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This is a summary of the presentation given during the ARC Conference. Its purpose was
to give a brief introduction to subexponential behavior and to show that the family of
subexponential distributions provides ideal characteristics to model insurance risks.
Although the literature related to this topic accumulated quickly during the last years, a
textbook explaining the applications of extreme value theory with ntuition as well as
insight was still to be written. Embrechts et al. (1997) satisfies this need and most of the
results presented here can be found in this new classic in the actuarial literature.

The framework
The most common model of insurance risk theory is, by far, the random sum model

SE)=X, + X, +..+ Xy

where the random variables X|,X,,.. are independent, identically distributed’ and
independent of N(). The distribution of S{t) is obtained by conditioning on the number
of terms in the sum:

= iP[N =n
n=0

where F,"(s) denotes de n™ convolution of the common distribution of the X,'s. These

types of functions are usually called compound distributions and, in the particular case of
Poisson claims, take the form:

FS(,)(S i -u(fu s).

n=0

! Usually concentrated m (0,00)
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We are interested in the right tail of compound distributions. The main asymptotic results
at hand are:

¢ The “light-tailed” (Lundberg type) asymptotics
e The “heavy-tailed” subexponential asymptotics

In this work, we focus on the following questions:

¢ How do we characterize heavy-tailed distributions?
What 1s an appropriate class of heavy-tailed distributions with suitable asymptotic
properties?

o How do these asymptotic properties compare to Lundberg asymptotics?

Tails and failure rates

The tail of a claim size distribution can be analyzed via the failure-rate 4 (force of
mortality) in the following way:

Notice that directly from its deﬁnition we get

_L_= L&), L),
#(v) f(y) Jf(y s f)

If the function (y)y) is increasing? in y for fixed x, the integral I—)dx will also

)

be increasing and therefore x(y) will be decreasing. In the same way, 1if that quotient 1s

decreasing, the failure-rate will be increasing. Now, we just have to relate the behavior of
1 with the thickness of the right tail of a distribution.

fG+y)
/0)

decrease faster than f(x + ). The distribution is “‘pushing” most of its probability to the

tail and therefore we get a thick right tail. In summary, a decreasing failure rate is

fx+y)
)

distribution goes to one faster, accumulating most of its probability 1n its center, giving a
thin night tail: Increasing failure rates are therefore associated to light tails.

Intwitively speaking, if the function is increasing in y, the values of f(»)

associated to heavy tails. In the same way, if the function

1s decreasing in y, the

Figurel illustrates this non-rigorous explanation.

* Non-decreasing, strictly speaking
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Notice that by Cauchy-Schwarz incquality, decreasing failurc rate behavior is preserved
under mixing, whereas convolutions preserve increasing failure rate behavior. Therefore,
mixing is a procedure that gives us heavy tailed distributions, while the sum of random
variables generally generates light tailed distributions.

An example

We have learned that typical examples of heavy tailed distributions appear in modeling
catastrophes. In order to have a sequence of losses that most of us would consider as
catastrophes, I decided to plot in figure 2 the 40 most costl;/ insurance losses during the
period 1970-1998 as registered in the bulletin Sigma(1999)°. The amounts of the losses*
arc plotted against time and the line denotes the record loss up to that time. This graph
includes, for example, hurricane Celia (1970), the “Autumn storm” (1987), hurricane
Daria (1990), the earthquake in Southern California (1994) and the most costly insurance
loss of all times: hurricane Andrew (1992). Most actuaries would agree that in order to
model these losses - and obtain a good fit - we must choose a heavy tailed distribution.

* Which 15 actually an update of a similar table found in Embrechts et al (1997)
* In mullion $US at 1998 prices.
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The 40 most costly insurance losses (1970-1998)

Source Sigma No 1:1999
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Fig. 2

But while analyzing these data, one notices a very peculiar behavior: the record losses
seem to have the wrong concavity! If we were observing a realization of a sequence of
independent, identically distributed random variables, the record loss should look like a
logarithmic curve, not like an exponential one As Embrechts (1997) on p. 4 notes:

“Intuttion tells us that successive records for 1id data should become more and more rare
as time goes by: it becomes more and more difficult to exceed all past observations”

In order to verify this intuition, at least at an exploratory level, we can simulate losses
occurring exactly at the same dates as our original data, preserving the mean and variance
of the observed losses. Figures 3 and 4 simulate several realizations assuming normal and
gamma losses respectively. The drastic change in the record processes is due to the tail of
each distribution: heavy tails generate successive record losses that exceed the past
observations quite “easily”.

