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A b s t r a c t  

We examine the pricing of catastrophe risk bonds. Catastrophe risk cannot be hedged 
by traditional securities. Therefore the pricing of catastrophe risk bonds requires an 
incomplete markets setting and this creates special difficulties in the pricing method- 
ology. We briefly discuss the theory of equilibrium pricing and its relationship to the 
standard arbitrage-free valuation framework. Equilibrium pricing theory is used to de- 
velop a pricing method based on a model of the term structure of interest rates and a 
probability structure for the catastrophe risk. This pricing methodology can be used to 
assess the default spread on catastrophe risk bonds relative to tradit ional defaultable 
securities. 
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Catas trophe  Risk  B o n d s  

"It is indeed lnost wonderful to witness such desolation produced in three minutes of 
tiine." - Charles Darwin commenting on the February 20, 1835 earthquake in Chile. 

1 I n t r o d u c t i o n  

Catastrophe risk bonds provide a mechanism for direct transfer of catastrophe risk to 
capital markets, in contrast to transfer through a traditional reinsurance company. Ttle 
bondholder's ca,sh flows (coupon or principal) from these bonds are linked to particular 
catastrophic events such as earthquakes, hurricanes, or floods. Although several deals 
involving catastrophe risk bonds have been announced recently the concept has been 
around a while. Goshay and Sandor [8] proposed trading reinsurance futures in 1973. 
In 1984, Svensk Exportkredit launched a private tflacement of earthquake bonds that 
are immediately redeemable if a nlajor earthquake hits Japan [14]. Insurers in Japan 
bought the bonds agreeing to accept lower than normal coupons in exchange for the 
right to t)ut the bonds back to the issuer at face value if an earthquake hits Japan. This 
is the earfiest catastrophe risk bond deal we know about. 

In the early 1990s the Chicago Board of Trade introduced exchange traded futures 
(later they were dropped) and options based on industry-wide loss indices. More re- 
cently catastrophe risk has been embedded in privately placed bonds which allow the 
borrower to transfer risk to tile lender. In the event of a catastrophe, a catastrophe 
risk bond behaves much like a defaultable corporate bond. The "default" of a catastro- 
pile risk bond is triggered by a catastrophe as defined by the bond indenture. Unlike 
corporate bonds, the default risk of a catastrophe risk bond is uncorrelated with the 
underlying financial market variables such as interest rate levels or aggregate consump- 
tion [7]. Consequently, the payments from a catastrophe risk bond cannot be hedged 1 
by a portfolio of traditional bonds or common stocks. The pricing of catastrophe risk 
bonds requires an incomplete markets framework since no portfolio of primitive securi- 
ties replicates the catastrophe risk bond. Fortunately, the fact that catastrophe risk is 
um'orrelated with inovements in underlying economic variables renders the incomplete 
markets theory somewhat simpler than the case of significant correlation. We use this 
to develop a simple approach to pricing catastrophe risk bonds. 

The model we present for pricing catastrophe risk bonds is based on equilibrium 
pricing. The model is practical in that the valuation may be (tone in a two stage 

I Financial econolnists would say that the payments from catastrophe risk bonds cannot be spanned 
by primitive ~sets (ordinary stocks and bonds). 
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procedure. First, we select or estimate the interest rate dynamics 2 in the states of 
the world which do not involve the catastrophe. Constructing a term structure model 
which is a relatively well understood and practiced procedure. Second, we estimate 
tile probability 3 of the catastrophe occurring. Valuation for the full model is then 
accomplished by combining the probability of the catastrophe occurring and the interest 
rate dynamics from the term structure model. 

One may implement the valuation using the standard tool of a risk-neutral valuation 
measure. Tile fifll model is arbitrage-free. 

The paper begins in section 2 by describing how catastrophe risk bonds arise from 
the securitization of liabilities. We also describe some recent catastrophe bond deals. 
Section 3 provides a quick overview and motivation of how pricing may be carried out for 
catastrophe risk bonds. We work out a numerical example which illustrates the principles 
underlying catastrophe bond deals. Section 4 details the inherent pricing problems one 
faces with catastrophe risk bonds because of the incomplete markets setting. Section 5 
describes our formal model and provides a numerical example and section 6 concludes 
the paper. 

2 C a t a s t r o p h e  R e i n s u r a n c e  as  a H i g h - Y i e l d  B o n d  

Most investment banks, some insurance brokers and most large reinsurers developed 
over the counter insurance derivatives by 1995. This is a form of liability securitiza- 
tion, but instead of exchange traded contracts these securities are handled like private 
placements or customized forwards or options. Tilley [18] describes securitized catas- 
trophe reinsurance in terms of a high-yield bond. Froot et al. [7] describe a similar 
one-period product. These products illustrate how catastrophe risk can be distributed 
through capital markets in a new way. The following description is an abstraction and 
simplification but useful for illustrating the concepts. 

Consider a one-period reinsurance contract under which the reinsurer agrees to pay 
a fixed amount L at the end of tile period if a defined cat.astrophic event occurs. The 
reinsurer issues a one-period reinsurance cont.ract that pays L at. the end of the period, 
if there is a catastrophe. It pays nothing if no catastrophe occurs. L is known when the 
policy is issued. If qb denotes the probability of a catastrophic: event, and P the price of 

2Those familiar with state prices recognize that this is equivalent, to estimating local state prices for 
states of the world which are independent of the catastrophe. 

aMore generall:,; one estimates the probability distribution for the varying degrees of severity of the 
catastrophe risk. 

423 



the reinsurance, then the fair value of the reinsurance is 

1 
P - 1 + r qcat 

where r is tile one period effective default-free interest rate. This  defines a one-to- 
one correspondence between bond prices and probabilities of a catastrophe.  Since the 
reinsurance market  will de te rmine  the price P,  it is natural  to deuotc  the corresponding 
probabili ty wi th  a subscript "cat".  Tha t  is, qcat is the reinsurance market  assessment 
of the probabil i ty of a catastrophe.  

From where does tile capital  to support  the reinsurer come? Astu te  buyers and 
regulatory author i t ies  will want to be sure that  the reinsurer has the capital  to pay the 
ca tas t rophe  loss. Usual risk based capital  requirements based on diversification over a 
portfolio do not apply since the reinsurer has a single risk. The  appropr ia te  risk based 
capital requirement  is full funding. Tha t  is, the reinsurer will have no customers  unless it 
can convince them tha t  it has secure capital  at least equal to L. To obtain  capital  before 
it. sells the reinsurance,  the reinsurer borrows capital  by issuing a defaultable bond, i.e., a 
junk bond. Investors know when they buy a junk bond that  it may default but  they buy 
anyway because the bonds do not. often default and they have higher returns than more 
reliable bonds. (Indeed, we will see tha t  the recent deals were popular  with investors.) 
The reinsurer issues enough bonds to raise an amount  of cash C deternfined so tha t  

( P + C ) ( i + r )  =L. 

This satisfies the reinsurer 's  customers. They see that  the reinsurer has enough 
capital  to pay for a catas t rophe.  The  bondholders know that  the bonds wilt be worthless 
if there is a catas t rophe.  In this case they' get. nothing. If there is no catastrophe,  they 
get their cash back plus a coupon R = LC. The  bond market  will de termine  the price 
per unit of face value. In terms of discounted expected cash flow, tim price per unit. can 
be wri t ten in the form 

1 
1 + , : ( 1  + c)(1 - %) 

where c = R/C is the coupon rate and qb denoted the bondholders  assessment of the 
probabil i ty of default  on the bonds. We can assume that  the investment  bank designing 
the bond contract  sets c so tha t  the bonds sell at face value. Thus,  c is de termined so 
that  investors pay 1 in order to receive 1 + c one year later, if there is no catastrophe.  
This is expressed as 

1 
1 = (1 + c ) ( 1  - q~).  

