
As can be seen for example by the cutting edge section of Risk magazine,
research papers mainly focus on market risk, credit risk, and – with a little
less attention – operational risk. Although these risk types are very impor-
tant for financial institutions, the true landscape of risk is much more
complex and far from being well explored and understood. There is a
variety of “other” risks looming on the horizon, which seriously threaten a
banks profitability or which can disrupt or even destroy its business com-
pletely. Moreover, such risks often reflect an under-researched area of
financial risk management, and established and ready-to-use measurement
techniques are rarely available. Also banking supervisors demand that more
attention is being paid to such “hard-to-measure” risks as the following
Pillar II passages of the new international regulatory framework of Basel II
(Basel Committee on Banking Supervision 2004) show:

• 731: “… Sound capital assessment include … policies and procedures
designed to ensure that the bank identities, measures, and reports all
material risks.”

• 742: “Although the Committee recognises that other risks […] are not
easily measurable, it expects industry to further develop techniques for
managing all aspects of these risks.”

This view has also been confirmed by different European supervisors,
confer for example, The Committee of European Banking Supervisors
(2004).

Capturing all material risks of a financial institution requires a broad risk
self assessment to find out which are the most relevant risk drivers for the
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bank. One of the most obvious variables to be monitored in this context are
earning themselves. However, none of the Pillar I risks take earnings
volatility directly as a primary driver into account, instead, they usually
focus on aspects of the business environment that only indirectly affect the
institution earnings by virtue of for example, failed processes, credit
defaults, drop in share prices, or interest rate changes.

For an all-encompassing risk assessment it is therefore necessary to intro-
duce an additional kind of risk that is directly linked to the uncertainty of
specific earnings components not yet associated to other risk types. Usually,
such an earnings-related potential loss, which can also threaten a banks
market capitalisation, is referred to as business risk.

Evidence for the growing importance of business risk was recently also
given in a survey undertaken by the IFRI/CRO Forum about economic
capital practices in leading financial institutions (The Institute of the Chief
Risk Officers (CROs) and Chief Risk Officers Forum (CRO Forum 2007))
where 85 % of the participants stated to include business risk in their aggre-
gated economic capital assessment. Yet surprisingly, there is no common
agreement on a precise definition, specific risk drivers, and measurement
methodology for business risk, even though its absolute size in term of
economic capital is comparable to that of operational risk, see again The
Institute of the Chief Risk Officers (CROs) and Chief Risk Officers Forum
(CRO Forum 2007). With this regard, we also performed a benchmark exer-
cise on a sample of 15 international banks by analysing their risk
management practise as disclosed in their official financial annual reports
from 2004 to 2006. Again, we found that an increasing number of institu-
tions are trying to quantify business risk in some way, even if different
definitions and assumptions are adopted. Broadly speaking, approaches for
business risk quantification can be divided into two main categories; top-
down and bottom-up. Top-down techniques are linked to the general trend
of the business environment and benchmark analysis based on external data
is used for approximating business risk. In contrast to that, bottom-up
approaches try to explicitly determine the volatility of particular, bank-
internal economic time series (such as volumes, earnings, revenues, and
expenses) at a more granular level, which is then transformed into a
measure of business risk.

Here we we propose a bottom-up approach for modelling and measuring
business risk where the dynamic of the underlying earnings is described in
a continuous-time model. The remainder of this chapter is structured as
follows. After some preliminaries such as formulating the discounted-cash-
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flow method in continuous time, we introduce a first stochastic model for
quantifying business risk later in the chapter where we also briefly point out
how such model could be implemented in practice. The results obtained are
then used to investigate the relation between the earnings-at-risk (EaR)
measure and the so-called capital-at-risk (CaR) measure in greater detail.
Finally, we propose a possible extension of the simple business risk model.

