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Abstract

There are two components to fitting models – selecting a set of
candidate distributions and then determining which member fits best.
It is important to have the candidate set be small to avoid overfitting.
Finite mixture models using a small number of base distributions pro-
vide an ideal set. Because actuaries fit models for a variety of situ-
ations, particularly with regard to data modifications, it is useful to
have a single approach. Though not optimal or exact for a particular
model or data structure, the method should be reasonable for most
all settings. Such a method is proposed in this article. To aid the
user, a computer program implementing these models and techniques
is provided.

1 Introduction

Actuaries have been fitting models to data for most of the profession’s ex-
istence (and maybe even before). Through the years, a progression of tech-
niques has taken place, from graphical smoothing, to methods of moments,
to maximum likelihood. At the same time the number of models available
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has increased dramatically. In addition, the number of diagnostic tools has
increased. The combination of possibilities can be overwhelming. This forces
the actuary to make choices. The purpose of this paper is to encourage actu-
aries to make a particular set of choices when fitting parametric distributions
to data.
One approach could be distribution-by-distribution. When a particular

model has been identified, there may be considerable literature available to
guide the actuary toward a method that is best for that model. The main
drawback is that it requires a lot of research and education if an actuary
wants to use a variety of models. An additional drawback is that some models
that are useful for actuarial applications may not have been as thoroughly
researched as others.
Our approach is to offer a single method that can be applied in most all

circumstances. As a result, it may not be optimal for any one situation. The
main advantage is that if an actuary becomes adept at our approach, it can
be quickly translated into other situations.
There are four components of the model fitting and selection process that

will be discussed in turn in the following sections. Throughout, two examples
will be used to illustrate the process. The components are:

1. A set of probability models. A small, yet flexible, set of probability
models will both lessen the workload and prevent overfitting.

2. A parameter estimation technique. Maximum likelihood estimation
will be used throughout. Its benefits and implementation have been
thoroughly discussed elsewhere and so will not be covered here.

3. A method for evaluating the quality of a given model. Several hypoth-
esis test will be offered. All compare the model to the data. One of the
keys is setting a particular method for describing the data.

4. A method for selecting a model from the list in Item 1.

It should be noted that the above list still provides some flexibility for the
model builder. This allows the experienced actuary to make use of personal
knowledge and preferences to aid in the determination of the best model.
The authors have also made software available that implements the ideas

in this paper.
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2 A collection of models

The collection proposed here may not satisfy everyone. It has been selected
with the following goals in mind.

• It should contain a small number of models. Many are available (for
example, Appendix A of Loss Models lists 22 different distributions).
There is a great danger of overfitting when too many models are con-
sidered. That is, it becomes more likely that the model is matching the
data than that it is matching the population that produced the data.

• It should include the possibility of a non-zero mode.
• It should include the possibility of both light and heavy tails.
A collection that meets these requirements begins with the following dis-

tribution.

Definition 1 The mixture of exponentials distribution (to be denoted by
M in this paper) has the following distribution function:

FM(x;α,θ, k) = 1− α1 exp(−x/θ1)− · · ·− αk exp(−x/θk)
where α = (α1, . . . ,αk)

0 is a vector of positive weights that sum to 1, θ =
(θ1, . . . , θk)

0 is a vector of exponential means, and k is a positive integer.

This distribution was promoted by Clive Keatinge [2]. He notes that this
distribution can have a light or heavy tail. However, because the mean of
this distribution always exists, the model cannot be as heavy-tailed as, say,
a Pareto distribution, unless k is infinity. Nevertheless, it can be a good
model in a variety of settings. A second drawback is that the mode of this
distribution is always at zero. To add the required flexibility, the following
extension is proposed.

Definition 2 The augmented mixture of exponentials distribution (de-
noted A) has the following distribution function:

FA(x) = mFM(x) + gFG(x) + lFL(x) + pFP (x)

where m, g, l, and p are non-negative numbers that sum to 1 with either
g = 0 or l = 0. In addition, FG(x) is the cdf of the gamma distribution,
FL(x) is the cdf of the lognormal distribution, and FP (x) is the cdf of the
Pareto distribution.
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The addition of the lognormal or gamma distribution (two commonly used
models) allows for an interior mode. The addition of the Pareto distribution
allows for the possibility of an infinite expected value or variance. One of the
motivations for keeping the collection of models small is to avoid conducting
a large number of hypothesis tests. Because the possibility of error is inherent
in any hypothesis test, conducting too many tests may nearly guarantee that
an error will be made. To further reduce the number of tests, the lognormal,
gamma, or Pareto distributions should be added only if there is solid a priori
reason to do so.
Mixture models are easy to work with. The density function is the same

mixture of the individual density functions. Raw moments are the same
mixture of individual raw moments. That is,

E(An) = m
kX
j=1

αjθ
n
j n! + gE(G

n) + lE(Ln) + pE(P n).

