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Abstract

Logistic-type models for the force of mortality like those introduced by

Perks or Kannisto provide better fit to mortality data of people aged over

85 than Makeham’s model where the force of mortality increases exponen-

tially with age. However, the difficulty in estimating their parameters by the

maximum likelihood method makes their use less popular among actuaries.

For Kannisto’s model, we propose a weighted least-squares estimator which

can easily be calculated with any regression software; the estimator is shown to

be consistent, asymptotically unbiased and normally distributed. For Perks’

model, using a Taylor’s series expansion, the estimation problem is again re-

duced to a least-squares problem. The various estimators proposed in the

paper are compared numerically using Canadian mortality data.
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1. Introduction

In traditional actuarial models like those of Gompertz and Makeham,

the force of mortality increases exponentially with age, and is an unbounded

function. Perks (1932) and Kannisto (1992) have proposed logistic-type mod-

els, which better adjust to experience at ages over 85 observed recently in

industrialized countries (see Thatcher, Kannisto and Vaupel, 1988). In those

models, the force of mortality reaches an asymptote as the age increases to

infinity. However, actuaries have not widely accepted those models for pricing

annuities, one reason being the difficulty in estimating their parameters (four

for Perks’ and two for Kannisto’s model) and also their variance-covariance

matrix, by commonly used statistical methods.

In this paper, we first review existing models for the force of mortality

(Section 2). We then show in Section 3, for Kannisto’s model, how the logit

of the force of mortality can be used to obtain a linear model, from which

the two parameters can be easily estimated and their asymptotic properties

derived from ordinary linear regression theory. In Section 4, we tackle the

more difficult problem of estimating the four parameters of Perks’ model.

Using a value estimated for one of the parameters from Kannisto’s model, and

a limited Taylor’s series for the logit of the force of mortality, the remaining

three parameters could be estimated from normal linear regression.

Besides yielding estimators much easier to obtain than with the maximum

likelihood method, another important advantage of this method is that a

preliminary opinion over the adequacy of Kannisto’s model may first be made

by judging if a set of points is linear or not, before the estimation stage. If

the set of points is clearly not linear, Kannisto’s model is not appropriate

and there is no need to estimate the parameters; contrarily to the method of

maximum likelihood where the parameters must first be estimated and the fit

then tested using a chi-square goodness-of-fit statistic by comparing observed
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values with the expected values from the model.

To reduce the variance of the estimators in Kannisto’s model, weighted

least-squares estimators can be calculated by taking into account the variance-

covariance matrix of the errors. This will be considered in Section 5. We then

apply the estimation method presented in the paper to Canadian mortality

data given in Doray (2002) and compare the values obtained with those from

maximum likelihood (Section 6).

2. Models for the Force of Mortality

The models presented in this section were extensively reviewed in Doray

(2002). One of the first models used in actuarial science for the force of

mortality µx at age x assumed that it was an exponential function of the

attained age. Gompertz (1825) used the two-parameter function

µx = Beµx.

To take into account the force of accidental death, Makeham (1860) added

an extra parameter, assumed to be independent of age, to Gompertz’ model

and obtained

µx = A +Beµx.

This is equivalent to assuming that if X, the lifetime of a person, has a

Gompertz distribution, and Y , the time to a fatal accident, an exponential

distribution, and the random variables X and Y are independent, then the

minimum of X and Y has a Makeham distribution. This is an example of a

shock model described in Bowers et al. (1997). Makeham’s curve was used

to extend mortality curves at extreme ages, and also because it possessed the

the property of uniform seniority.

The British actuary Perks (1932) developed a model which did not receive

as much attention in North America as the above two models. In his logistic
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model, the force of mortality at age x is given by the four-parameter function

µx =
A +Beµx

1 + Ceµx
.

By assuming that the parameter A = 0 in the logistic model, Beard (1963)

obtained the three-parameter model

µx =
Beµx

1 + Ceµx
.

Kannisto (1992), a demographer, used the simple 2-parameter model

µx =
Beµx

1 +Beµx
.

Those three models (logistic, Beard and Kannisto) follow a logistic-type

curve for the force of mortality, i.e., as x increases, µx tends asymptotically to

a constant. This asymptote is equal to 1 for the Kannisto’s model and B/C

for the Beard and logistic models. Note that the Gompertz (A = 0, C = 0),

Makeham (C = 0), Beard (A = 0) and Kannisto (A = 0, B = C) models

are all special cases of the logistic model, and by the principle of parsimony,

should be preferred if they fit equally well as Perks’ model.

