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1. I n t r o d u c t i o n  

In this note we present an approach in which a defective renewal equat ion is solved in 

terms of a related compound geometric distribution.  The advantage of this  apt)roach is 

discussed. We then apply this approach to a defective renewal equat ion which involves the 

t ime of ruin, the surplus before ruin and tile total  deficit at the t ime of ruin. ~A~ show 

how to compute  tile moments  of the time of ruin as well as the joint  d is t r ibut ion of the 

surplus before ruin and the deficit at  the tim~ of ruin. Two impor tan t  cases in terms of 

claim size dis t r ibut ions are considered in detail. First, we consider exponential  claim size 

distr ibutions.  '~,i~ then consider a combination of two exponentials.  The moments  of the 

t ime of ruin are given in both  cases. 

2. A general  defect ive  renewal  equat ion  

Defective renewal equations have been widely used in the analysis of the surplus proeess 

in the classical risk model. In this section we present an approach which expresses the 

solution of a defective renewal equation in terms of tile tail probabil i ty of a compound 

geometric distr ibution.  

Consider the following equation 

1 f0 ~ 1 

where /3 > 0, G(z)  is a dis tr ibut ion function which usually represents some claim size 

dis t r ibut ion in risk theory', and H(u) is a differentiable fimction for u > 0. 

To solve (1), we introduce an associated compound geometric dis t r ibut ion.  Let 

/~(u) 1 - 7 ~ ( ~ 5 )  G (~). (2) 

Then K(u) is the solution of the integral equation 

i 
Jo 
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It can be shown (Lin and Willmot, 1997) that the solution ¢(u) in (1) can be expressed 

as 
1 " 

which may be verified by the Laplace transform. This fornmla has several advantages. A 

closed-form solution is available for three important classes of distributions: exponentials, 

combinations of exponentials and mixtures of Erlangs. We will discuss the first two classes 

in later sections and the class of mixtures of Erlangs is discussed in Lin attd Willmot (1997). 

The tail of a compound distribution can be evaluated or approximated fairly easily. The 

asymptotic formula is available when the moment generating fimction of the claim size 

distribution exists (Gerber, 1979). More accurate approximations such as one given by 

Tijms are also available (Tijm, 1994). Simple upper and lower bounds can be obtained 

even when the claim size distribution is subexponential (Willmot, 1994; Lin, 1996). 

3, A p p l i c a t i o n s  to  r u i n  t h e o r y  

In this section we apply our result in the previous section to ruin theory. Consider 

the classical continuous time risk model, where the number of claims from an insurance 

portfolio is assumed to follow a Poisson process Nt with mean )~. The individual claim sizes 

X1, X2,..., independent of Nt, are positive, independent and identical random variables 

with common distribution function (df) P ( x )  = 1 - -P(x) = Pr(A" <_ x).  The aggregate 

claims process is {S,; t k 0} where St = X~ + X2 + . - -  + XN~ (with St = 0 if Nt = 0). The 

insurer's surplus process is {Ut; t >_ 0} with Ut = u + ct - St where u > 0 is the initial 

surplus, c = .~pl(1 + 0) the premium rate per unit time, and 0 > 0 the relative security 

loading, with moments pj = f ~  x i d P ( x )  for j = 0, 1,2, .... 

Define T = inf{t; U(t)  < 0} to be the first time that the surplus becomes negative and 

is called the time of ruin. The probability ¢(u)  = P r { T  < ~ }  is called the probability 

of (ultimate) ruin. Two nonnegative random variables in connection with the t ime of ruin 

are the surplus immediately before ruin U ( T - ) ,  where T -  is the left limit of T and the 
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ruin IU(T)]. See Bowers et al (1986, Chapter  12) for details. 

Gerber  and Shiu (1997a) define 

0(~0 = E { c - ~ % 4 U ( T - ) ,  IU(T)I) I (T  < o~)} (5) 

where w(xl,x2), (} < :rl,z2 < oc, is a nonnegative function, I(T < ~ )  = 1, T < co, and 

I(T < cx~) = 0 odmrwisc. This function is useful in the sense tha t  many funct ions in ruin 

theory can be viewed as a special case. For instance, if d = 0 and w(xl,z.2) = 1, ¢(u)  

becomes the probabil i ty of ruin and if d = 0 and w(z~, x2) = I(x2 <_ y), for fixed y, ¢(u)  

becomes the distr ibut ion function of the deficit at ruin. 