3 Measuring the quality of a proposed model

The goal is to compare the proposed model to the data. The proposed model
is represented by either its density or distribution function, or perhaps some
functional of these quantities such as the limited expected value function or
the mean residual life function. The data can be represented by the empirical
distribution function or a histogram. The graphs and functions are easy to
construct when there is individual, complete, data. When there is grouping,
or observations have been truncated or censored, difficulties arise. In the
spirit of a unified approach, a single method of representing the distribution
and density functions of the data will be proposed.
To implement the approach, xj, the jth “data point” consists of the

following items.

tj, the left truncation point associated with the observation.

cj, the lowest possible value that produced the data point.

dj, the highest possible value that produced the data point.

wj, the weight associated with the data point.

Then the data point is x0j = (tj, cj, dj, wj). A few examples may clarify this
notation. A policy with a deductible of 50 produced a payment of 200. Then,
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the actual loss was 250 and the data point is (50, 250, 250, 1). Repeating the
value of 250 indicates that the exact value was observed. Next, consider a
mortality study following people from birth. If 547 people were observed to
die between the ages of 40 and 50, the data point is (0, 40, 50, 547). Finally, if
the policy in the first example had a maximum payment of 500 and 27 claims
were observed to be paid at the limit, the data point is (50, 550,∞, 27). This
notation allows for left truncation and right censoring. Other modifications
are not included in this article. However, they could be handled in a similar
manner.
The data will be represented by the Kaplan-Meier estimate of the sur-

vival function. Because interval data (as in the second example above) is
not allowed when constructing this estimator, an approximation must be in-
troduced. Suppose there were w observations in the interval from c to d.
One way to turn them into individual observations is to uniformly allocate
them through the interval. Do this by placing single observations at the
points c + b/w, c + 2b/w, . . . , c + b where b = d − c1. If the data were
truncated, that t value is carried over to the individual points. For example,
the data point (0, 40, 50, 547) is replaced by 547 data points beginning with
(0, 40+10/547, 40+10/547, 1), through (0, 50, 50, 1). When the Kaplan-Meier
estimates are connected by straight lines the ogive results. The algorithm
for the Kaplan-Meier estimate is given in the Appendix. For the rest of
this article, it is assumed that all grouped data points have been converted
to individual data points. However, groups running from c to ∞ must re-
main as is. These right censored observations will be treated as such by the
Kaplan-Meier estimate.
It should be noted that after this conversion, there are only two types of

data points. One is uncensored data points of the form (t, x, x, w) and the
other is right censored data points of the form (t, x,∞, w). The formulas
presented here assume that all points with the same first three elements are
combined with their weights added. The uncensored points are then ordered
as y1 < y2 < · · · < yk where k always counts the number of unique uncensored
values.
Once the empirical distribution is obtained, a histogram can be con-

structed through differencing. Let F̂ (x) be the empirical distribution func-
tion and let c0 < c1 < · · · < ch be the boundaries for the histogram. The

1If there is a large weight, it is not necessary to use the large number of resulting points.
The choice made here is for programming convenience, not statistical accuracy.
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function to plot is

f̂(x) =
F̂ (cj)− F̂ (cj−1)

cj − cj−1 , cj−1 ≤ x < cj.

If the data were originally grouped and the same boundaries used, this ap-
proach will reproduce the customary histogram. If the user can choose the
groups, one suggestion for the number of groups is Doane’s rule [5, page 126].
It suggests computing log2 n + 1 + log2(1 + γ̂

p
n/6) and then rounding up

to the next integer to obtain the number of groups. γ̂ is the sample kurtosis.
This is a modification of the more commonly used Sturges’ rule with the
extra term allowing for non-normal data. For a given number of groups it
is reasonable to then set the intervals to be of equal width or to be of equal
probability. The default boundaries in the accompanying software use this
rule with intervals of equal width.
In order to compare the model to truncated data, begin by noting that the

empirical distribution begins at the lowest truncation point and represents
conditional values (that is, they are the distribution and density function
given that the observation exceeds the lowest truncation point). In order to
make a comparison to the empirical values, the model must also be truncated.
Let the lowest truncation point in the data set be T . That is, T = minj{tj}.
Then the model distribution and density functions to use are

FT (x) =

(
0, x < T
F (x)−F (T )
1−F (T ) , x ≥ T

and

fT (x) =

(
0, x < T
f(x)

1−F (T ) , x ≥ T.
Besides T , there is another point of interest. When the largest observed

value in the data set is a right censored observation, the empirical distribu-
tion function is not defined past that point. When the largest observed value
in the data set is not censored, the Kaplan-Meier estimate of the distribu-
tion function will be 1 at that point and the empirical distribution function
is defined for all values. Let U be the largest right censored observation, pro-
vided it is greater than or equal to all uncensored observations, otherwise,
set U =∞. When providing formulas, the points y0 = T and yk+1 = U will
be added to the list of uncensored observations.
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3.1 Two examples

For illustrative purposes, consider the following two examples.