1 + r  
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Of course, default on the bonds and a catastrophe are equivalent events. The proba- 
bilities may differ because bond investors and reinsurance customers may have different 
information about catastrophes. The reinsurance company sells bonds once c is deter- 
mined to raise the required capital C. The corresponding bond market probability is 
found by solving for qb: 

The implied price for reinsurance is 

c - F  
qb- -  l + c  

1 c - - r  
P b = - -  L. 

l + r  1 + c  

Provided the reinsurance market premium P (the fair price determined by the 
reinsurance market) is at least as large as Pb, the reinsurance company will function 
smoothly. It will collect C from the bond market and P from the reinsurance market at 
the beginning of the policy period. The sum invested for one period at the risk free rate 
will be at least L. This is easy to see mathematically using the relation R = L - C: 

( P + C ) ( I + r )  > ( P b + C ) ( I + r )  

c -7"  
- L +  ( l + r )  C 

l + c  
R -  rC  

- C + R  L + ( I + r ) C  

R -  r C  
- - -  L + ( I + r ) C = R + C = L  

L 

So long as Pb does not exceed P, or equivalently, so long as 

c - r  
qcat > - -  - l + c '  

there will be an economically viable market for reinsurance capitalized by borrowing in 
the bond market. Borrowing (issuing bonds) to finance losses is not new. In the late 
1980s, when US liability insurance prices were high and interest rates were moderate, 
some traditional insurance customers replaced insurance with self-insurance programs 
financed by bonds. Of course this is not a securitization of insurance risk but is an 
example of insurance customers turning to capital markets to finance losses. More 
recently, several state run hurricane and windstorm pools extended their claims paying 
ability with bank-arranged contingent borrowing agreements in lieu of reinsurance [12]. 
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The catastrophe property inarket in the 1990s may not satisfy this condition insurance 
prices are high enough to attract investors but is close enough to attract, a lot of interest 
and entice capital market advocates such as Froot et al. [7}, Lane [10], and Tilley I18] 
to offer cat risk products. A cata,strophe risk bond market is developing. 

In our model the fund always has adequate cash to pay the loss if a catastrophic 
event occurs. If no (:atast.rophe occurs, the fund goes to the bond owners. Prom the 
bond owners' perspective, the bond contract is like lending money subject to credit risk, 
except the risk of "default" is really, the risk of a catastrophic event. Tilley describes this 
as a fully collateralized reinsurance contract since the reinsurer has adequate cash at the 
beginning of the period to make the loss payment with probability one. This scheme is 
a simple version of how a traditional reinsurer works with the following differences. 

• The traditional reb)surance company owners buy shares of stock instead of bonds. 

• Traditional reinsurer losses effect investors (stockholders) on a portfolio basis 
rather than a single exposure. 

• Simplifying and specializing makes it possible to sell single exposures through the 
capital markets, in contrast to shares of stock of a reinsurer, which are claims on 
the aggregate of outcomes. 

Tilley [18] demonstrates this teehnique in a more general setting in which the reinsurance 
and bond are N period contracts. This one period model illustrates the key ideas. Now 
we describe three recent catastrophe bonds which have recently appeared on the market. 
In the last section we describe a hypothetical example which illustrates how catastrophe 
bonds increase insurer capacity to write catastrophe coverages. 

U S A A  Hurr i cane  B o n d s  

USAA is a personal lines insurer based in San Antonio. It provides personal financial 
managenlent products to current or fornmr US military officers and their dependents. 
Business lnsarar~ce [19] in reporting on the USAA deal, described USAA as "over ex- 
pose<t" to hurricane risk in its personal aut.onlobile and homeowners business along the 
US Gulf and Atlantic coasts. In ,June 1997, USAA arranged for its captive Cayman 
Islands reinsurer, Residential Re, to issue $477 million face amount of one-year bonds 
with coupon and/or principal exposed to property damage risk t.o USAA policyholders 
due to Gulf or East coast, hurricanes. Residential Re issued reinsurance t.o USAA based 
on the capital provided by the bond sale, 

The bonds were issued m two series (also called tranches), according to an article in 
The Wall Street Journal [17]. In the first, series coupons only' are exposed to hurricane 
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risk - t i le principal  is guaranteed. For the second series bo th  coupons and principal are 
at risk. The  risk is defined as damage to USAA customers on the Gulf  or East  coast 
during the year beginning in June. The  coupons a n d / o r  principal  will not  be paid to 
investors if these losses exceed one billion dollars. Tha t  is, the  risk begins to reduce 
coupons at $1 billion and at $1.5 billion the coupons in the  first series are completely 
gone and in the second series the coupons and principal are lost. Tile coupon-only 
t ranche has a coupon rate of LIBOR plus 2.73%, The principal  and coupon tranche 
has a coupon rate  of LIBOR + 5.76%. The press repor ted  tha t  the  issue was "over 
- subscribed," meaning there were more buyers than ant icipated.  The  press reports 
indicated tha t  the  buyers were life insurance companies,  pension funds, mutual  funds, 
money managers,  and, to a very small extent ,  reinsurers. As a point  of reference for the 
risk involved, we note that  industry losses due to hurricane Andrew in 1992 amounted to 
$16.5 billion and USAA's  Andrew losses amounted  to $555 million. Niedzielski reported 
in the National Underwriter that  tile cost of the coverage was about  6% rate  on line plus 
expenses. 4 According to Niedzielski's (unspecified) sources the comparable  reinsurance 
coverage is available for about  7% rate on line. The  difference is probably more than  
made up by the fees related to establishing Residential  Re and the fees to the investnlent 
bank for issuing the bonds. The rate on line refers only to the cost of the reinsurance. 
The  reports  did not  give the sale price of the bonds, but the investment  bank probably 
set the  coupon so that  they sold at face value. 

As successfifl as this issue has turned out so far (two months  after issue everyone is 
happy),  it. was a long t ime coming. Despite advice of highly regarded advocates such 
as Mor ton  Lane and Aaron Stern [7, 10, 131, ca tas t rophe bonds have developed more 
slowly than  many experts  expected. According to press reports,  U S A A  has obtained 
8(/(X of the coverage of its losses in tile $1.0 to $1.5 billion layer with this deal. On 
the o ther  hand, we have to wonder why it is a one year deal. Perhaps it is a mat te r  of 
get t ing the technology in place. The off-shore reinsurer is re-usable. And the next t ime 
USAA goes to the capital market  investors will be fanfiliar with these exposures. If tile 
t radi t ional  ca tas t rophe reinsurance market  gets tight,  USAA will have a capital  market  
al ternat ive.  The  cost. of this issue is offset somewhat  by the gain in access to al ternat ive 
s o u r c e s  of  reinsurance. 

4Flate on line is the ratio of premium to coverage layer. The reinsurance agreement provides USAA 
with 80 percent of $500 million in excess of $1 billion. The denominator of the rate on line is (0.80)(500) 
= 400 million, so this implies USAA paid Residential Re a premium of about (0.06)(400) = 24 million. 
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Winterthur Windstorm Bonds 

Winterthur is a large insurance company based in Winterthur, Switzerland. In Febru- 
ary 1997, Wintert.hur issued three year annual coupon bonds with a face amount of 
CHF 4700. The coupon rate is 2.25%, subject to risk of windstorm (most likely hail) 
damage during a specified exposure period each year to Winterthur automobile insur- 
ance customers. The deal was described in the trade press and Schmock has written 
an article in which he values the coupon cash flow [16]. The deal has been mentioned 
in US publications (for example, Investment Dealers Digest [11]), but we had to go to 
Euroweek for a published report, on the contract details [2]. If the number of automobile 
windstorm claims during the annual observation period exceeds 6000, the coupon for 
the corresponding year is not paid. The bond has an additional financial wrinkle. It is 
convertible at maturity; each face amount of CHF 4700 is convertible to five shares of 
Winterthur common stock at. maturity. 

Swiss Re California Earthquake Bonds 

The Swiss Re deal is similar to tile USAA deal in that tile bon(ts were issued by a 
Cayman Islands reinsurer, evidently created for issuing catastrophe risk bonds, according 
to an article in Business Insurance [20]. However, unlike USAA's deal, the underlying 
California earthquake risk is measured by an industry-wide index rather than Swiss Re's 
own portfolio of risks. The index is developed by Property Claims Services. Evidently 
the bond contract is written on the same (or similar) California index underlying the 
Chicago Board of Trade Catastrophe Options. The CBOT options have been the subject 
of mtmerous scholarly and trade press articles [3, 4, 5, 6]. 