MODELLING BUSINESS CAR: A SIMPLE APPROACH

Setting the Scene

Overlap with other risk types

Of course, the concept of “revenues” and “expenses” as we used so far is too
general for measuring business risk. In particular, in order to avoid double
counting and risk overlap, revenue and cost components that enter the busi-
ness risk model must not directly or indirectly be used for the quantification
of other risk types. To give an example, as potentially relevant revenues one
may consider customer related provisions and net interest rate income,
while on the cost side administrative expenses and depreciations may be
included into business risk quantification. On the other hand, earnings
related to trading activities would clearly cause an overlap with market risk,
and should therefore not be included. Something similar holds for loan loss
provisions, when they are captured within the banks credit portfolio model.

However, the question which revenue and cost components are really
relevant for modelling a particular firms business risk, and which parts have
to be excluded, is not an easy one. The answer crucially depends on the
firms definition of others risk types and its economic capital framework in
general, and therefore setting up a business risk model should always be an
integral part of the banks overall risk-defining and assessment process.
Moreover, it is necessary to be aware that the availability and granularity of
revenue and cost data may also depend on the firms accounting rules,
controlling standards, and IT infrastructure. As a consequence, the quality
of data may differ from one legal entity to the other, and in order to achieve
reliable results at aggregated level, great attention should be paid with
regard to data selection and preparation. Hereafter, when we talk about
earnings, we actually always mean non-credit and non-market earnings so
that there is no double counting with other risk types that are already
measured within a banks economic capital model.

MODELLING AND MEASURING BUSINESS RISK
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EaR versus CaR
Business risk can be defined as the potential loss in the company’s earnings
due to adverse, unexpected changes in business volume, margins, or both.
Such losses can result above all from a serious deterioration of the market
environment, customer shift, changes in the competitive situation, or
internal restructuring. On one hand, these effects can lead to a drop in earn-
ings in the short-term, for example within the next budget year, and are
often measured in terms of earnings volatility, more general by EaR. On the
other hand, volume or margin shrinking probably leads to a longer-lasting
weakening of the earnings situation, thereby seriously diminishing the
company’s market capitalisation, and this risk is often referred to as CaR. As
pointed out by Saita (2004, 2007), the recognition of such negative long-term
effects on earnings and the resulting impact on the market capitalisation is
particular important for the shareholder perspective on capital and should
also be used in the context of risk-adjusted performance measurement, for
example by means of RAROC, EVA, or related concepts.

A convincing analysis proving this link between earnings related risk and
a company’s loss in market value is given in Morrison, Quella and
Slywotzky (1999). They found out that during a period of five years, 10% of
Fortune 1,000 companies lost (at least once) 25% of their shareholder value
within a one-month period, and that nearly all of these stock drops were a
result of reduced quarterly earnings or reduced expected future earnings.
Moreover, the majority of these earnings-shortfalls (about 58%) were not
owing to classical financial risks or operational losses but rather to what
Quella et al refer to as strategic risk factors, such as raising costs and margin
squeeze, emerging global competitors, and customer priority shift etc.

If business risk is considered as a matter of market capitalisation and
therefore is measured by CaR, the uncertainty of (all) future earnings have
to be taken into account. As mentioned above, such earnings fluctuations, ie,
the deviations of the realised earnings from the planned earnings trajectory,
may be the result of many different factors. However, for the model we
suggest here, it is not necessary to explicitly link all these risk factors to
future earnings. Instead we suppose that all risk factors together constitute
some random “noise” effect, mixing with the expected earnings path; ie, for
t ≥ 0 future cumulated earnings E(t) can be written as

E(t) = f(t) + “noise”, t ≥ 0

where f is a nonrandom function describing the planned earnings trajectory.
Consequently, further in the chapter we model future earnings as a
stochastic process (E(t))t≥0.
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Discounted-cashflow method

Before we go on, however, it is worthwhile to recall some basic facts about
company valuation, especially about the discounted-cashflow method
where expected future earnings are discounted to obtain the company’s
market value (see for example Goedhart, Koller and Wessels (2005) or Pratt,
Reilly and Schweihs (2000) for a more detailed description of this subject).
Denote by ∆Eti ∈ R the company’s earnings that are planned to be realised
in ∆ti = ti – ti–1, ie, between the future time periods ti–1 and ti, defined for all
0 = t0 < t1 < … < tT. The present value or market value of the company is
usually defined as

(7.1)

where ri ∈R+ is a risk adjusted discount rate. Expression 7.1 simply says that
a company’s market value is just the sum of its discounted expected future
earnings. For our purposes, however, a continuous-time setting of the
present value 7.1 is more feasible.