Example 3 (Data Set A) 392 dental claims were recorded. The data were
grouped with the results given in Table 1. All observations have a left trun-
cation point of zero, so it is not given in the Table. As well, no observations
were right censored.

cj dj wj cj dj wj
0 25 6 600 700 15
25 50 24 700 800 13
50 75 30 800 900 8
75 100 31 900 1,000 2
100 150 57 1,000 1,250 5
150 200 42 1,250 1,500 5
200 250 38 1,500 2,000 5
250 300 27 2,000 2,500 7
300 400 30 2,500 3,000 2
400 500 28 3,000 4,000 1
500 600 16 4,000 ∞ 0

Table 1 - Dental claims

Example 4 (Data Set B) 100 observations were made on liability claims.
The policies had deductibles of 100, 250, or 500 (all values are in thousands)
and maximum payments of 1,000, 3,000, or 5,000. The data are given in
Table 2. For the column headed d/wj, if the entry is less than 10, interpret it
as the value of wj with dj =∞ known, otherwise, interpret it as the value of
dj with wj = 1 known. Although there were policies with deductibles of 100
and 250 that had maximum payments of 5,000, none of those policies had a
payment at the maximum.
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tj cj d/wj tj cj d/wj tj cj d/wj
100 182 182 250 931 931 250 1441 1441
100 184 184 100 960 960 100 1495 1495
250 296 296 250 974 974 500 1500 7
250 331 331 250 1016 1016 100 1556 1556
250 381 381 100 1044 1044 250 1564 1564
100 401 401 250 1060 1060 250 1614 1614
250 491 491 500 1064 1064 250 1647 1647
250 495 495 100 1100 7 250 1737 1737
250 505 505 250 1105 1105 100 1744 1744
500 514 514 500 1122 1122 100 1751 1751
100 547 547 500 1131 1131 500 1768 1768
250 553 553 100 1141 1141 500 1807 1708
500 601 601 100 1148 1148 250 1811 1811
250 616 616 500 1156 1156 250 2031 2031
500 653 653 250 1178 1178 500 2080 2080
250 674 674 500 1200 1200 500 2263 2263
250 685 685 500 1213 1213 250 2275 2275
250 693 693 250 1215 1215 500 2671 2671
500 708 708 500 1240 1240 500 2752 2752
100 771 771 250 1250 2 250 2880 2880
100 793 793 250 1259 1259 100 3100 4
250 825 825 250 1294 1294 250 3250 2
500 840 840 100 1301 1301 500 3469 3469
100 872 872 500 1372 1372 500 3500 2
250 885 885 100 1383 1383 250 4254 4254
250 913 913 100 1409 1409 100 4510 4510
250 927 927 250 1434 1434 500 5500 1
250 929 929

Table 2 - Liability claims

Example 5 Construct the Kaplan-Meier estimate for each of the two exam-
ples.

For Data Set A, the Kaplan-Meier estimate is the ogive as depicted in Fig-
ure 1. For Data Set B, the estimate is depicted in Figure 2. The calculations
are in the Appendix.
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Fig. 1 - Empirical cdf for Data Set A Fig. 2 - Empirical cdf for Data Set B

3.2 Graphical comparison of the density and distribu-
tion functions

The plots in this Section provide various ways to visualize the difference
between the empirical distribution and a proposed model distribution.

3.2.1 Distribution function plot

Example 6 For Data Sets A and B, plot a lognormal model against the
estimated distribution function.

The functions to be plotted are F̂ (x) and FT (x) with the range being
T ≤ x ≤ U . The maximum likelihood estimate for the lognormal model
are µ̂ = 5.35376 and σ̂ = 1.02432 for Data Set A and µ̂ = 7.16304 and
σ̂ = 0.858883 for Data Set B. The plots appears below in Figures 3 and 4.