Zolkos reported in Business Insurance details on the Swiss Re bonds. There were 
earlier reports that Swiss Re was looking for a ten year deal. This is not it, so perhaps 
they are still looking. According to Zolkos, SR Earthquake Brad (a company Swiss Re 
set up evidently for tiffs purpose) issued Swiss 1Re $1222 million in California reinsurance 
coverage based on flmds provided by the bond sale. In the next section we will provide 
a numerical example which illustrates the principles underlying these three deals. 

3 M o d e l i n g  C a t a s t r o p h e  R i s k  B o n d s  

In tile previous section we discussed the securitization underlying catastrophe risk bonds. 
In this se{'tion we adopt a standardized definition of a catastrophe risk bond for the 
purposes of aualyzing this security using financial economics. We are informal in this 
section, leaving the definition of some technical terms until section 5. 
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A catastrophe risk bond with face amount  of 1 is an instrument that  is scheduled to 
make a coupon payment  of c at the end of each period and a final principal repayment  
of 1 at the end of the last period [labeled t ime T] so long as a specified catas t rophic  

event (or events) does not  occur. The  investment  banker designing the bond knows 
the market well enough to know what  coupon is required for tile bond to sell at  face 
value. However, we will take the view that  the coupon is set in the contract  and we will 
determine the market  price. This  is an equivalent approach. 

We will focus most of our a t tent ion on bonds which have coupons and principal 
exposed to ca tas t rophe risk. These are defined as follows. The bond coupons are made 
with only one possible cause of default -- a specified catastrophe. The bond begins 
paying at the rate c per per iod and continues paying to T with a final payment  of 1 + e, 
if no catastrophe occurs. If a ca tas t rophe  should occur during a coupon period, the bond 
makes a fractional coupon payment  and a fractional principal repayment  that  period 
and is then wound up. The  fractional payment  is assumed to be of the fraction f so 
that  if a catastrophe occurs, the payment  made at the end of the period m which the 
catastrophe occurs is equal to f (1  + c). 

At present we are not allowing for varying severity in the claims associated with tile 
catastrophe. Varying severity would occur in practice and we mention this model ing 
issue later. Financial  economics theory tells us that  when an investment  market  is 
arbitrage-free, there exists a probabil i ty measure, which we denote by Q, referred to as 
the risk-neutral measure, such tha t  the price at t ime 0 of each uncertain (:ash flow s t ream 
{c(k) : k = 1, 2 . . . . .  T} is given by the following expectat ion under the probabil i ty 
measure Q, 

[5 , (,) EQ ~=~ [1 + r(0)l[1 + r 0 ) ] " - [ 1  + r(k - 1)] 

The process {r(k) : k = 1 . . . . .  T - l }  is the stochastic process of one-period interest  rates. 
The interest rate for tile first period r(0) is kuown at t ime 0; the factor 1 + r(0) could 
be moved out of the expectat ion.  We denote the price at t ime 0 of a non-defaul table 

zero coupon bond with a time amount  of 1 matur ing at t ime n by P('n). Therefore  we 
have, for n = 1 , 2 , . . .  T, 

p ( n )  = EQ [ 1 ] 
[ l + r ( 0 ) ] [ l + r ( 1 ) ] . - . [ l + r ( n -  1)] " (2) 

We shall let r denote  the t ime of the first occurrence of a catastrophe. A ca tas t rophe  
may or may' not occur prior to the scheduled matur i ty  of the catastrophe risk bond at 
t ime T. If a ca tas t rophe  occurs then evidently r E {1, 2 , - . .  ,T}.  For a ca tas t rophe  
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bond with coupons and principal  at risk (like the second tranche of the USAA bond 
issue or the Swiss Re bonds),  the <:ash flow stream to the bondholder may be described 
(using indicator functions 5) as follows: 

c(k) = { cl{~>k}+f(c+l)l{~=k} k = l  2 , . . . T - 1  
c l / , > r  t + f ( c + l ) l l , = T }  k = T  (3) 

For a catastrophe bond with coupons only at risk (like the first tranche of the USAA 
bonds),  we replace the factor f(1 + c) in (3) by fc and adjust  the payment  in th,, event 
r = T to reflect the ret.urn of principal guarantee:  

c l{T>k} + fc  l{~-=k/ k = 1 , 2 , "  " T -  1 
c(k) = 1 +  cl{~>,r}+fcl{~=Tt  k = T  (4) 

W2" will con~idcr a bond with principal and coupon at. risk, but  the analysis is iden- 
tical, involving only re-specification of the cont ingent  cash flows, for coupon only at risk 
bonds. 

Let us assume that  we are t rading catastrophe risk bonds in an investinent market 
which is arbitrage-free with r isk-neutral  valuation measure Q and that  the t ime of the 
catastrophe is independent  of the term structure under  the probabili ty measure Q. We 
shall formalize these not ions 6 in section 5. We may apply relation (1) to the cash flow 
stream in (3) and find that  the price at tinle 0 of the (:ash flow streanl provided by the 
catastrophe risk bond is given by the expression 

7' T 
c ~ P(k) Q(r > J,') + P(T) ()(r > Y ) + f ( l + c )  ~ P(/~') Q(r = k). (5) 

k - 1  k 1 

The term Q( r  > k) is the probabil i ty under  the risk neutral  valuation measure tha t  
the catastrophe does not occur within the first k periods. The other probabilistic terms 
may be verbalized similarly. No aSSlltlll)tioll has })ceil made abotlt the distr ibution of 
T but  tile a,ssumption that  only one degree of severity can occur is clearly being used 
here. Of course, the dis t r ibut ion of r will depend on the s tructure of the catastrophe 
risk exposure. 

r'For an event A, the indicator flmction is the random variable which is 1 if A occurs and zero 
otherwise. It is denoted 1A. 

6These are the assumptions made by Tilley E~18} although they are not stated in quite this terminol- 
ogy. 
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Formula (5) expresses the price of the catastrophe risk bond in terms of known 
parameters, including the coupon rate c. As we described at the beginning of this 
section, the principal amount of the catastrophe risk bond is fixed at the time of issue 
and the coupon rate is varied to ensure that the price of the cash flows provided by the 
bond are equal to the principal amount. One may apply the valuation formula (5) to 
obtain a formula for the coupon rate as 

T 1 - P(T)Q(r > T) - f ~k=l I ) ( k ) Q (  r = k) 
C ~ ~r 7T 

Ek=l P(k)Q(T ~, k) -[- f ~k=l  P(k)Q(T -~. k) (6) 

Let F(z) denote the conditional severity distribution the bondholders' cash flow X, 
given a catastrophe occurs. Formula (5) becomes 

T T f oc 
E P(k) Q(T > k) + P(T) Q(r > T ) +  E P(k) Q(-r = k) [ zdF(x). (7) c 
k=l k=I dO 

On comparing formula (5) and (7) we see that there is little difference between the 
two formulas. Generally, the conditional severity distribution is embedded as part of 
the risk-neutral measure Q. 