Definition 7.1 (Present value in continuous time)

The present value of all earnings cumulated until the time horizon t is given
by

with discount rate r(t) = ∫ t
0 r̂(τ)dτ for t ≥ 0, where r̂(·) is a nonrandom positive

function, representing the short-term discount rate and

are the cumulated future earnings as they are expected to be realised up to
a time horizon t. Furthermore, we define

provided that the limit exists.

Model definition and first results

We begin our analysis of business CaR with a simple model based on
Brownian motion. Such a model allows for closed-form solutions for busi-
ness CaR and is therefore particularly useful to understand the nature and
general properties if this important risk type.
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Stochastic modelling of future cashflows

We define our model in a multivariate fashion in that it takes the depen-
dence between different cells into account. Each cell could simply reflect a
legal entity, business division, geographical region, or a combination of
them. If earnings are explicitly split up into revenues and costs, each of them
are represented by different cells. Hence, for each cell, we can define a cash-
flow process describing the stochastic evolution of revenues, costs, or
earnings. In the following we treat revenues as positive and costs as nega-
tive variables.

Definition 7.2 (Brownian motion cashflow (BMC) model)

Consider a d-dimensional standard Brownian motion (W1(t), …, Wd(t))t≥0

on a probability space (Ω, F, P). Then, the BMC model consists of:

(1) Cashflow processes

For each business risk cell, indexed by i = 1, …, m, cumulated future cash-
flows Xi(t) for t ≥ 0 are described by a cashflow process, which is the strong
continuous solution to the Itô-stochastic-diferential equation

(7.2)

The bank’s total aggregated cashflow is given by the aggregate cashflow
process

Here, αi(·) > 0, i = 1, …, m, and σij(·), i = 1, …, m; j = 1, …, d, are non-random
functions of time, satisfying the integrability conditions ∫ t

0|αi(s)|ds < ∞ and
∫ t

0|σi j
2(s)|ds < ∞.

(2) Value process

Let r(·) > 0 be a non-random discount rate so that ∫ t
0(|αi(s)|e–r(s) +

σi j
2(s)e–2r(s))ds < ∞. Then, the aggregate value process (P(t))t ≥ 0 is defined by

(setting P(0) = 0)

(7.3)
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Remark 7.3

(a) For every t ≥ 0, the BMC model describes multivariate normally distrib-
uted cumulated cashflows Xi(·), i = 1, …, m, with expectation

(7.4)

and cross-covariance function of Xi(·) and Xk(·), i, k = 1, …, m, given by

Here, Σ := (Σik(t))ik is called instantaneous cashflow covariance matrix, which
is assumed to be positive definite for all t ≥ 0.

(b) The variance of future cashflows Xi(·), i = 1, …, d, can be written as

(7.5)

where σi(·); i = 1, …, m, are referred to as the instantaneous cashflow volatil-
ities.

(c) For non-zero σi(·), the cross-correlation function between Xi(·) and Xk(·) is

(7.6)

Informally, we denote the instantaneous correlation between dXi(·) and
dXk(·) as

(d) The value of the aggregate cashflow process X(t) at time t ≥ 0 gives the
total earnings of the bank that have been realised between 0 and t (cumu-
lated earning). Its variance is given by

(7.7)

where we call σ (·) the instantaneous aggregate cashflow volatility.
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(e) Note that the number d of independent Brownian motions Wi(·) can be
different from the number m of business risk cells. Therefore, our model also
allows for such realistic scenarios where the number of risk factors (repre-
sented by different Brownian motions) is greater than the number of
clusters; think for example of a bank with two legal entities that are exposed
to three risk factors, which affect their non-credit and non-market earnings
and thus business risk.