Beard (1971) showed that the logistic model can arise in a heterogeneous

population where each member has a Makeham force of mortality and where

the parameter B varies among individuals according to a gamma distribu-

tion. This Makeham-gamma model is a frailty model. Thatcher et al. (1998)

mention that the logistic model can also be considered as a shock model: if

the lifetime X follows a Beard distribution, the time to an accident Y is ex-

ponentially distributed and the random variables X and Y are independent,

then min(X, Y ) follows a Perks distribution.

Thatcher et al. (1998) fit the Gompertz, logistic, Kannisto and Weibull

models as well as the Heligman & Pollard (1980) model

qx =
Beµx

1 +Beµx
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and the quadratic model

lnµx = a + bx+ cx2

to mortality data of aged people in 13 industrialized countries for the periods

1960-70, 1970-80, 1980-90 and for the cohort born in 1871-80. They used the

maximum likelihood method to estimate the parameters of the models and

their asymptotic variance-covariance matrix. The data used were deaths at

ages 85 and over for the quadratic model and ages 80 and over for all the other

models. The 13 countries included in the study were Austria, Denmark, Eng-

land and Wales, Finland, France, West Germany, Iceland, Italy, Japan, the

Netherlands, Norway, Sweden and Switzerland. The best fit was consistently

provided by the Kannisto and logistic models for all countries in each period

and for the cohort data.

All the models listed above produce very close values of µx at ages 80 to

95. After age 95, the Gompertz and Makeham forces of mortality continue

to increase exponentially with age, while for the Kannisto, Beard and logistic

models, µx tends asymptotically to a constant as x increases.

3. OLS Estimators for Kannisto’s Model

In regresssion analysis, the data are often transformed so that the usual

assumption of normality of the errors is satisfied. Popular transformations in-

clude the logarithmic, log-log, complementary log-log, probit and logit trans-

formation (see McCullagh and Nelder, 1989).

If p is between 0 and 1, the logit of p is defined as

logit(p) = ln
p

1 − p
.

Here are some properties of the logit transform, which can easily be shown:

1) if p→ 0, logit(p) → −∞.
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2) if p→ 1, logit(p) → +∞.

3) logit(1/2)= 0.

4) logit (1 − p) = ln(1 − p)/p= -logit(p).

The logit transform of p, also simply called the logit of p is therefore a

continuous function, which covers the whole real line, the same range as that

of a normal distribution.

Some authors (see for example Thatcher et al. 1998) have used the fact

that the logit of the force of mortality for Kannisto’s model

logit(µx) = ln( µx

1−µx
)

= ln
(

Beµx

1+Beµx /
1

1+Beµx

)

= ln(Beµx)

= lnB + µx (1)

is a simple function of the age x to estimate the two parameters B and µ.

Note that the logit of µx can only be calculated if µx is between 0 and 1; we

have seen in Section 2, that for Kannisto’s model, µx tends asymptotically to

1, so that µx

1−µx
is positive and its logarithm can always be taken.

As we have seen in Doray (2002), the simple formula

qx ∼= 1 − e−µx+1/2

obtained with the midpoint rule

∫ x+1

x
µydy ∼= µx+1/2

is often used in demography to estimate the force of mortality from a life

table, with

µx+1/2
∼= − ln(1 − qx) = − ln px. (2)

This approximation gives values very close to the values obtained from the

exact formula

px = exp
[

−
∫ x+1
x µydy

]

=
(

1+Beµx

1+Beµ(x+1)

)1/µ
.
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For Kannisto’s model, with the same values of the parameters as the ones

obtained by Thatcher et al. (1998), the relative difference between the exact

value of qx and the approximate one obtained using the midpoint rule is only

0.03 percent for a male aged 80 and 0.0008 percent at age 100. We will

therefore use the demographic assumption in the rest of this paper.

By inserting equation (2) in equation (1), we obtain

logit(µx+1/2) = ln
(

− ln px

1+ln px

)

= lnB + µ(x+ 1/2)

By defining α = lnB, the logit of µx+1/2 is seen to be a linear function

of the parameters α and µ. The probability px can be easily estimated by p̂x

from a life table. This suggests the linear model

ln

(

− ln p̂x

1 + ln p̂x

)

= α + µ(x+ 1/2) + ǫx, (3)

where ǫx is a random error.

The estimator p̂x has approximately a normal distribution with mean px

if the number of persons alive at age x is large so that the errors ǫx have

an asymptotic normal distribution with mean 0. Assuming that they have a

constant variance equal to σ2, the two parameters α and µ can be estimated

from ordinary least-squares (OLS) theory.