Let us suppose that the catastrophe risk structure is such that the conditional proba- 
bility under the risk neutral measure of no catastrophe for a period is equal to a constant 
00. Purthermore, suppose that should a catastrophe occur there is a single severity level 
resulting in a payment equal to f ( l + c )  at the end of the period in which the catastrophe 
occurs. Let 01 = 1 - 00. In this case, fornmla (5) simplifies to the expression given by 
Tilley [18] for the price at time 0 of the catastrophe risk bond, namely 

T T 
C E P(k)(1 - 01) k ~- P(T)(1 - O1) T ql_ f(1 + c) E P(k)01(1 - 01) k-'. (8) 

k=i k=l 

In order to apply Tilley's formula (8), one must know what the conditional risk-neutral 
probability [or equivalently 00] is. At this point, 01 has not been related to the empirical 
conditional probability of a catastrophe occurring. Therefore, the formula (8) is not 
quite "closed". In order to (:lose the model wc need to link the valuation formula (8) 
with observable quantities that can be used to estimate the parameters needed to apply 
the valuation model. Although we began the discussion of the pricing model with an 
assumption about the existence of a valuation measure Q, it is possible to justify an 
interpretation of 01 as the empirical conditional probability of a catastrophe occurring. 
We shall address and clarify this point in section 5. 
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4 I n c o m p l e t e n e s s  in the Presence  of  Catas trophe  
Risk 

The in t roduct ion  of ca tas t rophe risk into a securities market  model  implies that  the 
result ing model  is incomplete.  The  pricing of uncertain cash flow streams in an incom- 
plete model  is substant ial ly weaker in the interpreta t ion of the pricing results that  can 

be obta ined than  is the case for pricing in complete  securities markets.  In this section 
we discuss market  completeness and explain the nature  of the incompleteness problem 
for models with ca tas t rophe risk exposures. For simplicity, we work with a one-period 
model  a l though similar notions may be developed for mult i -per iod models. Let us con- 
sider a single-period model  in which two bonds are available for trading, one of which is 
a one-per iod bond and the other  a two period bond. For convenience we shall assume 
tha t  bo th  bonds are zero coupon bonds. We further assume tha t  the  financial markets 
will evolve to one of two states at the end of the period, "interest. rates go up" or "in- 
terest  rates go down" and that  the price of each bond will assume to behave according 
to the binomial  model  depicted in the following figures. 

F i g u r e  1 

One-pared Nard 

09 34 i 
rw o- period Bond 

1 
~ , , , , 0 , , ~ 1 . 0 7  = 09346 

0.8901 

= 0.9524 
1,05 

The  bond prices for this model  could be derived from the equivalent  information in 
the following tree diagram for which the one-period model  is embedded.  We specified 
the bond prices direct ly to avoid bringing a two-period model  into our discussion of the 
one-period case. Tile prices reported in figure 1 have been rounded from what  one would 
compute  from figure 2. For example, we rounded 1 1 1 l V~(~)  (i-5~ + 3--~) to 0.8901. 



Figure 2 
One-Period Rates and Risk-Neutral Probabilities 

1 

2 

Suppose that we select a portfolio of the one-period and two-period bonds. Let us 
denote the number of one-period bonds held in this portfolio by nl and the number of 
two-period bonds held in this portfolio by n2. This portfolio will have a value in each 
of the two states at time 1. Let us represent the state dependent price of each bond at 
time 1 using a column vector. Then we may represent the value of our portfolio at time 
1 by the following matrix equation. 

1 

The cost of this portfolio is given by 

1 

1 
In1  I (9) 

n 2  

1 
1.06nl + 0.8901n2. (10) 

The 2 x 2 matrix of bond prices at time 1 appearing in equation (9) is nonsingular. 
Therefore, any vector of cash flows at time 1 may be generated by forming the appro- 
priate portfolio of these two bonds. For instance, if we want the vector of cash flows at 
time 1 given by the column vector, 

C it 

~ 3  



then we form the portfolio 

[ nl ] = [ 1 '  ] - ' [ c  ~ ] 
r~2 1 ] ~  c d 

at a cost. of 1 E-~nl + 0.8901n2. Carrying out the arit.hmetic, one finds that. the price of 
each cash flow of the form (11) is given by the expression 

( ~ )  1 c" +(1)  l.@~cd=O.4717c"+O.4717cd. (12) 

Since every such set of cash flows at time 1 can be obtained and priced in the model 
we say that the one-period model is complete. The notion of pricing in this complete 
model is justified by the fact that the price we assign to each uncertain cash flow stream 
is exactly equal to the price of the portfolio of one-period and two-period bonds that 
generates the value of the cash flow stream at time 1. 

Let us see how the model is changed when catastrophe risk exposure is incorporated 
as part of the information structure. Suppose that. we have the framework of the previous 
model with the addition of catastrophe risk. Furthermore, let us suppose that the 
catastrophic event occurs independently of the underlying financial market variables. 
Therefore, there will be four states in the model which we may identi~' as follows. 

{interest rate goes up, catastrophe occurs} ~- {u, +} 
{interest rate goes up, no catastrophe occurs} = { u , - }  (13) 
{interest rate goes down, catastrophe occurs} - {d, +} 
{interest rate goes down, no catastrophe occurs} _= {d~-} 

The reader will note that the symbol {tt, +} is shorthand for "interest rates go up" 
and "catastrophe occurs" and so forth. This information structure is represented on a 
single-period tree with hmr branclws such as is shown in figure 3. 

Figure 3 

~ {u, +} 

{u, -} 

{a,+} 

{a, -} 

Tile values at t ime 1 of the one-period bond and the two-period bond are not linked to 
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the occurrence or nonoccurrence of the catastrophic event and therefore do not depend 
on the catastrophic risk variable. We may represent the prices of the one-period and 
two-period bond in the extended model as shown in figure 4. 

F i g u r e  4 

One-Period Bond Two-Period Bond 
l 

1 - -  

I fIS 

In contrast to equation (9), the value at time 1 of a portfolio of the one-period and 
two-period bonds is now given by the following matrix equation. 

1 

1 T 
1 "E~ [ nl ] (14) 
1 T n2 
1 

1 The cost. of this portfolio is still given by gggnl + 0.8901n> The most general vector of 
cash flows at time 1 in this model is of the following form: 

C u ,  + 

Ci t ,  - 

cd,+ (15) 

C d ,  - 

On reviewing equation (14) we see that tile span of tile assets available for trading in 
tile model [i. e. tile one-period and two-t)eriod bonds] are not sufficient to span all c~sh 
flows of the form (15). Consequently, we cannot derive a pricing relation such as (12) 
that  is valid for all cash flow vectors of the form (15). The best we can do is to obtain 
bounds on the price of a general cash flow vector so that  its price is consistent with the 
absence of arbitrage. This one-period securities market mode[ is arbitrage-free if and 
only if there exists a vector (see Pliska [15, chapter 1]) 

q / ~  ['I' .... , * "  , *"'*, ~I'~+1, (16) 
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each c o m p o n e n t  of which is positive,  such t h a t  

l 

[~,,,+. ~ , , , - . ~ d , +  0~.+] 1 y~lo 7 0.8901 " 

1 

Such a vector  is called a s ta te  price vector 7. One may solve (17) for all such vectors  to 
find t h a t  the  class of all s t a t e  price vectors  for th is  model  is of t he  form 

qJ = [0.4717 - s, s, 0.4717 - t, t] (18) 

for 0 < s < 0.4717 a n d 0  < t < 0.4717. For each cash flow of the  form (15), the re  is a 
range  of prices t h a t  are cons is tent  wi th  the  absence  of arb i t rage .  Th i s  is given by the  
express ion  

0.4717c "'+ + 0.4717c d'+ + s ( c  ~' - c~, + ) + t ( c  d , -  _ Cd,+),  (19) 

where  s a n d  t r ange  t h r o u g h  all feasible values 0 < s < 0.4717 and  0 < t < 0.4717. Note 
t h a t  a secur i ty  wi th  cash flows which do not. d e p e n d  on the  c a t a s t r o p h e  are uniquely 
priced. Th i s  is not  t rue  of ca t a s t rophe  risk bonds .  For ins tance,  the  price of the  cash 
flow s t r e a m  which pays 1 if no ca t a s t rophe  occurs  an(t 0.5 if a c a t a s t r o p h e  occurs  has  
the  price range  given by the  expression 

I).4717(0.5) + 0.4717(0.5) + s(1 - 0.5) + t(1 0.5) = 0.4717 + (s + t)(0.5). 

The  range  of prices for th is  cash flow s t r e a m  is tile open interval  (0.4717, 0.9434). These  
price b o u n d s  are not  very t ight.  However, they  are all t h a t  can  be  said working solely 
from tile absence  of arbi t rage .  