Example 7.4 [Bivariate BMC model with constant parameters]

Consider a simple bivariate BMC model with constant drift and diffusion
parameters where the cashflow processes are given by

(7.8)

From Remark 7.3 it follows that

implying for the variance of the i-th cumulated future cashflow

(7.9)

Moreover, the correlation between X1(·) and X2(·) and the instantaneous
correlation are given for all t ≥ 0 by

Since all parameters are time-independent, this model can be calibrated
quite easily. After discretisation of 7.8 by using the Euler method, σ1 and σ2

can be calculated directly from the standard deviations of the discrete incre-
ments ∆X1(·) and ∆X2(·). Then, according to 7.9, volatilities at a larger
time-scale t can be derived by using the √t-scaling law. Finally, α1 and if α2

can be estimated through the sample means of the discretisised incremental
cashflows 7.8, or, alternatively, they can be obtained from the cumulated
cashflows

for i = 1, 2 by regression analysis.
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Example 7.5 [Bivariate BMC model with time-dependent parameters]

We use a similar set up as in 7.8 but with time-dependent parameters for t ≥
0 of αi(t) = αitα i and σi(t) = σitb1 for αi, bi ≥ 0; i = 1, 2:

(7.10)

The expectations and variances of future cashflows can be calculated from
7.4 and 7.5; for i = 1, 2 we obtain

and

The instantaneous correlation in this model is still ρ, however, using 7.6 we
derive

We now define the signal-to-noise ratio, also referred to as Sharpe ratio, for
each cashflow process as the ratio of its expected growths to the fluctuations,
ie, for i = 1, 2

(7.11)

Instead of constant volatilities σi(·) = σi as in the Example 7.4, we are now
asking for constant Sharpe ratios ηi(·) = ηi. Obviously, the Sharpe ratios of
X1(·) and X2(·) are here constant for bi = ai + �� . A typical situation as it may
occour in practice is depicted in Figure 7.1, which shows the monthly earn-
ings over five years for two hypothetical legal entities.

Calculating business CaR

For the purpose of CaR calculations we have to learn more about the value
process (P(t))t≥0. The following result is well-known and describes its distri-
butional properties.
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Proposition 7.6

Consider the BMC model of Definition 7.2 with value process (P(t))t≥0. Then,
for every t > 0, the value P(t) has normal distribution function ΦP with
expected value

(7.12)

and variance

where σ (·) is the instantaneous aggregate cashflow volatility defined in 7.7.

Proof

Note that on the right-hand side of Equation 7.3 the integrals in the first term
are standard Riemann whereas those of the second term given by I(t) =
∫ t

0 σi j (s)e–r(s)dWj(s) are Itô integrals with deterministic integrands. Then I(t) is
normally distributed with E(t) = 0 and var(I(t)) = E(I(t)2), see for example
Shreve (2004), Theorem 4.4.9. Using Itô’s isometry we further obtain

Since we now know that in the BMC model the banks total market value
P(·) is normally distributed with distribution function ΦP, it is straightfor-
ward to calculate business CaR. Before, however, we want to precisely
define business CaR for general distributions of P(·).

Definition 7.7 (Business CaR)

Consider different business risk cells with cashflow processes Xi(·), i = 1, …,
m, that are not attributable to other risk types, and define their corre-
sponding market value process P(·) according to 7.3. For t > 0, suppose that
Ft is the distribution function of the value P(t) with mean value EP(t) < ∞.
Then, business CaR at time horizon t and confidence level κ ∈ (0, 1) is given
by
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(7.13)

where F←
t (κ) = inf{x ∈ R : Ft(x) ≥ κ}, 0 < κ < 1, is the generalised inverse of Ft.

If Ft is strictly increasing and continuous, we may write F←
t (·) = Ft–1(·).

In the context of economic capital calculations, the confidence level κ is a
number close to 1, eg, κ = 0.999. In the case that the probability density func-

CAR t P t F ttκ κ( ) = ( ) − −( ) ≥←E 1 0,
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Figure 7.1 Illustration of monthly earnings of two different legal entities as 
described in Example 7.5.

In contrast to legal entity 1, the monthly earnings of legal entitiy 2 seems to have a positive linear drift 
which eg, could be determined by linear regression (showed as dashed lines). Hence, α1 = 0 and α2 = 1
could be set in 7.10. Regarding the volatilities either b1 = b2 = 0 (constant absolute volatilities) or b1 = 0.5
and b2 = 1.5 (constant Sharpe ratios) can be used.

