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The Mollification Analysis of Stochastic 
Volatility 

Lijia Guo 

A b s t r a c t  

One of the most important problems in Finance is the valuation 
of financial securities written on underlying assets whose prices are 
subject to uncertainty. Such uncertainty typically is described by a 
stochastic process: 

dS = #(S, t)dt + a(S, t )dW 

where W is a standard Brownian Motion and a is the instantaneous 
standard deviation of S which specifies its volatility. 

This paper presented a technique to estimate the unknown stochas- 
tic volatilities by solving the inverse problem associated with the 
parabolic partial differential equation governing risk neutral deriva- 
tive security prices. This technique can be applied in a very general 
multi-factor setting and numerical examples are provided. 
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I. I N T R O D U C T I O N  

1. I n t r o d u c t i o n  

The modern valuation theory of financial derivative securities begins with 
the modeling of the underline asset prices, indexes, or rates. Such modeling 
process use a stochastic process to describe the price movement of the un- 
derline asset ,  and typically incorporate one or more parameters that may be 
constants or deterministic functions. Assuming the chosen process is a real- 
istic model for the underline dynamics, the successful application in hedging 
and other trading activities will depend critically on how the parameters are 
quantified. 

Traditional approach is to assume constant volatility and use the Black- 
Scholes (1976) option formula and the quoted price to solve the "implied 
volatility'. In practice, however, the volatility varies with respect to time 
and correlated to the price movement of the underline assets. 

Hull and White (1987) assuined the volatility follows a stochastic process 
itself. 

Lagnado and Osher (1996) provided a calibrating derivative security pric- 
ing models w.r.t, observed market prices of all the options in the same class. 

This work attempts to identify the unknown volatility from the risk- 
neutral model itself. 

2. T h e  M a t h e m a t i c a l  M o d e l  

Assuming the underlying asset S (stock or stock index) follows the general 
stochastic process of the form: 

dS = IJ(S, t )Sdt  + a(S, t )SdW (2.1) 

where # is the drift of S, W is a standard Brownian motion (Wiener pro- 
cess), and the local volatility a is a deterministic function that may depend 
on both the stock or stock index and the time t. 

We consider an European call written on assets S that pays continuous 
proportional dividends at a rate of 6, for example futures contracts or foreign 
currencies, with exercise price of K and the expiration date T. 

We assume that  markets are perfect, there are no transactions costs 
or differential taxes, and trading takes place continuously. We also assume 
that the asset price S of the underline assets on which the call is written 
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3. THE PDE PROBLEM 

follows a geometric Brownian motion with volatility a, continuous sample 
path, and the drift equal to # where # > 0 is the expected rate of return 
on the assets. Hence S is described by the stochastic differential equation. 
Using standard risk neutral approach (see, for example, Black and Scholes, 
1973), one can show that the price of the European call could be evaluated 
by solving an equivalent partial differential equation (PDE). The associated 
PDE is discussed in the following section. 

3. T h e  P D E  P r o b l e m  

Assume that the underlying asset follows the general stochastic process spec- 
ified in equation (2.1). 

Let v(S,t) be the value of the call option at time t, when the asset value 
is S and for which the strike price is K and the expiration date is T. Risk- 
neutral theory of asset pricing shows that v must satisfy the following heat 
equation: 

vt + ( r -  q)Svs + ~a2(S,t)S2vss = rv, (3,1) 

where r is the riskfree continuously compounded interest rate and q is the 
continuously dividend yield on the asset(stock or stock index). 

In order to solve the above PDE, one also need to specifies boundary condi- 
tions. Due to the nature of the problem, the PDE subject to the following 
boundary conditions: 

v(S, T) = m a x ( S  - K, o), s > 0, (3.2) 

v(0, t) : 0, 0 < t < T, (3.3) 

V S ( S  , t)  ~ e -q(T- t )  , a s  S ~ 00, 0 • t < T .  (3.4) 
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4, T H E  I N V E R S E  P R O B L E M  

This a classical heat problem if all the parameters  in the PDE  are given and 
can be solved using s tandard algorithm. Software packages are also available. 
In practice, however, the volatility ~ = a(t ,  S) is usually unknown. In the 
case of unknown volatility, the problem (3.1)-(3.4) becomes an inverse heat 
conduct ion problem. 