Gerber  and Shiu (1997a) show tha t  the flmction ¢(u) satisfies the defective renewal 

equat ion 

¢(u) = c qS(u - x) e 0(~ ~)dP(y)d:r + - e "  I e-"~= [ w(x, y - x)dP(y)dx, (6) 
C J u  dx  

where p = p(c~) is the unique nonnegative solution of the equation 

cp - ~ = a - a ~ ( p ) .  ( 7 )  

The equation (6) is in the form of (1). In Lin and Willmot (1997), we identify the pa rame te r  

and the functions J ,  G(:r), and H(u)  in (1). In fact, 

1 __ e p~ e - ~ ( g ) d y  
c(.~-) = ~: _> o, ( s )  ~ e-o~-p(u)@ 

1 + 0  
1, (9) 

[ e-PYdPI (y) 
3O 

where P;(y) = ~-fi(y), and 

[2 f~ 
e "~' e -"~ w ( x , y  - x ) d P ( y ) d x  

;4(~,)  = ~" 

/o ~ c _ , _ p ( y ) d ~  ( 1 0 )  
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We remark tha t  only the flmction H(u)  depends on the function w(x~, x2). 

With different choices of w(:rl, x2), we are able to obtain the dis t r ibut ion of the deficit 

at  ruin, the dis t r ibut ion of the surplus immediately before ruin and the Laplace t ransform 

of the t ime of ruin. The Laplace t ransform of the t ime of ruin can be used to calculate the 

higher moments  of the t ime of ruin. In previous research, the calculation of the moments  

of the t ime of ruin has been limited to the  first moment .  

4. T h e  j o i n t  d i s t r i b u t i o n  of  s u r p l u s  b e f o r e  r u i n  a n d  def ic i t  a t  r u i n  

In this section, we give the joint  d is t r ibut ion of the surplus before and the deficit at. 

ruin using the formula (1). For any fixed x and  y, choose 

1,  X 1 < . T , X  2 < y 
w(xl,, x2) = -- -- 

0, otherwise 
(11) 

Noting tha t  5 = 0 implies p = 0, the function H(u )  defined in (10) can be wri t ten as 

follows: if u < x, 

if u_> x, 

- F F H(u)  -- )~(1 + f3)e,, ~ e_p, ' dP(x2)dxt 
C J u  J x l  

= [ ~ , ( , , )  - y ~ ( ~ ,  + y ) ]  - [p~ ( :~ )  _ ~ , ( ~  + y)] ;  (12) 

H ( ~ )  = O. 

With  a little algebra, we have the joint  d is t r ibut ion function of U ( T - )  and IU(T)], F(x, yiu). 

f ( * , y l ~ )  = 
+ ¢ @ [ P , ( x  + y)  - P i i x )  - s l y ) l ,  

~ g ~(~ + u ~l)dP,(:q) 

+ ~ [ P , ( . T  + u) - P I ( * )  - P , (u ) ]  - ~[P~(~ + u) - P~(x)] ,  

x<_u 

2: > I t .  
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The formula for the moments  of the l ime of ruin invoh,es the solutions of a sequence of 

defective renewal equations. We present our results without derivation. Interested readers 

can refer to Lin and Willmot (1997) t'or details. 

Let. t/,k(u) = E{TkI(7" < oc)}. Thus, the k-th moment of the t ime of ruin is 

,/,~ (,.) 

where g~(u) is the probabil i ty of ruin, or ~"'k(u) is the uncondit ional  k-th moment  of the 

t ime of ruin. It is worth to point out that. when 6 = 0, "¢,(u) = K(u). 

The uncondi t ional  mean time of ruin is given by 

l {fo'*g,(u-:r),/ ,(o)dx+/,m~",(.r)d:r-~t:,( 'a)}. (14) < ( " )  = ~ > 

The uncondi t ional  k-th moment  of the time of ruin is given recurslvely by 

{// 2 /7 } a: v ( , ,  - . , ) ~ , -  ' ( ~ ) d ~  + ~,k ,0:)d:,: - ~,( , ,)  ,:,k-~(*)d:,: . (15 )  ,/,~(.) = ~ 

5. E x p o n e n t i a l  d i s t r i b u t i o n  

The  exponent ia l  dis t r ibut ion is one of the simplest dist ibutions but  it luts been used 

widely clue to its nice properties and simplicity. In this case, the claim size dis t r i tmtion 

P(a:) is defim, d as P(:r) = ,:-*'*. Then,  G(J') = c ~*~. Thus, 

t7 ( , , )  = c ~  "", (1G) 

where 

and 

/Jl* Of p t~ 
R -  1 + 2 -  l +O + p + i z l  +O ' 

1 I* 1 
C -  

1 + , 3  p+l~ l+O 
i t  can be shown by inducti(m tha t  

j~ a=0 
(17) 
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The coefficients Cj,k satisL the following recursion relations: 

_ k(1 + 0) kV2Ci,k-lZ-, (18) U.ok 
' clio i=o 

and for j = 1,2,. - . ,k ,  

- k ( 1 + 0 )  2r 1 U k 
Cj,k ~- C#02  [ ~  j-l,k 1 4- Z Ci,k-I], (191 

i=j 

with ~k-li=k = 0 and C,o,o = C. The first two moments can be easily derived using (18) and 

(191. 