Figure 7.2 Business CaR is defined as the difference between the 
expected market value EP(t) of the bank’s aggregate value process and a
very low quantile of its market value distribution Ft.

CaR
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tion (pdf) of Ft exists, the definition of business CaR is illustrated in Figure
7.2. In general, Ft and thus business CaR cannot be calculated analytically.
For the BMC model, however, a closed-form expression for business CaR is
available.

Theorem 7.8 (Business CaR for the BMC model)

Assume that future cashflows are described by a BMC model with instanta-
neous aggregate cashflow volatility (see Equation 7.7)

(7.14)

and non-random discount rate r(·). Then, business CaR at time-horizon t and
confidence level κ ∈ (0, 1) is given by

(7.15)

where Φ is the standard normal distribution function.

Proof

The assertion follows directly from Proposition 7.6 together with the defini-
tion of business CaR 7.13.

This analytical expression for business CaR is mainly a consequence of
using non-random discount rates. If instead r(·) is allowed to be some
continuous adapted interest rate process, the distribution function Ft, t ≥ 0,
of the aggregate value process (P(t))t≥0 is in general not normal anymore,
and the result for business CaR will rarely be available in closed-form.

Note that 7.15 only depends on the cashflows covariance matrix and not
on other model parameters such as drift parameters αi(·) or the initial values
Xi(0). As a consequence thereof, the BMC model can be calibrated easily,
confer also Examples 7.4 and 7.5.

The Relationship Between EaR and CaR

Earnings-at-Risk

In the light of Definition 7.2 we now can qualify our notion of EaR, which
we have already introduced. From Remark 7.3 (d) we know that var(X(t)) is
the volatility of the banks total aggregate cashflows accumulated between
time 0 and t. It is also well-known that X(t), t ≥ 0, is normally distributed, see
for example Shreve (2004), Theorem 4.4.9, so that EaR of the cumulated
earnings X(t) at t ≥ 0 and confidence level κ ∈ (0, 1) is simply given by
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(7.16)

where Φ is the standard normal distribution function. In contrast to 7.15, we
see that in 7.16 the volatility is not discounted. Moreover, it should be
mentioned that according to what we have said earlier in the chapter, the
time parameter t in 7.16 should be chosen in a way that it reflects a short-
term horizon so that discounting effects can be neglected. Finally, we define
the instantaneous EaR as

(7.17)

EaR-CaR-transformation factors

An interesting question concerns the relation between EaR and CaR.
Intuitively, CaR should be higher than EaR since CaR takes – in contrast to
EaR – the long-term uncertainty of future cashflows into account. It has been
suggested for example by Matten (1996) or Saita (2004, 2007) that CaR is a
constant multiplier of EaR, and that the multiplication factor depends only
on a (risk-adjusted) interest rate (discount factor) and the time horizon t.
Saita based his analysis of the EaR-CaR relationship on a discrete-time cash-
flow model similar to 7.1 where EaR reflects the uncertainty of the ∆Eti , and
Saita (2007), section 5.8, gives a very readable overview about this topic.

In the case of the BMC model, we see by comparing 7.15 with 7.17 that
such a proportionality between EaR(t) and CaR(t) does not hold for all t ≥ 0
because of the time dependence of the instantaneous aggregate-cashflow
volatility σ (·). However, the mean value theorem ensures that ξ ∈ (0, t) can
always be chosen so that 7.15 can be written as

and we can think of earκ(ξ) as an average EaR of the time interval [0, t]. The
following two examples illustrate the relationship between EaR and CaR, in
particular showing that – even in the quite simple framework of BMC
models – EaR-CaR-transformation crucially depends on the specifications of
the cashflow processes Xi(t), i = 1, …, d.
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Example 7.9 [BMC model with constant diffusion parameters]

Consider a BMC model with σij(·) = σij = const. for i = 1, …, m; j = 1, …, d.
Then also the aggregate-cashflow volatility 7.14 is constant and we obtain

with EaR-CaR transformation factor

where we indicated the explicit dependence of k1 on the discount rate r(t) by
r. Hence, in this special case business CaR is proportional to the (constant)
instantaneous EaR. If furthermore the short-term discount rate is constant,
r̂(·) = r̂ we have that r(t) = ∫ t