The OLS estimators α̂ and µ̂ are consistent for α and µ and asymptotically

are unbiased and normally distributed, so that confidence intervals can be

constructed and tests of hypothesis on the value of the parameters can also

be performed.

Let us assume that Kannisto’s model is appropriate over the range x =

{a, a+1, . . . , a+ b}, with n = b+ 1− a. Model (3) can be rewritten in vector

and matrix form as

Y = Xθ + ǫ,
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where the vectors Y , θ, ǫ and the matrix X are defined as

Yn×1 = (Y1, . . . , Yn)
′

,

θ = (α, µ)
′

,

ǫn×1 = (ǫ1, . . . , ǫn)
′

,

the design matrix X

Xn×2 =







1 1 . . . 1

a+ 0.5 a+ 1.5 . . . a+ b+ 0.5







′

,

and Yi = ln

(

− ln p̂i

1 + ln p̂i

)

.

Assuming that the vector ǫ has mean 0 and the errors are independent

with constant variance σ2, from normal linear theory (see Weisberg (1985) or

Montgomery and Peck (1992)), we know that the least-squares estimator θ̄ of

θ

θ̄ = (X ′X)−1X ′Y

has a normal distribution with mean θ and variance-covariance matrix σ2(X ′X)−1.

By taking into account the unequal variances of p̂x, and therefore those

of ǫx, we can obtain weighted least-squares (WLS) estimators of α and µ,

which will have the same properties (consistency, asymptotic unbiasedness

and normality) as the OLS estimators, but with a smaller variance. This will

be done in Section 5 and numerical values will be compared in Section 6.

4. Estimation for Perk’s Model

As stated in Section 2, Thatcher et al. (1998) observed that the best fit to

mortality data collected in 13 industrialized countries for the three decennial
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periods 1960-70, 1970-80, 1980-90, and for the cohort born in 1871-1880 was

consistently provided by Kannisto’s model and the logistic or Perks’ model.

For Perks’ model,

µx =
A +Beµx

1 + Ceµx
,

there are four parameters to estimate, which makes the model much more

difficult to use in practice.

The function µx

1−µx
is equal to

µx

1−µx
= A+Beµx

1+Ceµx × 1+Ceµx

(1−A)+(C−B)eµx

= A+Beµx

(1−A)+(C−B)eµx

= β+γeµx

1−δeµx ,

where β = A/(1 − A), γ = B/(1 −A) and δ = (C −B)/(1 − A).

Using a limited one-term Taylor’s series expansion for (1 − δeµx)−1, we

obtain
µx

1−µx

∼= (β + γeµx)(1 + δeµx)

= β + (γ + βδ)eµx + γδe2µx

= β + ηeµx + ψe2µx,

where η = γ + βδ and ψ = γδ.

If the parameter µ were known, then µx

1−µx
would be a linear function of

the three parameters β, η and ψ.

Looking at Thatcher et al. (1998) estimates for the parameter µ (called

b in his book), we see that using ages 80-98 for males, it takes values in the

range 0.10 – 0.11 for Kannisto’s model and around 0.10 for the logistic model.

For females, µ equals around 0.12 for Kannisto’s model and 0.12 – 0.13 with

the logistic model.

We therefore propose to use the value estimated from Kannisto’s model

in Perks’ model for the parameter µ. Let us denote by µ0 this known value.

The function µx

1−µx
is then seen to be a linear function in all its parameters,
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now suggesting the linear model

− ln p̂x

1 + ln p̂x
= β + ηeµ0(x+1/2) + ψe2µ0(x+1/2) + ǫx,

where the errors ǫx are assumed to be independent, with mean 0 and constant

variance σ2, and µ0 is known.

Proceeding again as in Section 3, the parameters (β, η, ψ) can be estimated

from ordinary least-squares. This will be investigated in Section 6.

5. WLS Estimators for Kannisto’s Model

In Section 3, to calculate the OLS estimators from model (3), we assumed

that the errors ǫx had a constant variance σ2.

In this section, we will take into account the fact the errors ǫx and ǫy, x 6= y

do not have a constant variance and are not independent of each other, to

obtain WLS estimators of the parameters α and µ for Kannisto’s model.

However, the errors do still have an asymptotic normal distribution with

mean 0.

Since p̂x has an asymptotic normal distribution with mean px and variance

px(1 − px)/lx, we can obtain the asymptotic distribution of a function of p̂x

using the δ-theorem (see Lawless (1982)).

