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Abstract  
 

This paper introduces the predictive modeling tools to mortality research. The 

predictive modeling is applied to study how multiple risk drivers such as demographic 

characteristics and social and economic status impact the mortality improvement of the 

advanced age population. The paper provides both the theoretical frameworks and the 

application aspects of the predictive modeling process. As the result, a mortality risk 

score was derived in differentiating the mortality risk for the advanced age population. 

This process can also be used to derive morbidity risk scores upon data availability. The 

mortality risk scores developed in this study can also be used to enhance pricing and 

valuation of insurance products, marketing and insurance underwriting.  
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1. Introduction 

  In the past decade, the prospects of longer life have led to economic and social 

concerns over their implications for public spending on old-age support and other related 

topics. It is necessary to better estimate advanced age mortality for assuring the solidity 

of government and private pension plans; for improving life insurance and annuity 

pricing; for designing and pricing long term care insurance; and other actuarial practice. 

 

Current mortality models have used a variety of mathematical techniques to 

generate mortality rates for advanced ages as a smooth extension of the patterns of 

mortality rates of septuagenarians and octogenarians. A comprehensive literature review 

is given by Tuljapurkar and Boe (1998). There are several approaches used to develop a 

basic scientific theory of mortality, including the evolutionary theory of senescence 

(Rose, 1991; Tuljapurkar, 1998), bio-actuarial theories (Pollard and Streathfield, 1979; 

Yashin, Manton and Vaupel, 1985) and hypotheses based on reliability theory (Wachter 

and Finch, 1997). All these approaches aim to explain the age pattern of mortality.  

 

In addition to age, gender and smoking/non smoking, there are other risk factors 

that drive mortality experience, especially for seniors. The Society of Actuaries (SOA) 

(SOA, 2003) has linked mortality experience with insured, health status, etc. Until today, 

however, most mortality study hasn’t been able to capture the multiple factors and their 

interactions in developing mortality models.  

 

Starting in the 1990s, many of the larger U.S. property & casualty (P&C) 

insurance companies began to implement predictive modeling techniques in the form of 

generalized linear modeling (GLM). Because of the early success realized by those 

companies, the vast majority of P&C companies are now starting to employ these 

techniques to keep up with competitors.  

In insurance pricing, predictive modeling helps set base rates, quantify 

relationships among rating factors, enhance current models and develop special scores, 

such as a fire protection score. When applied to underwriting, predictive models can 
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perform a variety of tasks, such as developing underwriting rules, performing credit 

analysis, creating profitability curves and determining the need for inspections. In the 

marketing area, predictive modeling can help determine the impact of a rate change, by 

incorporating customer retention in estimating the true impact on the overall book of 

business. In addition, predictive modeling techniques can help insurers more accurately 

set reserves, predict fraud and predict laws suits. 

 

Predictive models are normally developed using rich historical data or from 

purposely collected data. In working with large databases, a key challenge is merging a 

large number of external data sources into a company's internal data. Predictive models 

are (normally) made up of a predictor and a number of factor variables that are likely to 

influence future behavior or results. Advanced statistical and data mining techniques for 

predictive modeling include decision trees, neural networks, generalized linear models, 

generalized addictive models and a combination of them.  

 

This paper introduces the predictive modeling tools to the field of mortality 

research. The predictive modeling is applied to study how multiple risk drivers such as 

demographic characteristics, social and economic status and behavioral factors impact the 

mortality improvement of the advanced age population.  

 

The paper is organized as follows. The next section introduces one of the basic 

predictive methods—decision trees applied it to identify the leading risk drivers in 

predicting mortality for the aging population. Section 3 introduces GLM and its 

application in senior mortality analysis. GLM is used to analyze the leading mortality risk 

drivers. The mortality risk score is derived in Section 4. These scores will be used for 

assessing the challenges and needs of the insurance products for different demographic 

group in different countries. Section 5 discusses some issues and techniques for 

projecting advanced age mortality improvement and offers some prospective thoughts for 

the future study.  
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2. Predictive Modeling: Decision Trees 

The process of predict modeling starts with collecting data for the predictive 

variables ),...,,( 21 ipii xxx . These are the drivers that affect the outcome of the target 

variable, Y, which we are trying to predict. Examples of the predictive variables include 

age, duration, gender and household income. Some example of the target variables are 

probability of events, profitability, loss ratio and lapse rate.  