0 r̂ds = r̂t and we arrive at

(7.18)

which is a simple function of the time horizon t and the discount rate r̂. The
higher r̂ is, the smaller k1 will be because future cashflows (and so their fluc-
tuations) tend to have lower impact on the market value (and so on its
uncertainty). Similarly, longer time horizons t lead to a growing k1 because
more uncertain future cashflows are taken into account. In the limit t → ∞
expression 7.18 simplifies to

(7.19)

Example 7.10 [BMC model with constant Sharpe ratio]

Consider a BMC model with cumulated cashflows Xi(·) for i = 1, …, m. As in
Example 7.5 we consider the Sharpe ratios ηi(·) given by 7.11. Adopting a
linear-growth model with constant drift parameters αi(·) = αi > 0, i = 1, …,
m, we know from Example 7.5 that constant Sharpe ratios require square-
root-of-time scalings of the instantaneous cashflow volatilities, ie, σ i(t) =
ci√ t for some constants ci, i = 1, …, m. This implies that the aggregate-cash-
flow volatility 7.14 for t ≥ 0 can be written as σ (t) = σ √ t, resulting in sample
paths of Xi(·) that are in general more noisy than the one obtained in
Example 7.9, a fact that is illustrated in the top chart of Figure 7.3.

Finally, using 7.15 we can calculate business CaR in the case of a constant
short-term discounr rate r̂ to

with EaR-CaR transformation factor
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and

Comparing the different BMC-model specifications of Example 7.9 and
7.10, it could be expected that k2 is greater than k1 because in the previous
example the Sharpe ratio was actually increasing with √t (implying a
decrease of future cashflow fluctuation) whereas here it is constant by
construction. Hence, k2 accumulates more future uncertainty than k1. As we
see in the bottom chart of Figure 7.3, this is indeed the case if t exceeds a
certain threshold, ie, t > t0(r̂), which for r̂ = 0.1 is approximately given by
t0(0.1) = 2.2. Moreover, by comparing 7.19 and 7.21 it follows that for all t ≥
t0(r̂) we have that

A MODEL WITH LEVEL-ADJUSTED VOLATILITY

In the BMC model the absolute changes of future cashflows Xi(·) are directly
modelled by a Brownian motion, see Equation 7.2, which in particular
means that the uncertainty of a business cells cashflow is independent from
its absolute level. There is, however, no rational for this behaviour and, intu-
itively, higher earnings should actually be more volatile than low earnings.
As a possible remedy, future cashflows could be described by a geometric
Brownian motion as it is used for example, for stock prices in the famous
famous Black-Scholes-Merton setting. Then, for t ≥ 0 cumulated cashflows
Xi(·), i = 1, …, m, would be given by

implying an expected exponential cashflow growth of

which, however, might be considered as too extreme and optimistic for most
businesses. Alternatively, we suggest a model with still moderate growth
but a kind of “cashflow level adjusted” volatility. More precisely, we have
the following definition.
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Figure 7.3

Top panel: Typical cashflow paths Xi(t) with constant absolute cashflow
volatility (solid line) and constant Sharpe ratio (dashed line) referring to
Examples 7.9 and 7.10, respectively. The parameters are Xi (0) = 10, αi =
1.2 and σi = 1.4 with a time horizon of 10 years and monthly increments.
Moreover, the dotted path is obtained by the advanced model discussed
in section 3, especially Example 7.12, and we set σi = σi / Xi (0) = 0.14. We
used the same seeds of normal random variables for all three paths.

Bottom panel: EaR-CaR-transformation factors k1(r̂ ,t) and k2(r̂ ,t) according
to (7.18) and (7.20), respectively, as a function of time for a short-term
discount rate r̂ = 0.1. The dotted-dashed line indicates the asymptote of
k1(r̂ ,t) when t → ∞.
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Definition 7.11 (Level-adjusted BMC model)

Consider a d-dimensional standard Brownian motion (W1(t), …, Wd(t))t≥0

on a probability space (Ω, F, P). Then, the level-adjusted BMC model
consists of:

(1) Cashflow processes.