Fig. 3 - lognormal cdf plot for ds A Fig. 4 - lognormal cdf plot for ds B
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For Data Set A the lognormal model appears to be a good fit. For Data
Set B the fit deteriorates after about 1,500.
It is possible to construct a confidence band around the empirical distri-

bution function. A 95% band implies that were a large number of samples
to be taken and bands constructed, 95% of those bands would completely
enclose the true distribution function. The following version is taken from
[3]
As usual, let rj be the risk set at the jth uncensored (ordered) data point

and let sj be the number of uncensored observations at that value. Define

vj =

jX
i=1

si
ri(ri − si)

δj = exp

µ
c
√
vj

ln[1− F (yj)]
¶

c = 2.6161− 4.2316a+ 2.0946b++4.3501a2 + 3.6047ab
−3.3038b2 − 3.7714a3 − 0.6092a2b− 0.7852ab2 + 1.8838b3

a =
nv1

1 + nv1
, b =

nvk
1 + nvk

.

Klein and Moeschberger [3] provide the c-values in a table. This function
gives a good approximation. For computing b, k is set at the highest value
for which F (yj) < 1. At each uncensored observation, the bounds for the
95% confidence band are

1− [1− F̂ (yj)]δj to 1− [1− F̂ (yj)]1/δj .
Two issues remain. For all the plots, there is a question as to what should be
plotted between uncensored observations. Also, what should n, the sample
size, be? For plotting, when individual observations are available, the con-
vention is to plot the Kaplan-Meier estimate as a step function. For grouped
data, connecting the points via linear interpolation produces the ogive. No
preference is expressed here.
With regard to the sample size, formulas such as the one above assume

complete data. For Data Set A, there is no problem because none of the 392
losses were truncated or censored and thus the sample size is clearly 392. For
Data Set B, many of the observations were truncated at values above 100
and many were censored. It is not reasonable to give the same confidence
to its empirical distribution function as if there were 100 observations with
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no truncation or censoring. One way to get an approximate sample size is
to think of the number of claims that could have produced a given value.
The interesting ranges are intervals based on the truncation and censoring
values. For any such interval, the potential for being observed is the number
of claims with truncation points at or below the left endpoint of the interval
less the number of claims that were actually censored at or below the left
endpoint. Then the sample size is the weighted average of these counts with
the weights being the empirical probability for each interval. If the largest
observation is censored at u, then the weights are the empirical probabilities
divided by F̂ (u).

Example 7 Determine the modified sample size for Data Set B and then
add a 95% confidence band to the plots, using an exponential model.

The key intervals are 100—250, 250—500, 500—1,100, 1,100—1,250, 1,250—
1,500, 1,500—3,100, 3,100—3,250, 3,250—3,500, and 3,500—5,500. For the first
interval, there are 30 claims with truncation at 100. No claims were censored
in that interval for an effective sample size of 30. For the second interval,
there are 70 with truncation at 250 or below and none were censored. The
third interval has the full sample size of 100. For the fourth interval the 7
observations censored at 1,100 are removed leaving a net of 93. As censored
observations drop off, the remaining effective sample sizes are 91, 84, 80, 78,
and 76. The sample size is

30(0.0667) + 70(0.0824) + 100(0.2497) + 93(0.1140) + 91(0.0974)

+84(0.2285) + 80(0) + 78(0.0269) + 76(0.0896)]/0.9552 = 84.07.

This is reasonable because it is based on the same idea that yields so-called
actuarial exposure for mortality studies. The fact that some of the uncen-
sored observations could have been censored is ignored. An advantage is
that this sample size can be determined using the same information needed
to construct the likelihood function and the Kaplan-Meier estimate. For the
exponential model the parameter estimates are θ̂ = 358.687 for Data Set A
and θ̂ = 1, 597.80 for Data Set B. The plots are below in Figures 5 and 6.
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Fig. 5 - exponential cdf plot for ds A Fig. 6 - exponential cdf plot for ds B
For Data Set A the exponential model is outside the confidence band,

making it a poor choice. For Data Set B the model is inside the band, but
clearly does not come very close to the empirical cdf itself.

3.2.2 Other cdf based plots

There are a number of interesting plots that are based on the distribution
function. When looking at the distribution function graphs produced above,
it should be clear that when the model’s distribution function is close to
the empirical distribution function, it is difficult to make small distinctions.
Among the many ways to amplify those distinctions, two will be presented
here. The first is to simply plot the difference of the two functions. That
is, if F̂ (x) is the empirical distribution function and FT (x) is the model
distribution function, plot D(x) = F̂ (x)−FT (x). The relevant range to plot
is again T ≤ x ≤ U . Confidence bands are again available. For example, the
upper limit is plotted by replacing F̂ (x) with its upper limit.