Let us consider  the  case of a one-per iod  cata~strnphe risk t)ond wi th  f = 0.3. In 
r e t u r n  for a pr incipal  deposi t  of $1 at  t ime  0, the  investor  will receive an  unce r t a in  cash 
flow s t r e a m  at, t ime  1 of the  form: 

(1 + c )  

0.3 
1.0 

0.3 
1.0 

(20) 

7The reader may check that tile c()mponents of the state price vector are precisely the risk neutral 
probabilities of each state discounted by the short rate. 
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We may apply the relation (19) to find that the range of values on the coupon that 
must be paid to the investor have the range in the open interval (0.06, 2.5333). The 
coupon rate of tile catastrophe risk bond is not uniquely defined. There is but. a range 
of values for the coupon that. are consistent with the absence of arbitrage. Although 
this is a very wide range of coupon rates, this is the strongest statement about how 
the coupon values can be set subject only to the criterion that the resulting securities 
market is arbitrage-free. Evidently, we need to bring in some additional theory if we are 
t.o obtain useful, if benchmark, pricing formulas for catastrophe risk bonds. In fact, we 
shall see that we can tighten these bounds, even to the point of generating an explicit 
price, by embedding in the model the probabilities of the catastrophe occurring. For 
this example, let us assume that investors agree on the probability q of a catastrophe 
and they agree that the catastrophe bond price should be its discounted expected value. 
The expected cash flow to the bondholder is 

[ ] ['] (l+c) 0.3q+l.0(1-q) =(l+c)(0.3q+l.0(1-q)) 1 
0.3q+ 1.0(1 q) 

where we have only uncertainty with regard to interest rates remaining. This bond has 
the same (expected) value in each interest rate state, so its price V is that value times 
the price of the one-year default free bond: 

1 
V = (1 + c)(0.3q + 1.0(1 - q))-l.06 

Now we could determine the coupon c so that the bond sells at par (V = 1) initially, or 
we could determine the price for a specified coupon. Given the probability distribution 
of the cata.strophe and the assumption that prices are discounted expected values (over 
both risks), then we can get unique prices. 

This illustrates the difficulty with the financial markets approach. The price can 
no longer be justified by arbitrage considerations alone [z.e. the cost of a portfolio of 
existing assets that gives the appropriate payoffs - since there is no such portfolio]. We 
lose the mfiqueness of prices and it is recovered only at the expense of introducing 
the l)robability distribution of the catastrophe risk. Such is the nature of incomplete 
markets. In the following section we shall describe a method of obtaining explicit, prices 
for catastrophe risk bonds and describe some examples. 

5 A F o r m a l  M o d e l  

lit section 3 we gave a preliminary presentation of tile basic tbrnmlation of a valuation 
model for catastrophe risk bonds and discussed the type of valuation fornmlas described 
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in Tilley [18]. The  discussion offered in section 3 should be considered as mot ivat ion  
for the fonnai model  tha t  we now develop. The formal model  we describe is designed 
to combine pr imary financial market  variables with catastrophe risk variables t,o yield a 
theoretical  valuation model  for catast, rophe risk bonds. Of course, the malhemat ics  of 
the model may be used in other  contexts  regardless of the interpretat ion we give to the 
components  of the model.  

The  financial market  variables are assumed to be modeled on the filtered probabil i ty 
space ( f ~ ( l ) p / l ) P 1 ) .  We briefly review the concepts and notat ion ba.sed on Pliska's 
fifll account ([15, ehapter  3]). The  sample space Q(I) is finite and it represents all the  
paths tile financial variables may take over the t imes k = 0, 1 , . . . ,  T. The  filtration p{1) 
represents how information evolves in the financial market  and may be thought  of as an 
inforlnation tree. More precisely, the fi l tration is an increasing sequence 

= { G "  c c . . .  c 

of sets of events indexed by t ime k = O, 1 , . . .  ,Y. Tim events in P~J) represent the 
investment information available to the market  at t ime k essentially past  security 
prices. The increasing feature %rmalizes the idea that  no inforlnation is lout froin one 
t ime t.o tile next. Tile probabil i ty  measure Pt is defined on P~}) and st) PI(A) is defined 

for all events A C p211 for k < T. 
The  catas t rophe risk wlriables are assumed to be modeled on the filtered probabil i ty 

space (f~(1)p(2), P2). t22 is the probabil i ty measure governing the catas t rophe structure.  
The  filtration p(21 is indexed over tile same t imes k = 0, 1, . . .  T. The  probabil i ty space 
for our full model is taken to be the product  space Q := f~(1) x ~'l (2). Q is also referred to 
as tile sample space for the flfll model. Therefore,  a typical element of the probabil i ty 
space for the fifll model  is of the form a~ = (w(1),w (2)) with CO (1) if: ~)(1) a I ld  CO(2) ~ ~(2) .  
Such all element (or s ta te  of the world for the flfll model) describes the state of the 
financial nmrket wu'iables and the ca tas t rophe risk variables. 

It should again be emphasized that  under this construction, tile embedded sample 
space f~O) represents the pr imary financial market  variables, which for the purposes of 
wduing catastrophe risk bonds is essentially tile terin s tructure of interest rates, while the 
embedded sample space t~t2} represents information related to tile catas t rophe exposure. 
The  probability measure on t he smnple space f / i s  given by the product  measure struc- 
ture. The probabili ty of a s ta te  of the world co = (CO01, CO(21) is P(CO) = PI (c~(l!) P'2(co(2i). 

This  assumption ensures the independence of tile economic and catastrophe risk vari- 
ables. It. is easily checked that  the events ill P~!) and P~)  are independent  under the 
probability nleasure [~. 

The benchmark financial econonfies technique used to price uncertain cash flow 
streams in an incomplete markets  set t ing is the representative agent. We now describe 
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this technique in the context of the probability structure we have just. defined. The rep- 
resentative agent technique consists of all assumed representative utility hmction and 
an aggregate consumption process. Tile agent makes choices about future consumption, 
represented by tile stochastic process {c(k) : k = 0, 1 , . . - , T } .  The aggregate con- 
sumption process may be thought of as tile total consumption available in the economy 
at each point in time and in each state. We shall denote the aggregate consumption 
stochastic process by 

{C*(k)Ik=O, 1,... ,T}. 

Only the first choice is known with certainty at time k = 0. The other choices are 
random, C*(a;, k), depending on the random state aJ. We shall assume that the repre- 
sentative agent's utility is time additive and separable as well as differentiable. Time 
additive and separable means that there are utility flmct.ions Uo, ul , . . .  UT such that tile 
agent's expected utility for a generic consumption process {c(k)lk = 0, 1, . .-  , T} is given 
by 

E ~ ~ ( ~ ( k ) )  . ( 21 )  

It follows from the theory of the representative agent s that the price V(e) of a generic 
future cash flow process c = {c(k)lk = 1 , . . - ,  T} at time 0 is given by the expectation 

V(c) = EP [~~ u'k(C'(k))c(k)] (22) 
k=l //,~) (C* (0)) J" 

Note that t.he aggregate consumption process plays a role in the pricing relation. In 
many implementations of this pricing relation tile aggregate consumption process is 
assumed to evolve according to an exogenous process. This will not be an issue for 
us. Both the form of the utility flulction and the aggregate endowment process will 
be removed from the pricing analysis by relating the pricing relation to the valuation 
measure approach of arbitrage-free pricing. 

In order to proceed further from relation (22), we assume that aggregate eonsump- 
t.ion [or equivalently, the aggregate endowment since we are in equilibrium] does not 
depend on the catastrophe risk variables. This assumption is the condition that, for all 

SSee Karatzas 19] for a rigorous discussion of the theory of the representative agent. Embrechts and 
Meister [6] apply a related method from an alternatiw~ viewpoint. 
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~d = (W(1),~M (21) E ~'~ and all k, the aggregate consumption C*(w, k) = C*(wtl),w (2), k) 
depends only on w (I) and k. 

The hypothesis that aggregate consumption does not depend on catastrophe risk 
variables is a reasonable approximation since the overall economy is only marginally 
influenced by localized catastrophes such as earthquakes or hurricanes. 