For each business risk cell, indexed by i = 1, …, m, cumulated future cash-
flows Xi(t) for t ≥ 0 are described by a cashflow process, which is the strong
continuous solution to the Itô-stochastic-diferential equation

(7.20)

with aggregate cashflow process

Here, αi(·) > 0, i = 1, …, m, and σ̃ij(·), i = 1, …, m; j = 1, …, d, are nonrandom
functions of time, satisfying the integrability conditions ∫ t

0|αi(s)|ds < ∞ and
∫ t

0 σ̃ 2
ij (s)ds < ∞. The matrix (σ̃ij(t))ij is assumed to be positive definite for all t

≥ 0.

(2) Value process

Let r(·) > 0 be a nonrandom function so that ∫ t
0(|αi(s)|e–r(s) +σ̃ 2

ij (s)e–2r(s)) ds <
∞. Then, the aggregate value process (P(t))t≥0 is definedby (setting P(0) = 0)

Let us first consider the cashflow process and compare 7.20 with 7.2 of the
BMC model. For the latter, the diffusion parameters σij play the role of an
absolute measure of uncertainty for the increments of Xi(·), whereas in 7.20
the σ̃ij describe the increment’s fluctuations relative to the level of Xi(·).
Furthermore, instead of 7.20 we may write

(7.21)

and from the martingale property of the Itô integral it immediately follows
that the expectation of Xi(·) is given by
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ie, it is the same as for the BMC model, and, in particular, the model does
not exhibit exponential growth as it would be the case when geometric
Brownian motion is used. We close this section with an extended example
that illustrates some properties of the level-adjusted volatility model.

Example 7.12 [Constant drift and diffusion parameters]

For the sake of simplicity we focus on the case of constant parameters αi(·)
= αi and σ̃ij(·) = σ̃ij. Note however, that the diffusion parameter of the
process 7.20 is random and given by Xi(·)σ̃ij. In order to find a solution for
7.21 we define the function

Then, by using Itô’s formula the differential of the product FXi can be calcu-
lated as

which after integration finally yields (setting Wj(0) = 0 for j = 1, …, d),

(7.22)

According to 7.22, the cumulated cashflows Xi(t) at time t ≥ 0 are not
normally distributed as they are in the BMC model. A one-dimensional
example for a typical path of Xi(·) according to 7.22 is plotted as a dotted line
in the top panel of Figure 7.3.

The Itô representation of the value process (P(t))t≥0 is given by

(7.23)

which cannot be calculated in closed form. Note, however, that the expecta-
tion of P(·) is again given by 7.12 and therefore is the same as for the BMC
model. This can also be seen in Figure 7.4. In the top panel, we compare the
distribution of the present value as obtained by 7.23 firstly to that of a
normal distribution with the same mean and variance (dashed curve), and
secondly to the normally distributed present value calculated from the BMC
model of Example 7.9 (solid curve). It can be seen that 7.23 leads to a distri-
bution that is more skewed to the right (positive skewness) and is more
peaked and heavier-tailed than a normal distribution with the same vari-
ance (kurtosis larger than 3).
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Figure 7.4

Bottom panel: EaR-CaR-transformation factor for the level-adjusted growth model 
of Example 7.12 as a function of the confidence level κ and different values α1 =
1.0 (solid line), α2 = 1.2 (dashed line), and α3 = 1.4 (dotted line) of the growth
parameter. The other parameters are the same as used above.