Example 8 Plot D(x) for the previous example, using the lognormal model.

The plots appear, with confidence bands in Figures 7 and 8.
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Fig. 7 - lognormal difference plot for ds AFig. 8 - lognormal difference plot for ds b
The lognormal model is inside the bounds, but the differences for Data

Set B have been magnified..
Another popular way to highlight any differences is the p− p plot which

is also called a probability plot. The plot is created by first selecting a set of
k values 0 < x1 < · · · < xk. A point is then plotted corresponding to each
value. The coordinates to plot are (F̂ (xj), FT (xj)). If the model fits well,
the plotted points will be near the forty-five degree line running from 0 to
1. The easiest way to construct the plot is to use the y-values at which the
empirical distribution was calculated. Once again, confidence bounds can be
established by plotting the upper and lower confidence bounds in place of
the empirical cdf.

Example 9 Create a p−p plot for the previous example, using the lognormal
model.

The plots appear in Figures 9 and 10.

Fig. 9 - lognormal p-p plot for ds A Fig. 10 - lognormal p-p plot for ds B
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Once again, both models are inside the confidence limits, but the lognor-
mal model does not appear to be adequate for Data Set B.
A third plot uses the limited expected value. It is the expected payment

when a limit of u is imposed. The empirical limited expected value function
is

Ê(XT ∧ u) =
Z u

0

1− F̂ (x)dx.

where XT is the ground-up loss variable, X, conditioned on X > T . At an
uncensored claim value of yi the limited expected value is

Ê(XT ∧ yi) = T +
iX
j=1

(yj − yj−1)[1− F̂ (yj−1)].

Intermediate values are obtained by linear interpolation. For the model, the
limited expected value function is (for u ≥ T )

E(XT ∧ u) =

Z u

0

1− FT (x)dx = T +
Z u

T

xfT (x)dx+ u[1− FT (u)]

=
E(X ∧ u)−E(X ∧ T )

1− F (T ) .

Once again, confidence bounds can be obtained by determining the limited
expected value function of the upper and lower cdf bounds. A plot of each
function for all u is possible or an analog of the p−p plot can be constructed
by plotting the pairs (Ê(X ∧ yi), E(X ∧ yi)).
Of the various cdf-related plots considered here, this one may be the most

informative. Many actuarial applications of loss models are related to the
expected cost of providing insurance for losses between two values. A model
that matches the data on this measure would be of greater value than one
that matches the data on other measures.

Example 10 Construct limited expected value plots for the lognormal dis-
tribution for each data set.

The direct plots appear in Figures 11 and 12 while the p − p versions
appear in Figures 13 and 14.
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Fig. 11 - lognormal lev plot for ds A Fig. 12 - lognormal lev plot for ds B

Fig. 13 - lognormal lev p-p plot for ds A Fig. 14 - lognormal lev p-p plot for ds B
The conclusions match those from the earlier plots.

3.2.3 Histogram plot

Sometimes the quality of the fit is best seen by plotting the model density
function against the histogram.

Example 11 Plot the lognormal and exponential models against the his-
togram for each data set.

For Data Set A the data were already grouped and the plot appears in
Figure 15.
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Fig. 15 - lognormal density plot for ds A

For Data Set B the data must be grouped. The default number of groups
is 8, but 16 seemed to give a better picture. The picture appears in Figure
16.

Figure 16 - lognormal density plot for ds B

These plots add further evidence that the lognormal model is reasonable
for Data Set A, but not for Data Set B.

3.3 Hypothesis tests

A picture may be worth many words, but sometimes it is best to replace the
impressions conveyed by pictures with mathematical demonstrations. One
such demonstration is a test of the hypotheses:

H0 : The data came from a population with the stated model

H1 : The data did not come from such a population.
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The test statistic is usually a measure of how close the model distribution
function is to the empirical distribution function. When the null hypothesis
completely specifies the model (for example, an exponential distribution with
mean 100), critical values are well known. However, it is more often the case
that the null hypothesis states the name of the model, but not its parame-
ters. When the parameters are estimated from the data, the test statistic
tends to be smaller than it would have been had the parameter values been
pre-specified. That is because the estimation method itself tries to choose
parameters that produce a distribution that is close to the data. In that
cases, the tests become approximate. Because rejection of the null hypoth-
esis occurs for large values of the test statistic, the approximation tends to
increase the probability of a Type II error while lowering the probability of
a Type I error. For actuarial modeling this is likely to be an acceptable
trade-off. Our goal is to find a useful model, and we are more likely to come
to that conclusion when parameters are estimated from data.