In order to relate the representative agent vahtation formula to the usual valuation 
measure approach in arbitrage-free pricing we need to define the one-period interest rates 
implicit in the representative agent pricing model. We define the one-period interest 
rates 

{r(k)lk = O, 1, 2 , . . .  , T -  1} 

through the conditional expectations 

1 1 E e [u~+t(C*(k + 1)) I Pk] (23) l + ~(k) ' ~;(c-(k)) 
for k = 0, 1, 2, • - - , T - 1. The prices and interest rates in the model are known at time 
k = 0. The reader may check that. the one-period interest rate process is independent 
of the catastrophe risk exposure. Indeed, the random variable under the expectation 
operator  depends only on the financial market information available at time k. F~ll 
information is represented by Pk, but the aggregate consumption process depends only 
on the financial information. 

We define a new probability measure Q in terms of P and the positive random 
variable, called the Radon-Nikodyrn derivative of Q with respect to P. We change for 
convenience: Under the new measure prices are discounted (with respect to the term 
structure {r(k)}) expected values. The Radon-Nikodym derivative is 

,4(c" (~, T) 
ddQp(,~) := [1 + r(0)][1 + r ( ~ , l ) ] . . . [ 1  + r ( ~ , T  - 1 ) 1 ~ 0  ~ .  (24) 

We use it as follows. For any random wtriable X, the P and Q expectations are related 
by 

EQ[X] = se[Xdd~p}. 

To see the convenience consider the term of equation (22) corresponding to k = T: 

Ep [U'T(C*(T))c(T,] : Ep [ 1 dQ ] 
[ ~  " 'J [1 + r(O)][1 + r (1)] . - - [1  + r ( T -  1 ) ] -~c (T)  

=EO[ 1 1)]c(T)] 
[1 + r(O)][1 + r (1 ) ] . . .  [1 + r ( T -  
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Tile right, side is the more convenient expression. Other terms in the sum are transformed 
similarly, using conditional expectations. For examt)le, the term corresponding to k = 
T - 1 is transformed as follows: 

Ep L ~5(c ' (0))  1 ) ) c ( T -  1)] 

1))] 
= E P [ ~  c ( r - l )  ; ~ 7 ~ - )  J 

[ c(r -  0y] 
= EP [1 + r(0)][1 + r~-)~. ¢![1 + r (T  - 2)] d e  J 

c(T - dQ ~p ~, 

c ( T  - 

= E Q  [ [1+  r(0)][i + r~-)~. !![1 + r ( T - 2 ) ]  1 

where Y = 

that  

U ' T _ I ( C * ( T  - 1)) and we used tile definition of 1 + r ( T  - 1) to see 
(1 + r(T - 1))u'T(C'(T)) 

(1 + r(T - 1))U'T(C*(T)) [ PT-1 = 1. 

Now we can rewrite the valuation formula (22) as 

V(c) = E  Q k=l [ l + r ( 0 ) l [ l + r ( 1 ) ] . - . [ l + r ( k  1)] 

Equation (25) recasts the equilibrium valuation formula as a standard risk-neutral ex- 
pectation. The cash flow c(w, k) = c(w (1), w (2), k) depends, in general, on both interest 
rate states and catastrophe states. However, the discount factors depend only on the 
interest rate states. To make this more explicit, we re-write the formula by breaking 
the expectation into two expectations, the first conditional on the interest rates. The 
catastrophe bond (and in general catastrophe derivatives) can be evaluated by first 
calculating the conditional random variables 

~(k) = EQ[c(k)lP (l)] 

which are expectations over the loss distribution. The value of ?~(k) reflects the random 
interest rate events represented by p(U. The ~(k) depend only on the financial variables. 
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Then we obta in  this vahmtion formula: 

"~'(c) E~ k=, [ l + r ( 0 ) l [ l + r ( 1 ) ] . . . [ l + r ( k -  1)] 

[ k  1 E~ [c(k)lp(l)]l 
= E°  ~=: [1+  r(0)][1 + r (1 ) ] . . . [1  + f i t : -  1)] 

E ~ 
,= ,  [1 + r(O)](1 + r ( l ) ] . . - [ 1  + r ( k  - 1)j F(k) 

(2s) 

[± 1 , l E # , 
, - = : [ l + r ( 0 ) ] [ l + r ( 1 ) ] ' " [ l + r ( k  1)j : (k )  

This shows we can calculate the ca tas t rophe  bond t)rice in stages: 

1. Calculate  the equivalent  risk neutral  probabil i t ies  and interest ra tes  using the 
aggregate consuinpt ion process. 

2. For each interest rat(, s ta te  of the world, ealculate the bond 's  ( 'xpected cash flows 
condit ional ly on the interest  ra te  path.  

3. Calculate  the price of the expected cash flows using the equilitn'ium valuat ion 
formula. 

\x,%, note also tha t  the valuat ion measure,  Q(w) Q(~.(t) ~. _,)) = , , can })e wri t ten  as a 
product  

0(~,(,  .,(")) = Q,(./'l)p2(~c~) ) 

where 

0,(~,  (~) = p:(~,('))[1 + ,-(o)][1 + , . ( ~ ) ,  1) ] . . .  

• . . [1 + r ( w  ll) T -  1)] u ! ' ' ( C ' ( ~ ' T  1)) ' u~)(C" (~', ())) (27)  

This is well defined t)ecause the aggregate  consmnpt ion process does not depend on the 
ca tas t rophe  risk. We know tha t  p 0 )  and p(2) are in(let)enden! under t,lm t)robabili ty 
measure P. It is als(~ t rue tha t  p(L) and p(9) are in(IependeJlt under the prol)abil i ty 
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measure Q. Indeed, suppose that  Al E p(l)  and A~ E p(2). Then  we find by direct  
calculation that,  

Q(A, A A2) = E 1A,(W) 1A~(W)Q(w) 

= E E l&  (cO(l))1A2(W(2))QI(C~(1))p'2(a~(2)) 
, J (  I ) ~ l ] (  1 ) k~3(2) ~ l ~ (  2 ) 

= Q,(A, )P:(A2)  = Q(A,)Q(A2) 

(2s) 

The independence of P(~) and p(2) under the probabili ty measure Q simplifies the val- 
uation problem for ca tas t rophe risk bonds as we now illustrate. 

For simplicity, we shall suppose that  the catas t rophe risk variables have a s ta t ionary 
and finite tree structure of the following nature.  The  stochastic process {X(k)  : k = 
1, 2 , . . .  , T} denotes the ca tas t rophe  losses al located to each period 9. Sta t ionary means 
tha t  the distribution of X ( k )  does not change with k. Since there are only finitely 
many states, we can denote the range of X ( k )  by 0, z~, z2 . . . .  , :rn. The event X ( k )  = 0 
indicates no catastrophe; its probabil i ty  is 00. For the positive loss amounts  z,, we use 
the notat ion Pr[X(k) = x~] = 0~. Recall  tha t  the losses depend only on ft (2/. In other  
words, for a state a~ = (ag~),a~ (21) E ft, the  value of X(w', k) is independent  of a/~1. 

The Morgan Stanley Bond 

This bond pays coupons at a rate  of e per period until a catastrophe occurs. If no 
catastrophe occurs, the bond matures  with a final payment  at t ime T of 1 + c. We 
define the t ime 7- of the first ca tas t rophe  as 

7 = m i n { k l X ( k  ) > 0} (29) 

where r = oc if X(k )  = 0 for all k. If a ca tas t rophe occurs, the bondholders get. a final 
payment of g ( X ( r ) )  where 9(z) is a function specified in the bond contract.  The  cash 
flows to the bondholder are 

c 1,>k + ~(X(k) )  L : k  k = 1,2 . . . . .  T -  ~ (3O) 
c(k) = (1 + c) 1~>I' + g(X(T) )  lr=T k = T 

where the fixed rate coupon c and the face amount  1 are paid until a catastrophe occurs. 