Now that we have confirmed the presence of heavy tailed behavior, we are interested in

finding an appropriate class of distributions that fits our data and has desirable properties
from the actuarial point of view.
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Coefficient of adjustment and tails

The coefficient of adjustment v can be defined in several ways, a useful one is:

v>0 such that fe"‘dF "(x)=1+8, where @ is the safety loading and F, the equilibrium
distribution of the claim amount distribution F.
One notices that the existence of v implies that F, and F are exponentially bounded, 1.e.
vX
I—F(x)sﬂi—). In other words, large claims are very unlikely (with exponentially
e

small probability) to occur.

This is the case for distributions like: exponential, gamma, Weibull (light tail), truncated
normal and those distributions with bounded support. But it is not the case for many other
distributions, for example: lognormal, Pareto, Burr, Benktander I and II, Loggamma and
Weibull (heavy tail). Therefore we need some additional tools to expand our family of
posstble distributions to use.

Regular variation theory: just a glance
Regular varying distribution functions are of the form l—F(x)= x™L{x), where L is a
slowly varying function, that is, one for which L(tx)~ L()c)5 >0.

These functions have the nice property of closeness under convolution operations, n
particular, 1- F™"(x) ~ n[l -F (r)] But also notice that

P[max(X,,...,X")>x]=1—[ (x)] = l—F(x)]ZF ~n1—F(x)]

1.€., the distribution of the maximum and the distribution of the sum of n claims are of the
same order of convergence! This gives a very nice expression for the probability of
ultimate ruin:

w(u)=ii(Hﬁ)”"(l-Fi"(u))

() l u) 1
m 1+92( ()]J Z(1+6?) n= gasu—mc

* In other words, they are of the same order of convergence. Please see the details in Embrechts (1982).
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Therefore,

~ EE%(—] f[l ~F(y)kdy asu—co,

This result covers the Pareto, Burr, loggamma and truncated stable distributions. But we
want more! Is it possible to expand this class of distributions (regular varying) in such a
way that we preserve this asymptotic result for the probability of ultimate ruin?

The answer is yes. The class can be expanded further more, to the class of Subexponential
distributions.

Subexponential distributions

Although the theory of subexponential distributions is far from trivial, we can benefit
from all the research done in this field and use simplified but completely accurate
definitions. For a comprehensive review of this topic, see Embrechts(1982).

o . o ps F" .
A distribution F is subexponential if llmu] = n, or equivalently if

e [1-F)]

PlX,+ X, +..+ X, >x]~ Plmax{X,, X,,.,X,}] as x>c0.

Relevant properties are:

e lim 1-Flx-y)
e 11— F(x)

o ¢™(1-F(x))— oo, for all £>0. (Which justifies the name “subexponential”)

e For any £>0, fe“a’F (x)= e®(1 - F(y)), y>0. Therefore this integral - that defines the

=1 uniformly for compact sets in the support of F.

coefficient of adjustment - goes to infinity, which comprises the heavy-tailed cases
we are interested in.
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Applications

These results allow us to formulate the Cramér-Lundberg theorem for the subexponential
class:

For the classical ruin model, with F, an element of the subexponential class of
distributions:

as U—r0.

(1_Fl(u))
o)~ L= f)

v

This result generalizes the asymptotic formula for regular varying functions, including
now the lognormal, Benktander I and II and the heavy-tailed Weibull.

Even more, the class of subexponential distributions is the biggest class such that this
asymptotic result holds. Therefore, this is the natural class of distributions whenever the
cocfficient of adjustment does not exist:

F, subexponential <> 1 - y(u )subexponential < w(u)~ gig’(u—))

The formulas for total claim amounts are as easy as those for ruin probabilities:

Let G denote the distribution of total claim amounts, then

G,(x)= ZP, [N = n]F"' (x). If F is subexponential and the probability generating
n=0

function of N exists around one,® then G, will also be subexponential and

l—G,(x)~ E[N(t)Il—F (x)] as x—oo. A notably simple formula under such general
conditions.

® This sumply means that the distribution for the number of claims 1s not heavy-tailed.
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