Col - 14-0 - -  1 
' c # O  C o , o -  c # O '  

C , ,  - ( 1+01 ;  l a ~ 0 ,  ° -  1 
' (:t,0 2 1 + - c # ~ "  

Thus, 

which is in agreement with Gerber (1979, p.138). 

Also, 

~o~ 2(1 4. o)[~o,,  4. c , , , ]  - 2(14, o) ~ 
' (:110 C2lt203 ' 

2(1 4- 0) 2f 1 ~ +CI , , ]  - 2(1+201 
c~,~ - ~ t i ~  ~°,' d#~o~(1 + o)' 

2(i + o) 
C2,2 - 2(lci~02+0)21+10~'' 1 -  c2# 204 

~ 0 5 [  14..20 • l + O ( R u ) 2 ] e _ R ~  
E { T 2 I ( T  < oc)} : (1 + 0) 2 + i z ( ~ T ~ ( R u )  + 0 21 J" " 

6. M i x t u r e  or c o m b i n a t i o n  of two e x p o n e n t i a l  d i s t r i b u t i o n s  

The combination of two exponential distributions is useful in approximating the tail of 

a compound distribution as pointed out by Tijms (19941. In this case we may assume that 

the claim size df is a mixture of two exponentials, i.e. 

~(:r) = qe .1~ + (1 - q)e-"% 
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let 

q(P+ lq) ' qlt~' + (1-q) I t~ '  
q" q ( p + l q ) _ t + ( l _ q ) ( p + F 2 ) _ l ,  / ] = ( l + O ) q ( p + l q ) - ' + ( 1 - q ) ( p + t @ - I  

and 

Then,  

= (1 - q')lq + q'P2. 

-K(u) = Clc -R'~ + C~e -R~', 

where Rt < R2 are two positive roots of the quadrat ic  equation 

(1 4-f l ) / l~2 _ [/I/ 4- ~(]11 4- It2)]J~ -1- fl,I-Ll#2 = O, 

a l] d 

-1 ,  

(20) 

- RI R2 - (P 
C~ = C2 = 

(1 + fl)(R~ - R1)'  (1 + ~)(R~ - R I )  

The  form (20) for K(u) actually holds more generally than for combinat ions of expo- 

nentials,  as derived above. See Tijms (1994), for example. Furthermore,  in cases where 

explicit evaluat ion of K(u) is complicated or not possible, the Ti jms approxinmtion may 

be used, and it is also of the form (20). This approximation is quite accurate as long as 

be ta  is not too large, and is convenient for analytic purposes. In particular,  subs t i tu t ion  

of (20) into (4) leads to a relatively tractable approximation.  The results in the remainder  

of this  section require only the form (20) for K(~) ,  and do not require the claim size df to 

be a combina t ion  of two exponentials. 

The  uncondi t ional  k-th moment  can be expressed as 

k l/J 

= E [ a s  + 7 .  (21) 
3=0 

The coefficients Aa,k, Bj,k are obtainable recursively, sinfilar to the method used in the 

exponent ia l  case above. For example, the mean of the t ime of ruin is 

E{T~(T < ~)}  
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- l ~ O { c ~ u e - n , , + C ~ u e - n 2 , ,  

-F [(1 -I- 0 ) /~  -t- /~ln2(,~ 2 __ ]e -Rlu -F [(1 -~ O)R 2 R1R2(R2--R~)I e ~" 

7. C o n c l u d i n g  r e m a r k s  

In this paper, we present a solution of a defective renewal equat ion in terms of the tail 

of a compound geometric distr ibution.  Wi th  this approach, we are able to obta in  the joint  

dis t r ibut ion of the surplus before ruin and the  deficit at  ruin for the classical risk model. 

We are also able to obtain the moments  of the t ime of ruin when the claim size dis t r ibut ion 

is an exponential  or a combination of two exponentials.  The derivat ion of these results 

are given in Lin and Wil lmot  (1997). Extensions and general izat ions are possible. For 

instance, all explicit solution can be obtained when the claim size dis t r ibut ion is a mixture 

of Erlang distributions.  Mixtures of Erlangs are an impor tan t  dis t r ibut ion class in the 

sense tha t  every claim size distr ibut ion can be approximated by a mixture  of Erlangs with 

arbi t rary  accuracy. In Lin and Willmot (1997), we give a detail  analysis of our approach. 

Results on the  moments  of the surplus before ruin, the moments  of the deficit a t  ruin are 

given there. 
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