"*The bond indenture may talk of ~'in(:urred" or "paid" as ways of allocating losses to periods. We 
assuine some well-defined unalnbiguous allocation is defined. 
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Direct  calculat ion shows that ,  Because the. coupons are independent  of p(l}, 

= EQ[c(k) t P  0)] 

c EQ[I~>k + g(X( / : ) )  1~:~] k = 1, 2 . . . . .  T -  1 
= (1 + c) EQ[1,>T + . q ( X ( T ) )  1,=,.] k = r 

N o w  us~  E O [ l ~ > d  = 00 k, 

E Q [ ( j ( X ( ~ ) )  l r~k]  = 00k-l(1 -- Oo)EO[g(X(a:)lX(k) > o] 

and let 

= E Q [ g ( X ( k ) ) l X ( k )  > O] 

fJ(:r, 1) 1 0--100 4- 09 
= - "~(~~) 1 - ~ - 0 o  

On 
+ - "  + 9(x~) 1 - 0-~" 

Then,  we have the ext)ected cash flow (averaged over the loss d is t r ibut ion)  conditional 
on the  financial states:  

J" (:0 k + 0~-l(1 - 0(,)t, k = 1, 2 . . . .  , T -  1 ~(k) 
(1 + c) 0[{'+ ' r : l  0 o (1 0o)p k = T 

It. tu rned  out h)r this bond tha t  the expected  coupons are constant .  Then, relying on 
the independence relat ion to simplify the cxt)ectat ion (25) for the cash flow s t ream (30) 
shows the price of the cat.astrol)he risk Bond is given hy the expression 

V 

T = [ 1 
~::~ It + ,,(o)][t + r ( t ) ]  

T 

J,.:~ [1 + r(O)] [1 + r (1 ) ]  

"1" 

= ~ p(k)~(k) 
k - I  

T 

= + 

k-.l 

+ r ( O ) ] [ l  + r ( 1 ) ] . . .  [1 + r ( k  - 1)] ~:(/') 

• [1 ÷ ~(k - 1)] ~(k)]  

• [1 + r(k - 1)]] ~(k) 

T 
P(T)OIz/ + tz ~-~P(k)Oo k ' ( 1 -  0o) 

k=l 
(31) 
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Examining relation (31) allows us to draw the following conclusion. We have estab- 
lished that  valuation by a representative agent is equivalent to selecting a term structure 
model which is independent of the catastrophe risk structure and combining this term 
structure model with the probabilities of a catastrophe occurring to price the catastro- 
phe risk bond. The evolving catastrophe risk bond prices [i.e. prices at times other than 
time 0] may be obtained from computing conditional expectations. 

The general intertemporal valuation formula for the price of this type of catastrophe 
risk bond at time n, given the market information p~l) and assuming no catastrophe 
has occurred as of time n, is given by 

T 

t,;~ = ~ ~ P (n ,  k)Q(~- > kI~ > n) + p(,~, r ) Q ( T  > TI~- > ,~) 
k = n + l  

T 

+ # ~ P(n,k)Q(r=kl~->n) (32) 
k ~ n + l  

where P(n, k) denotes the price at time n of a zero coupon bond maturing for 1 at time 
k. For our s tat ionary model, the conditional probabilities are easy to compute. 

This formula (31) has already made an appearance in section 3 [equation (8)] with 
O0 replaced by 1 - 01. The model developed in TiUey [18] may be thought of as the se- 
lection of a short-rate process {r(k)} on the filtered space (f~(~), p(1)) and a risk-neutral 
probability measure Q(t} on the probability space fY~) [~.e. a term structure model 
defined by {r(k)} and Q0)] crossed with a conditional binomial catastrophe structure. 
The independence of the financial market risk fiom the catastrophe risk has permit- 
ted us to easily fit together these two probabili ty structures to obtain a practical and 
economically meaningful model. The binomial formula is easy to apply as all that  is 
needed for pricing the catastrophe risk bond is an estimate of the probabili ty of a catas- 
trophe occurring within one-period and a knowledge of the current yield curve. The 
expression (31) is theoretically equivalent to Tilley's formula except that  we are able 
to interpret the parameter 00 in a traditional actuarial fashion because we closed our 
model using the theory of a representative agent which naturally involves the empirical 
probabilities of the various risks in the model. The fact that  a catastrophe risk model 
is necessari/y incomplete means that there is no unique interpretation of the prices that 
we assign to the catastrophe risk bonds. This problem is inherent in any model that 
is used to at tach a price to catastrophe risk bonds. The utility function of the repre- 
sentative agent, which we could loosely refer to as the risk aversion of the market or 
the market 's  a t t i tude towards risk, is part  of the assumed structure of the pricing rule. 
In our equivalent formulation of the pricing problem in terms of risk-neutral valuation, 
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the incompleteness is enlbedded in the selection of the term s t ructure  model  rather  
than a,~ part  of the  ca tas t rophe  probabilities. In other words, f~n varying economic and 
eatas t rophe variables, the effect on the price dynamics of the ca tas t rophe  risk bond 
(equation (32)] appears  through the implicit selection of the embedded  te rm s t ructure  
model. Al though the bond pricing formula (31) seems to not depend on the  embedded 
risk aversion, the dynamics  of the catastrophe risk bond prie{'s as shown in formula (32) 
depend on the full te rm s t ructure  model  and thus on the embedded risk aversion. The 
fact that  it is natura l  to select a term structure model for actuarial  valuation problems 
hkh,s the inherent  difficulty associated with the fact that the t:at a,str(>phe risk market  is 
incomplete. 

The  Morgan Stanley bond was proposed as a means of financing, a layer of risk in the 
California Ear thquake  Author i ty  program to provide ear thquake coverage. At the last 
inimlte it was under-bid by Berkshire Hathway with an offer of t radi t ional  reinsurance 
to coy(u a $1.5 billion layer for four years for a premium of $161 million, a rate  on 
line of 161/1500 = 10.73G.. According the a report  in h~.;t~tu, tionat Investor [1], the 
corresponding Morgan Stanley deal would have had a rate on line (,f I I-14~X:. 

Now we look at a few more examples. 

W i n t e r t h u r ' s  B o n d s  

For this example  we need lhe set of financial assets to include lhe default  free bonds ma- 
turing sit each Cotlpoll date  sus usual, and also an equity secllrity, \¥ i r l ter thur 's  comllloll 
stock. V~'( ~ are relying, on Schmock's  paper [16] and the trade press (including [21) for 
this description. We let the stochastic process {S(k)} denote the price of Win te r thur ' s  
stock. For s implici ty we assume no dividend payments  to stock holders are expected 

during the term of the bond. This bond's  cash flow depends on the mtmber of claims 
rather than the severity or occurrence of a catastrophe.  Therefor(~ we let {N(k)} denote 
the numl)er of wiuds torm claims per year to the 750,000 atttos Wmte r thu r  insures in 
Switzerland. We will write the coupon in terms of this claim illllltl)er proc(!ss. As we did 
earlier, we will assume that  the loss variables are stationary. The 'a(tded flexibility," as 
the trade press deserit>es it, is a conversion option at matur i ty  Y = 3. The  conversion 
option allows the bondhoMer  to take five shares of st.ock in lieu of the payment  that  
is otherwise due. The  face amount  is 4700 Swiss francs and the (:oupon rate is 2.25~.  
Thus t he bon(tholder 's  cash flow can be described as follows: 

4700(0.0225) 1 xtk)<6oo0 k 1, 2 
c(t:) = max{SS(3),,17(/O+ 470(l(0.0225)1,~,(:,i~o~,o } t: :~ 
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Let Pr (N(k)  > 6000) = q and compute  the expected coupons, condit ionally on tile 

financial variables, to obtain  

a(1) = ~ ( 2 ) -  4700(0.0225)(1 - q) 

and 

P(3) - max{5S(3), 4700(1.0225)}(1 - q) + max{SS(3), 4700}q. 

These expected paynlents to bondholders  of course still have financial risk since S(3) is 
random, but in principle we could proceed now with the financial measure and compute  
the market value of the bond. 