4. T h e  I n v e r s e  P r o b l e m  

To show tha t  the problem (3.1)-(3.4) is a s tandard inverse heat conduction 
problem, let v to be the time to matur i ty  (7- = T - t), subs t i tu te  7- in Equa- 
tion (3.1): 

(4.1 

and 

v(S, 0; a)  = m a x ( S  - K ,  0), S > 0, (4.2) 

v(0, T;a) = 0, 0 < T < T, (4.3) 

VS(S , T; or) ~ e -qT, as S -+ oc, 0 < T < T. (4.4) 

Now, let 

x =  1 , 1 S + ( r - q )  7, (4.5) 

and 
~(s, T) = ~-r~ ~(x, T) (4.6) 
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5. MOLLIFICATION 

The equation (4.1) is then equivalent to solving u(x, T) and a(x, r) satis- 
fying 

1 
UT = ~ °2(X,~)Ux~, (4.7) 

with the boundary conditions corresponding to (4.2) - (4.4). 
This is a standard heat problem of identifying diffusion coefficient. It is 

well known that the problem is an ill-posed problem because small errors in 
the data might induce large errors in the computed solution. For this reason, 
special techniques are needed in order to restore stability with respect to the 
data. 

The one-dimensional IHCP has been discussed by many authors, and 
several different methods have been proposed for its solution. See Murio, 1993 
and the references therein, for a complete description of the algorithms and 
their historical account. We now use the mollification technique to stabilized 
the problem. 

5. Mol l i f icat ion 

In this section we use the mollification method to stabilize system (4.7). 
We introduce the function 

p~,p(t) = Ap exp - ~  , (5.1) 

where p > 0,5 > 0, and 

Ap = ( /~ exp(-s2)ds) -1. 

The kernel p~ (t) falls to nearly zero outside the interval ( -pS ,  pS). 

Let I = [0, T], I~ = [pS, T - pS], 

If f is integrable on I, we define its &mollification by the convolution 

1 

J~f (t) = ] pe (t - s) f (s) ds, t e Is. (5.2) 
0 

413 



6. THE MODEL PROBLEM 

The Fourier transform of a function f (t) is defined by 

1 
/ (co) - (2rr) £ f (t) e-'~tdt, 

- c o  < co < +cxz, i = x/-L-1. 

The convolution theorem allow us to evaluate the Fourier transform of 
d~f from 

The basic idea of the mollification method is that instead of attempting 
to find the point values of the function f (y, t), we attempt to reconstruct 
the &mollification of the functions f at the point (y, t), given by 

J5f (y, t) = (p5 * f)  (y, t). 

For the purpose of illustration, we use a model problem in the following 
section and apply mollification analysis to find the solution. 

6 .  T h e  M o d e l  P r o b l e m  

For tile purpose of illustration, we use a model problem in the following 
section and apply mollification analysis to find the solution. 

Find a(x) ill I and u throughout the domain [0, X] x [0, T] of the (x, t) 
plane, from measured approximations of f( t) ,  9(t), cr and h(x) satisfying 

and 

1 2 
~, = ~o  ( x ) , ~ ,  0 < t < T, 0 < ,: < x ,  (6.1) 

~(0,  t) = f ( t ) ,  0 < t < y ,  (6.2) 

~x(x ,  t) = g(t), 0 < t < y,  (6.3) 

0(0)  = o, (6.4) 

~(~:, o) = h(:d,  0 < x < x .  (6.5) 
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7. THE N U M E R I C A L  E X A M P L E  

Notice that  f ( t ) ,  9(t), a and h(x) are not known exactly. The available da ta  
f¢, 9 ~, a ~ and h(x) ~ are measured approximation of 9(t), 9(t), ~ and h(x), re- 
spectively, and satisfy the est imates 

and 

[ I f  - Y l l ~ o , ,  _~ ~, 

l ib  - h ~ l l ~ , ,  _< ~. 

Mollifying system (6.1), we have the following associated problem: 
For some 6 > 0, find v(x , t )  = J~u (x, t)  and ~ (x) at the (x, t)  points of 
interest, given that  the mollified tempera ture  function J~u (x, t) satisfies 

1 2 
v t = ~ c r  ( x )v~ ,  0 < x < X ,  t > 0 ,  (6.6) 

v(O, t) = J~ff(t) ,  0 < t < T, (6.7) 

v~(X, t) = J~9~(t), 0 < t < T, (6.8) 

a(0) = a ~, (6.9) 

v(x,O) = J~h¢(x), 0 < x < X. (6.10) 

Upon applying mollification method to filter measured data,  Problem 
(6.6) - (6.10) become a stabilized problem. For the stabili ty analysis, see 
Murio, 1993. 