3.3.1 Kolmogorov-Smirnov test

The first test considered is the Kolmogorov-Smirnov test. The test statistic
is

D = max
T≤x≤U

¯̄̄
F̂ (x)− FT (x)

¯̄̄
When all the observations are individual data points (rather than inter-

vals), the maximum must occur at one of the data points. Strictly speaking,
this test should not be used for interval data because the empirical distribu-
tion is poorly defined within intervals. In the spirit of being more interested
in getting answers than in being precise, interval data will be discretized as
indicated early and a step function used for the empirical cdf. That way the
maximum must occur at one of the uncensored losses.
To complete the test, two things must be done. The first is to standardize

the test statistic. D’Agostino and Stephens [1, pages 112-113], recommend
using D∗ = n1/2D + 0.19n−1/2 where n is the sample size. If the largest
observation is censored (as in Data Set B) the critical value should be re-
duced. that is because the maximum is taken only over part of the range of
possibilities and thus there are fewer opportunities to have a large value for
D. In [1] a table is presented. The following cubic functions provide a good
approximation.
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10% : 0.9289p3 − 2.6822p2 + 2.5761p+ 0.4011
5% : 1.1803p3 − 3.2402p2 + 2.9628p+ 0.4555
1% : 1.6886p3 − 4.3535p2 + 3.7262p+ 0.5764

where p = FT (U), the probability of observing an uncensored loss. These
results are generally valid for n ≥ 25 and 0.2 ≤ p ≤ 1.
Example 12 Conduct the Kolmogorov-Smirnov test at a 5% significance
level for both the lognormal and exponential models for both data sets.

For Data Set A the test statistics are 0.0838 and 0.0168 for the exponential
and lognormal models respectively. The critical value is 0.0687 indicating the
lognormal model is acceptable while the exponential model is not. For Data
Set B the test statistics are 0.0955 and 0.0918 with a critical value of 0.1483.
Both models are acceptable with the lognormal model providing a slightly
better fit.

3.3.2 Anderson-Darling test

This test is similar to the Kolmogorov-Smirnov test, but uses a different
measure of the difference between the two distribution functions. The test
statistic is

A2 = n

Z U

T

[F̂ (x)− FT (x)]2
FT (x)[1− FT (x)]fT (x)dx.

That is, it is a weighted average of the squared differences between the em-
pirical and model distribution functions. Note that when x is close to T or
to U , the weights might be very large due to the small value of one of the fac-
tors in the denominator. This test statistic tends to place more emphasis on
good fit in the tails than in the middle of the distribution. Calculating with
this formula appears to be challenging. However, if it is assumed that the
empirical distribution function is constant between uncensored data points,
the integral simplifies to

A2 = −nFT (U) + n
kX
j=0

[1− F̂ (yj)]2{ln[1− FT (yj)]− ln[1− FT (yj+1)]}

+n
kX
j=1

F̂ (yj)
2[lnFT (yj+1)− lnFT (yj)].
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Note for the first sum that when j = k and U = ∞ the first factor will be
zero. Then the term in braces (which involves the logarithm of zero) will not
need to be evaluated. The critical values are given below (based on a cubic
approximation to the values in [1, Table 4.4] where again p = FT (U).

10% : −0.4579p3 + 0.3589p2 + 2.0106p+ 0.0243
5% : −0.9301p3 + 0.8149p2 + 2.5519p+ 0.0548
1% : −1.8586p3 + 1.3585p2 + 4.3242p+ 0.0545

for 0.2 ≤ p ≤ 1. For this test, a sample size of 5 is sufficient.

Example 13 Repeat the previous example using the Anderson-Darling test.

For Data Set A the test statistics are 5.5881 and 0.1962 for the exponential
and lognormal models respectively. The critical value is 2.4915. This test
magnifies the difference in the quality of fit of the two models. For Data Set
B the test statistics are 1.1757 and 0.6371 with a critical value of 2.3802.
While both models are acceptable, this test again magnifies the difference.

3.3.3 Chi-square goodness-of-fit test

Unlike the previous two tests, this test allows for some discretion. It begins
with the selection of k− 1 arbitrary values, t = c0 < c1 < · · · < ck =∞. Let
pj = F

∗(cj)−F ∗(cj−1) be the probability a truncated observation falls in the
interval from cj−1 to cj. When determining F ∗(x), u =∞ is assumed (that is,
having the largest observation be censored does not require an adjustment).
Similarly, let p̂j = F̂ (cj)− F̂ (cj−1) be the same probability according to the
empirical distribution. The test statistic is then

χ2 =
kX
j=1

nj(pj − p̂j)2
pj

.