U S A A ' s  b o n d s  

Tile first tranchc of the USAA deal has a face amount  of $163.8 nlillion. Only the 
coupon is at risk and the coupon rate is L I B O R  pills 2.73%. If there is a ca tas t rophe  
(as described earlier), the  coupon is not  paid to the bondholders. Their  principal is 
safe, but  according to tile bond indenture as described by Zolkos [19], tile principal will 
not be repaid for ten years, (luring which t ime no coupons will be paid. I11 effect, sonic 
of the b(mdholder 's principal is lost because each dollar of principal due at matur i ty  is 
replaced by a doll~r due 10 years later. Let X be tile losses as described m the bond 
indenture. Assume that  the term structure  is based on LIBOR. The press articles do 
not specify exactly how the coupon depends on X, but we will assume an all or nothing 
payoff. Then the coupon per 1000 of face value can be writ ten as follows: 

1000(1 + r(0) + 0.0273) l{x<10'~} /,: = 1 
c(k) = 0 1 < k < 1 0  

1000 l/x>loo } k = 10 

Let P r ( X  > 10 v) = q. Then  we have 

1000(1 + r(0) + 0.0273)(1 - q) k = 1 
~(k) = 0 l < k < 1 0  

1000q k = 10 

We let P(1, 11) denote the price at tinle 1 (when the cat bond nlatures) of a default fiee 
zero coupon bond providing a payment  at t ime 11. At tile t ime the cat bond is issu(~(t, 
P(1, 11) is random so this contract ,  like Wint.erthur's,  has financial risk blended with 
the cat risk. The expected coupon is equivalent to a single payment  at. k = h 

1000 (1 + r(()) + 0.0273) (1 - q) + 1000 P(1,  11) q 

Now we will work out an example  completely. 
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A Final Example 

We illustrate the pricing mode] for a two-period case combining a binomial term struc- 
ture model and a binomial catastrophe risk structure. The bond is Winterthur-style, 
but without the conversion option. The face amount is 100. Coupons only are at risk 
so the 100 is paid to the bondholder at k = 2 with probability 1. A coupon of 12 is 
paid at k = 1,2 provided no eat.~strophe occurs during the period [k - 1, k]. The term 
structure is shown in Figure 5. The catastrophe states and probabilities are shown in 
Figure 6. 

E m b e d d e d  T e r m  S t r u c t u r e  M o d e l  - F i g u r e  5 
lone-period rates and risk neutral probabilities] 

(1, 1) 
0,5 

05 A 0 5  
~ ~ (1,0) 

0,08 
(o, I) 

0 5 ~  05 

C a t a s t r o p h e  Risk  S t r u c t u r e  - F i g u r e  6 

(0, O) 

~21 2~ 

(1, 1) 

~ (l,o) 

(o, 1) 

(o, o) 

The expected bondholder payments, aw~raged over the catastrophe distribution, are 
~(1) = 12(0.97) = 11.64 and ?~(2) = 100 + 12(0.97)(0.95) + 12(0.03)(0.96) = 111.4036. 
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The discounted expected value, using the term structure, is the price of the cat bond: 

[ ( '  1 11.64 + 111.4036 ~ + ~ = 106.51 
1.08 

Consider a bond that has the same prospective cash flow, but no possibility of default. 
This is called a straight bond. The price of the straight bond at the time the cat bond 
is issued is found by using the term structure: 

1 [12+112(1.@85 1.--~7)~] 1.08 + = 107,36 

Suppose an insurer (like Winterthur, Swiss Re, or USAA) issues the cat. bond and 
simultaneously buys the straight bond. Tile straight bond is more expensive. The 
trades cost the insurer 0.85 per 100 of face value. What does the insurer get in return? 
In each of the two future periods, if there is no catastrophe, the insurer's net cash flow 
is zero because it receives the straight bond coupon and pays the cat bond coupon. 
However, if there is a catastrophe in either period, it still receives tile straight bond 
coupon (12), but does not pay the cat bond coupon. In effect, the insurer has purchased 
a two year catastrophe reinsurance contract which pays 12 in case a catastrophe occurs 
during either period. This increases tile insurers capacity to sell insurance for tile next 
two years by 12 at cost of 0.85. The actual deals we have described all increase the 
bond issuer's capacity. The cost may be high, but the technology is being developed so 
tile cost will probably come down. Moreover, investors are becoming more familiar with 
the product so future deals might be relatively less costly. And, as others have pointed 
out, the insurance industry would be strained by a $30 billion hurricane loss, but the 
capital markets could withstand it with relative calm. Catast.rophe bonds may become 
a routine method of transferring catastrophe risk. 

It is worth mentioning again that the line of insurance is immaterial to the capital 
market - it. does not have to be catastrophe risk. At the 1997 Swiss Actuarial Summer 
School held at the University of Lausanne we heard from Winterthur actuaries of a 
proposal to issue bonds which would transfer mortality risk to bondholders. Winterthur 
has issued long term pension policies and face the risk of unexpected improvement in 
pension beneficiary mortality, A security with bondholder cash flow tied to a mortality 
index would provide Winterthur with very long term coverage that is not available in 
the traditional reinsurance market. 
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6 Concluding Remarks 

We have discussed the financial economics involved in the pricing of catastropile risk 
bonds. Furthermore, we have clemonstrated how this theory may be utilized t.o construct 
a 1)ractical valuation model which can be justified within the fl'amework of a represen- 
tative agent equilibrium. A flfll implementation of the representative agent model could 

have been made but there is little point since in practice one is more likely to choose to 
work with the noil-defaultable term structure model backing the valuation procedure. 
It is quite natural that the inputs to a valuation procedure for catastrophe risk bonds 
should be assumptions about the term structure dynamics and the t)robability structure 
governing the occurrence of a catastrophe. As a first at)proximation to the pricing of 
catastrophe risk bonds, such a valuation framework seems to hold reasonable intuition 
and is theoretically sound. A cat~kstrophe risk bon(t cannot be fully hedged because of 
the lack ()f traditional securities that can be used to closely at)l)roximate the payoffs 
from the cata.strot)he risk bond [i.e. inherent market inconlpleteness]. Consequently, 
implicit in the coupon rate [or equivalently the price] of a catastrophe risk bond is the 
investor's at t i tude towards risk. Although we have provided a fi-amework in which to 
attach a specific price to a cat~kstrol)he risk bond, the fact that the catastrophe risk bond 
camlot be l)erfectly hedged necessarily implies that there is a range of prices at which 
the (atastrt)phe risk bond could sell without the existence of arbitrage in the market. 
Th,' inability of investor's t.o efficiently hedge the risk in cat.ast rophe risk bonds also sug- 
gests t llat were Charles Darwin to observe a ca.tastrophe bond market during a major 
('atastr, q)he he inight comment "lilt is indeed most wonderflfl to witness such financial 
(tesolati(m 1)rodu(:ed in three minutes of time." At su(:h a time, catastrophe risk bond- 
h()l(ters w, mld g;enerally find that the "high yields" they were receiving were insufficient 
to t)rotec~ theln from the bare risk that is inherent in such an unim(tgeable security. 
There is substantial literature dealing with the problem of incomplete markets. In the 
end how(,v(,r, no matter  how one chooses to look at the valuation problem in incomplete 
mark('ts there is simply ao way to a.ssign exact prices to se(urities. [leaders interested 
in tlmse pricing issues may consult Chan and van der Hock (1996) as an introduction 
to several techniques for pricing cash flows in incomt)lete markets. In the end, one is 
har(t 1)r('sse(l t(~ come up with completely cot~vincitl g l)ricmg, theories t%r catastrot)he 
risk b~m(ts. 

A c k n o w l e d g e m e n t s :  The GSU (?olleg(, of Business Administration provided a 
cottrs~, release duriag the smnmer of 1997 to the first attt.hor in sul~t)ort ~f research on 
which this t)al)er is t)a.,~e(t. We thank Joe VairchiM of Zm'i('h lnsluance and Virginia 
Yomlp, of the University of Wisconsin t\)r their helpful comments. 
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