Let us define the function h(p)

h(p) = ln

(

− ln p

1 + ln p

)

.

Calculating its derivative, we obtain

h′(p) = [p(ln p)(1 + ln p)]−1 ,

from which, by the δ-theorem,

Var

[

ln

(

− ln p̂

1 + ln p̂

)]

∼= (h′(p))2|p=p̂Var(p̂)
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=
p(1 − p)/lx

[p(ln p)(1 + ln p)]2
.

So Var(ǫx) ∼=
1 − px

lx+1[(ln px)(1 + ln px)]2
,

which is estimated by

1 − p̂x

lx+1[(ln p̂x)(1 + ln p̂x)]2
. (4)

To calculate the covariance between the errors ǫx and ǫy, where we sup-

pose x < y, we use the fact that (p̂x, p̂y) has a trinomial distribution with

parameters (lx, px, py), and Covariance (p̂x, p̂y) = −pxpy/lx. By the δ-theorem

again,

Cov(ǫx, ǫy) ∼=

(

∂h(px)

∂px

∂h(py)

∂py

) ∣

∣

∣

∣

∣

(p̂x,p̂y)

Cov(p̂x, p̂y).

Calculating the two partial derivatives and estimating p by p̂, Cov(ǫx, ǫy) can

be estimated by

−1

lx[(ln p̂x)(1 + ln p̂x)](ln p̂y)(1 + ln p̂y)]
. (5)

The linear model of Section 3 now becomes

Y = Xθ + ǫ,

where the vector of errors ǫ has an asymptotic normal distribution with mean 0

and variance-covariance matrix Σ, with diagonal elements given by expression

(4) and off-diagonal elements given by (5).

For Kannisto’s model, the weighted least-squares (WLS) estimator of θ =

(α, µ)′, θ∗ = (α∗, µ∗)′ is equal to

θ∗ = (X ′Σ−1X)−1X ′Σ−1Y,

and has an aymptotic normal distribution with mean vector θ and variance-

covariance matrix (X ′Σ−1X)−1.

The OLS and WLS estimators of θ will be compared numerically in the

next section.
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6. Numerical Results

To compare the various estimators possible for Kannisto’s model, we will

use Canadian mortality data. Table 1 contains the numbers of males and

females living at ages 80 and over for the cohort born in the period 1888-

1892. Those numbers, extracted from Doray (2002), were calculated with the

method of extinct generations (all persons who died before age 105 have been

observed). The unknown number of people born in the years 1888-1892, still

alive on 1/1/1998, who would be at least 105 years old, is not counted with

the method of extinct generations. However, it is believed that this number

is small and that it would not affect the parameter estimates of the mortality

curves too much. Table 2 contains the probabilities qx calculated for those

two cohorts.

Tables 3 and 4 contain the results of the various estimation methods, for

males and females, for Kannisto’s model, computed with MATHEMATICA.

The estimator θ̂ is the MLE (the values are taken from Doray (2002), after

reparametrization); θ̄ is the OLS estimator from Section 3, while θ∗ is the

WLS estimator from Section 5. We calculated another estimator θ̃ by using

only the diagonal elements (equation (4)) in matrix Σ, and not the covariance

terms (equation (5)). There are then a lot fewer elements to calculate and Σ

becomes a diagonal matrix whose inverse can be calculated much more easily.

In conclusion, for Kannisto’s model, the various estimators produce values

very close to each other and we therefore recommend the use of the simplest

procedure, OLS. The standard errors are larger than with WLS, but this pro-

cedure requires the calculation of 190 covariances, in addition to 20 variances.

The first two columns of Table 5 contain the probabilities qx estimated

with Kannisto’s model and the OLS estimator. From those probabilities, we

constructed the life tables for males and females, from age 80 to 100, using as

radix, the values l80 from Table 1. The fit is excellent for males and females,
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TABLE 1 Cohort 1888-92

Age Males Females

80 113437 150715
81 102557 141024
82 92132 131291
83 81763 121063
84 71852 110661
85 62454 100310
86 53809 90189
87 45827 80325
88 38591 71039
89 32230 62231
90 26699 53924
91 21625 46027
92 17294 38821
93 13578 32136
94 10428 26187
95 7816 20894
96 5702 16268
97 4113 12411
98 2881 9285
99 1937 6751

100+ 1311 4723
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TABLE 2 Calculated Probabilities qx