The sample size, nj, measures the number of observations that could have
been in the interval and is calculated the same way as done previously.
The critical value for this test comes from the chi-square distribution with

degrees of freedom equal to the number of terms in the sum minus one minus
the number of estimated parameters. There are a number of rules that have
been proposed for deciding when the test is reasonably accurate. They center
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around the values of njpj. The most conservative states that each must be
at least 5. Some authors claim that values as low as 1 are acceptable. All
agree the test works best when the values are about equal from term to term.
If the data are grouped, there is little choice but to use the groups as given.
If not, Moore (in [1, page 70]) recommends using 2n0.4 equiprobable groups.
The software uses this guide, however, excessive censoring may reduce the
number of groups by one or two.

Example 14 Perform the chi-square goodness-of-fit test for the continuing
example.

For Data Set A the recommendation is for 21 groups (the original group-
ings for this data set could also have been used). The test statistics are 37.29
for the exponential model (p-value of 0.0073 with 19 degrees of freedom) and
4.15 for the lognormal model (p-value of 0.9997 with 18 degrees of freedom).
Once again the lognormal model is both acceptable and superior.
For Data Set B the recommendation is for 11 groups. The test statistics

are 14.51 and 10.81 for the two models and the p-values are 0.1054 and
0.2126 indicating that both models are acceptable, but the lognormal model
continues to provide a better fit.

4 Selecting a model

Model selection should be based on two simple goals.

1. Use a simple model if at all possible.

2. Restrict the universe of potential models.

Both of these goals are important to prevent overfitting. This occurs
when the model more closely fits the data than it fits the population that
produced the data. With enough parameters and a rich collection of models,
it is possible to fit the data perfectly. For example, with discrete data the
empirical distribution fits the data perfectly, but will not match a population
that is known to be continuous.
For situations where there is a lot of data, a complex model becomes

tempting. The area of analysis commonly called “data mining” provides a
set of tools to prevent this from happening. They tend to be based on using
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only a portion of the data for determining the model and then using the
remaining data for parameter estimation.
Any model selection process must involve judgment as well as the pur-

pose for constructing the model. For example, the 1941 CSO mortality table
follows a Makeham distribution for much of its range of ages. In a time of
limited computing power, such a distribution allowed for easier calculation of
joint life values. As long as the fit of this model was reasonable, this advan-
tage outweighed the use of a different, but better fitting, model. Similarly, if
the Pareto distribution has been used to model a particular line of liability
insurance both by the analyst’s company and by others, it may require more
than the usual amount of evidence to change to an alternative distribution.
Finally, it should be noted that the approach outlined below does not

always lead to a unique model choice. In that case judgment is most definitely
required.
We recommend fitting a model using the following steps.

1. Construct pictures.

2. Conduct hypothesis tests.

3. Calculate the Schwarz Bayesian Criterion for each model.

For the Kolmogorov-Smirnov and Anderson-Darling tests, no adjustments
are made when the number of parameters is increased. As a result, more
complex models will often fare better on the tests (as outlined here). The
chi-square goodness-of-fit test makes an adjustment by adjusting the degrees
of freedom. All three tests are sensitive to the sample size. In particular,
as the sample size increases, either the critical value decreases or the test
statistic tends to increase (when the null hypothesis is false). Because we
know that the null hypothesis is false, a large sample size will lead to a
rejection of all models. Regardless, the test statistic itself can give some
guidance in the selection process.
One method that can lead to an unambiguous choice is the Schwarz

Bayesian Criterion [4]. Each model is given a score of l − (r/2) lnn where l
is the logarithm of the likelihood function at its maximum, r is the number
of estimated parameters (more accurately, the dimension of the space over
which the likelihood function was maximized), and n is the sample size. The
model with the highest score is the recommended selection. The penalty for
adding parameters is explicitly stated with this method and for large samples
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it becomes more difficult to add a parameter. Unlike the likelihood ratio test,
this method does not require that the models under consideration be related
in any way. While there are other information criteria available, the authors
prefer this one because it adjusts both for sample size and the number of
parameters.

Example 15 Determine a model for Data Set B.

Data Set A is not discussed. Readers who make the attempt will learn
that the lognormal model is difficult to beat. For Data Set B, a few additional
models are now considered. We begin with Steps 2 and 3, looking at a number
of calculations for each model. For the Pareto model, there was no maximum
likelihood estimate and for a mixture of two exponentials a weight of zero
was placed on the second exponential. For the Chi-square test the p-value is
given.