Top panel: The histogram shows the simulated present-value distribution for t = 5
years of the level-adjusted volatility model as discussed in Example 7.12 (with
discount rate r = r̂t) as well as the mean, standard deviation, skewness, and kurtosis 
parameters of the simulated data. This is compared to a normal distribution with
the same mean and standard deviation as the simulated data, plotted as a dashed
line. The solid curve represents the normally distributed present value as obtained
from the BMC model of Example 7.9. We set Xi (0) = 10 and use the yearly param-
eters αi = 1.2, σi = 1.4, σi = σi / Xi (0) = 0.14, and a yearly interest rate of r = 0.08.
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EaR-CaR-transformation revisited

We have seen that for the BMC model both the cumulated cashflows Xi(·)
and the present value P(·) are normally distributed. This has two important
consequences. First, business CaR (and thus the EaR-CaR-transformation
factor) of the BMC model is independent of the expected growth and thus of
αi(·); i = 1, …, m. Second, the transformation factor is invariant under
changes of the confidence level and equals the ratio of the present value
volatility and the earnings volatility (see Examples 7.9 and 7.10). This is a
consequence of the well-known property of elliptically distributed random
variables, which says that their quantiles can always be expressed in terms
of their standard deviation.

However, such a behaviour cannot be expected for the level-adjusted
BMC model because P(·) is not elliptically distributed. Figure 7.4 serves to
illustrate this for the model of Example 7.12. It shows the results of a simu-
lation study where the transformation factor between CaR and EaR
(calculated at t = 0 where EAR is normally distributed with standard devia-
tion σ = σi Xi(0)) is plotted as a function of their confidence level. The growth
parameter is set to be αi = 1.0, 1.2, and 1.4. Note that the higher the growth
rate is, the lower the transformation factor and therefore the ratio between
CaR and EaR will be. In contrast, if we compare the ratio of the volatilities
of the present value and EaR, ie, the volatility of the simulated histogram
data to the initial absolute cashflow volatility σ = σi Xi(0) = 1.4, we obtain
2.29, 2.38, and 2.46 for αi = 1.0, 1.2, and 1.4, respectively. Moreover, we see
that an increasing confidence level leads to a decreasing transformation
factor.

Summing up we can conclude that in general the question of how a EaR
can be converted into a CaR is not straightforward to answer. While for the
BMC model this seems to be easier and intuitively easier to grasp (since
independent of the confidence level and the expected growth rate) it
becomes rather involved for more general models like the one discussed in
this section.

CONCLUSION AND OUTLOOK

In this chapter we suggested a multivariate continuous-time setting for
assessing business risk using stochastic models for the future cashflows of
(non-credit, nonmarket, etc.) earnings. In contrast to scenario-based
methods for estimating business risk, our model has the advantage that it
results in a time-dependent probability distribution of future earnings,
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which allows for an accurate definition of VaR-like risk measures at any
confidence level and time horizon.

We also investigated the relationship between EaR and CaR, which for
general cashflow processes turns out to be not straightforward, and, in
particular, a constant multiplier converting EaR into CaR is usually not
available. However, a simple EaR-CaR-transformation factor only
depending on the time horizon and the discount rate can analytically be
derived for the simple BMC model. Such a result may be useful when a fast
and approximative VaR estimation based on some EaR figure is needed.

Since in our model the dependence structure between different legal enti-
ties or business units is reflected by their correlation matrix, risk-reducing
strategies such as known from stock portfolio analysis can be straightfor-
wardly applied.

Several enhancements of the BMC model can be thought of. A particular
interesting possibility would be to introduce jumps in the earnings
processes representing sudden and sharp falls in a company’s earnings
caused by, for example, a change in the competitor environment or a
customer shift. A particular important class of jump process are the Lévy
processes, which have become quite popular also in financial modelling, see
for example Cont and Tankov (2004). Then, in addition to the covariance
structure of the multivariate Brownian motion we already discussed, jump
dependence between future earnings could be modelled by so-called Levy
copulas, see for example Böcker and Klüppelberg (2008) for an application
of this technique to operational risk. However, since every model should be
seen also in the light of the data needed for its calibration, it may be wise to
start with a well-known and established Brownian approach.

In our opinion, the development of advanced business risk models will be
an important task in quantitative risk management, despite the difficulties
and complexity discussed above. Equally important is to work on a
harmonised definition of this material risk type, which clearly requires a
closer collaboration between practitioners and academics.

Disclaimer

The opinions expressed in this chapter are those of the author and do not
reflect the views of UniCredit Group. Moreover, presented risk measure-
ment concepts and risk control techniques are not necessarily used by
UniCredit Group or any affiliates.
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