit at ruin for the classical risk model.
We are also able to obtain the moments of the time of rnin when the claim size distribution
is an exponential or a combination of two exponentials. The derivation of these results
are given in Lin and Willmot (1997). Extensions and generalizations are possible. For
instance, an explicit solution can be obtained when the claim size distribution is a mixture
of Erlang distributions. Mixtures of Erlangs are an important distribution class in the
sense that every claim size distribution can be approximated by a mixture of Erlangs with
arbitrary accuracy. In Lin and Willmot (1997), we give a detail analysis of our approach.
Results on the moments of the surplus before ruin, the moments of the deficit at ruin are

given there.
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