Model l r A-D K-S χ2 SBC
Exponential −628.23 1 1.1757 0.0955 0.1054 −630.44
Lognormal −626.26 2 0.6371 0.0918 0.2126 −630.69
Gamma −627.35 2 0.7465 0.1017 0.2319 −631.78
Lognormal/exp mix −623.77 4 0.2484 0.0564 0.5608 −632.63
Gamma/exp mix −623.64 4 0.2619 0.0558 0.5260 −632.51
Except for the SBC, the criterion favor either of the mixture models. The

SBC rewards simplicity and favors the lognormal model. Figures 17 and 18
below provide p−p plots for the two additional models while Figures 19 and
20 provide LEV plots.

Fig. 17 - lognormal/exp p-p plot Fig. 18 - gamma/exp p-p plot
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Fig. 19 - lognormal/exp lev plot Fig. 20 - gamma/exp lev plot
Both of these models fit better than the plain lognormal. The match is

slightly better for the lognormal/exponential mixture than for the gamma/exponential
mixture and thus the lognormal/exponential mixture is our model of choice.
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A The Kaplan-Meier Product-Limit estima-
tor

The estimator can be found in most biostatistics texts such as [3]. It will
be presented here using the notation of this paper. The observations are
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(tj, cj, dj, wj) where tj is the left-truncation point, cj = dj indicates that an
uncensored value of cj was observed, dj = ∞ indicates that an observation
was censored at cj, and wj indicates the number of observations that had
the preceding values. Then let y1 < · · · < yk be the ordered collection of the
cj values for those with cj = dj. Let y0 = T = min{tj} and let yk+1 = U
where U =∞ if the largest value of cj is such that the corresponding dj = cj,
otherwise, set U as the largest value of cj.
To construct the estimate, two sets of quantities must be calculated. The

first is si for i = 1, . . . , k which gives the number of uncensored observations
equal to yi. That is,

si =
X

cj=dj=yi

wj.

The second is ri for i = 1, . . . , k which gives the number of policies that could
have produced an uncensored observation of yi given that the observation was
known to be at least yi. This is the sum of the weights for all policies with
a deductible less than yi less the sum of the weights for all policies with
observed values cj (whether or not they were censored) less than yi. That is,

ri =
X
tj<ti

wj −
X
cj<rj

wj.

The Kaplan-Meier estimate is then

F̂ (x) =

½
0, x < y1
1−Qi

j=1 yi ≤ x < yi+1, i = 1, . . . , k.

If U =∞ it will turn out that F̂ (x) = 1 for x ≥ yk while if U is finite, F̂ (x)
is undefined for x ≥ U .
For Data Set B, the calculations are given in Table A. Because no uncen-

sored values were repeated, si = 1 for all i and so these values do not appear
in the Table. The F̂ (y) values are interpreted as applying to the interval
from the current yi value to the next value. The smallest truncation value
is T = 100 which is where the Table starts and the largest observation was
censored and so U = 5, 500. Thus, the empirical distribution function is not
defined past 5,500.
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yi ri F̂ (yi) yi ri F̂ (yi) yi ri F̂ (yi)
100 — 0 913 75 0.316 1409 40 0.578
182 30 0.033 927 74 0.325 1434 39 0.589
184 29 0.067 929 73 0.334 1441 38 0.599
296 68 0.080 931 72 0.343 1495 37 0.610
331 67 0.094 960 71 0.353 1556 29 0.624
381 66 0.108 974 70 0.362 1564 28 0.637
401 65 0.122 1016 69 0.371 1614 27 0.651
491 64 0.135 1044 68 0.380 1647 26 0.664
495 63 0.149 1060 67 0.390 1737 25 0.677
505 92 0.158 1064 66 0.399 1744 24 0.691
514 91 0.168 1105 58 0.409 1751 23 0.704
547 90 0.177 1122 57 0.419 1768 22 0.718
553 89 0.186 1131 56 0.430 1807 21 0.731
601 88 0.195 1141 55 0.440 1811 10 0.745
616 87 0.205 1148 54 0.451 2031 19 0.758
653 86 0.214 1156 53 0.461 2080 18 0.772
674 85 0.223 1178 52 0.471 2263 17 0.785
685 84 0.232 1200 51 0.482 2275 16 0.798
693 83 0.242 1213 50 0.492 2671 15 0.812
708 82 0.251 1215 49 0.502 2752 14 0.825
771 81 0.260 1240 48 0.513 2880 13 0.839
793 80 0.269 1259 45 0.524 3469 6 0.866
825 79 0.279 1294 44 0.534 4254 3 0.910
840 78 0.288 1301 43 0.545 4510 2 0.955
872 77 0.297 1372 42 0.556 5500 0 —
885 76 0.306 1383 41 0.567
Table A - Kaplan-Meier estimates for Data Set B
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