Age Males Females

80 0.0959 0.0643
81 0.1017 0.0690
82 0.1125 0.0779
83 0.1212 0.0859
84 0.1308 0.0935
85 0.1384 0.1009
86 0.1483 0.1094
87 0.1579 0.1156
88 0.1648 0.1240
89 0.1716 0.1335
90 0.1900 0.1464
91 0.2003 0.1566
92 0.2149 0.1722
93 0.2320 0.1851
94 0.2505 0.2021
95 0.2705 0.2214
96 0.2787 0.2371
97 0.2995 0.2519
98 0.3277 0.2729
99 0.3232 0.3004

TABLE 3 Estimated Parameter Values for Males

Estimator α (s.e.) µ (s.e.)

θ̂ -9.37522 (0.0718) 0.08922 (7.745E-4)
θ̄ -9.35411 (0.0114) 0.0889989 (1.264E-4)

θ̃ -9.24997 (0.00145) 0.087767 (1.752E-5)
θ∗ -9.23617 (0.00127) 0.087145 (1.5673E-5)

15



TABLE 4 Estimated Parameter Values for Females

Estimator α (s.e.) µ (s.e.)

θ̂ -10.7428 (0.0555) 0.10053 (6.3616E-4)
θ̄ -10.7377 (0.0009611) 0.100516 (1.0657E-5)

θ̃ -10.7361 (0.0006992) 0.100497 (8.4367E-6)
θ∗ -10.7352 (0.0005872) 0.100484 (7.2567E-6)

TABLE 5 qx and lx Values Estimated from Kannisto’s Model

Age qM
x qF

x lMx lFx

80 0.0958 0.0641 113437 150715
81 0.1033 0.0701 102572 141057
82 0.1113 0.0767 91977 131164
83 0.1198 0.0838 81741 121104
84 0.1287 0.0914 71952 110958
85 0.1382 0.0996 62690 100816
86 0.1481 0.1084 54027 90773
87 0.1586 0.1178 46023 80932
88 0.1695 0.1279 38724 71396
89 0.1810 0.1385 32159 62267
90 0.1928 0.1498 26340 53641
91 0.2051 0.1618 21261 45603
92 0.2178 0.1743 16900 38226
93 0.2309 0.1875 13218 31562
94 0.2443 0.2012 10166 25645
95 0.2580 0.2154 7682 20486
96 0.2720 0.2301 5700 16073
97 0.2861 0.2453 4150 12374
98 0.3003 0.2608 2963 9339
99 0.3147 0.2766 2073 6903

100+ 1421 4994
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both for the values qx and lx.

For Perks’ model, if we assume that the parameter µ takes the values

(from Tables 3 and 4)

µ0=0.09 for males and

µ0=0.10 for females,

the matrix (X ′X) is badly conditioned and its inverse may contain significant

numerical errors. A one-term Taylor’s series expansion is therefore not ap-

propriate and we do not report the values of the estimated parameters. In a

future paper, we plan to study non-linear regression for Perks’ model.
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Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A., and Nesbitt, C.J.
1997. Actuarial Mathematics, Schaumburg, IL: Society of Actuaries.

Doray, L.G. 2002. ”Living to Age 100 in Canada in 2000”. Proceedings of
the International Symposium on Living to 100 and Beyond: Survival
at Advanced Ages, Society of Actuaries, 21p.

Gompertz, B. 1825. ”On the Nature of the Function Expressive of the Law
of Human Mortality”, Phil. Trans. Roy. Soc. 115: 513-585.

Heligman, L., and Pollard, J.H. 1980. ”The Age Pattern of Mortality”. Jour-
nal of the Institute of Actuaries 107: 49-80.

Kannisto, V. 1992. Presentation at a workshop on old-age mortality, Odense
University, Odense, Denmark.

Lawless, J.F. 1982. Statistical Models and Methods for Lifetime Data. NewYork:
Wiley.

Makeham, W.M. 1860. ”On the Law of Mortality and the Construction of
Annuity Tables”. Journal of the Institute of Actuaries 8: 301-310.

McCullagh, P., and Nelder, J.R. 1992. Generalized Linear Models. London:
Chapman & Hall.

Perks, W. 1932. ”On Some Experiments on the Graduation of Mortality
Statistics”. Journal of the Institute of Actuaries 63: 12-40.

Thatcher A.R., Kannisto, V., and Vaupel, J.W. 1998. ”The Force of Mor-
tality at Ages 80-120”, Monographs on Population Aging 5. Odense,
Denmark: Odense University Press.

18