7. The  Numer ica l  E x a m p l e  

Since in practice only a discrete set of points is generally available, we shall 
assume that  the date functions f~, g~ a ~, and h ~ are discrete fimctions mea- 
sured at sample points. 

Let K =  { t ] , t 2 , ' " , t n }  
(0_<t l  < t 2 < . . . , < t n < T )  and 

415 



7. THE N U M E R I C A L  E X A M P L E  

A t  = maxjlt3+l - t j l .  

g n Let G = { j}j=l  be a discrete function defined on K. 
We define the discrete &mollification of G as follows: 
for t C Ia, 

sj 

g,(t) = / 
j = l  sj-1 

where So = 0, s,, = 1 ,  and sj = ½(tj + t3+,), (1 _< j _< n - 1). 

(7.1) 

Let C represent a 'generic  constant  independent  of the mollification param- 
eter 5, and the grid size At. The  stabili ty analysis of discrete mollification 
technique were established by Mejia and Murio (1996). 

1 and k = At = i be the parameters  of tile finite differ- Let h = A x =  ~7 
ence discretization.  

= 0.01 and Ax = At  = 128. 
We solve numerically, system (6.1)-(6.5) with 

f ( t )  = 2e t, g(t) = 0 ,  a(O) =2 ,  

and 
h ( x )  = 2 ~- z ~. 

Discretized measured approximat ions  of the initial and bounded da ta  are 
modeled by adding random errors to the exact da t a  functions. For example, 
for a boundary  function g(t) ,  its discrete noisy version is 

g~ = g(tn) + ~,~,n = 0, 1 , . . . , N ,  

where the (en)'s are Gaussian random variables with variance ~:. The  exact 
solution for a(x) is 

~ ( x )  = 2 + x 2. 

Using mollification and finite difference method  and solving a and v itera- 
tively, the computed  (o o o) value of the volatil i ty a is shown in the following 
figure together  with the exact (__) value for comparison. 
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7. THE N U M E R I C A L  E X A M P L E  
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8. DISCUSSION 

8 .  D i s c u s s i o n  

This paper presented a preliminary study on solving an inverse option pricing 
problem. 

Using the mollification technique, the stability of the inverse problem 
was restored and a numerical example on the recovering local volatility was 
presented. The approach and analysis presented in this paper could also be 
xnodified to solve other inverse problems in finance and insurance such as 
American option pricing and pricing of default risk. Rigorous proof of the 
theorems, complete error analysis of the algorithm and several numerical ex- 
periments involving more general model will be described elsewhere. 

R e f e r e n c e s  

[1] Barone-Adesi, G. and Whaley, R.E., 1987, Efficient analytic approxima- 
tion of American option values, Journal of Finance 42, 301-320. 

[2] Bensoussan, A., 1984, On the theory of option pricing, Acta Applicande 
Mathematicae 2, 139-158. 

[3] 

[41 

Black, F. and Scholes, M., 1973, The pricing of options and corporate 
liabilities, Journal of Political Economy 81,637-659. 

Hull, J. and A. White, 1987, The Pricing of Options on Assets with 
Stochastic Volatilities, The Journal of Finance, XLII, 2, pp. 281-300. 

[5] Mejia, C. E. and Murio, D.A., 1996, Numerical Solution of Generalized 
IHCP by Discrete Mollification, Computers, Math. Applic. 32 (2), pp. 
33-50. 

[61 

[7) 

Murio D.A., 1993, The mollification method and the numerical solution 
of ill-posed problems (Interscience Division, John Wiley & Sons, Inc., 
New York). 

Ramaswamy, K. and Sundaresan, M., ,1985, The valuation of options 
on futures contracts, Journal of Finance 40, 1319-1340. 

418 



REFERENCES 

[8] Wilmott P., J. Dewynne, and S. Howison, 1993, Option Pricing: Math- 
ematical Models and Computation, Oxford: Oxford Financial Press. 

419 