 

A predictive model is a process to derive the value of Y , where 

),...,,( 21 NyyyY =  from },...,,{ 21 ipii xxx based on },...,,{ 21 ipiii xxxfy = . A traditional 

model form is  

ippiii xxxy ββββ ++++= L22110 . 

 

In the following decision tree method, one of the most popular predictive models 

is applied to the mortality study for the advanced age population. Decision tree is one of 

the basic predict modeling methods. The decision tree technique enables one to create 

decision trees that can classify observations based on the values of nominal, binary or 

ordinal targets; predict outcomes for interval targets; or predict the appropriate decision 

when you specify decision alternatives.  

 

In the decision tree approach, an empirical tree represents a segmentation of the 

data that is created by applying a series of simple rules. Each rule assigns an observation 

to a segment based on the value of one input. One rule is applied after another, resulting 

in a hierarchy of segments within segments. The hierarchy is called a tree, and each 

segment is called a node. The original segment contains the entire data set and is called 

the root node of the tree. A node with all its successors forms a branch of the node that 

created it. The final nodes are called leaves. For each leaf, a decision is made and applied 

to all observations in the leaf. The type of decision depends on the context. In predictive 

modeling, the decision is simply the predicted value.  
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Specific decision tree methods include Classification and Regression Trees 

(CART) (Breiman et. al., 1984) and the count or Chi-squared Automatic Interaction 

Detection (CHAID) (Kass, 1980) algorithm. Both CART and CHAID are decision tree 

techniques used to classify a data set, and the inputs can be either nominal or ordinal. 

Many software packages accept interval inputs and automatically group the values into 

ranges before growing the tree. For nodes with many observations, the algorithm uses a 

sample for the split search, for computing the worth (measure of worth indicates how 

well a variable divides the data into each class), and for observing the limit on the 

minimum size of a branch. The samples in different nodes are taken independently. For 

binary splits on binary or interval targets, the optimal split is always found. For other 

situations, the data is first consolidated, and then either all possible splits are evaluated or 

else a heuristic search is used. The consolidation phase searches for groups of values of 

the input that seem likely to be assigned the same branch in the best split. The split search 

regards observations in the same consolidation group as having the same input value. The 

split search is faster because fewer candidate splits need to be evaluated.  

 

A primary consideration when developing a tree for prediction is to decide how 

large to grow the tree or, what comes to the same end, what nodes to prune off the tree. 

The CHAID method specifies a significance level of a Chi-square test to stop tree 

growth. The splitting criteria are based on p-values from the F-distribution (interval 

targets) or Chi-square distribution (nominal targets). For these criteria, the best split is the 

one with the smallest p-value. By default, the p-values are adjusted to take into account 

multiple testing.  

 

A missing value may be treated as a separate value. For nominal inputs, a missing 

value constitutes a new category. For ordinal inputs, a missing value is free of any order 

restrictions.  

 

The search for a split on an input proceeds stepwise. Initially, a branch is 

allocated for each value of the input. Branches are alternately merged and re-split as 

seems warranted by the p-values. The original CHAID algorithm by Kass stops when no 
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merge or re-splitting operation creates an adequate p-value. The final split is adopted. A 

common alternative, sometimes called the exhaustive method, continues merging to a 

binary split and then adopts the split with the most favorable p-value among all splits the 

algorithm considered.  

 

After a split is adopted for an input, its p-value is adjusted, and the input with the 

best-adjusted p-value is selected as the splitting variable. If the adjusted p-value is 

smaller than a threshold you specified, then the node is split. Tree construction ends when 

all the adjusted p-values of the splitting variables in the unsplit nodes are above the user-

specified threshold. 

 

Tree techniques provide insights into the decision-making process, which explains 

how the results come about. The decision tree is efficient and is thus suitable for large 

data sets. Decision trees are perhaps the most successful exploratory method for 

uncovering deviant data structure. Trees recursively partition the input data space in order 

to identify segments where the records are homogeneous. Although decision trees can 

split the data into several homogeneous segments, and the rules produced by the tree can 

be used to detect interaction among variables, it is relatively unstable and it is difficult to 

detect linear or quadratic relationships between the response variable and the dependent 

variables.  

 

By applying the decision tree method in their old age mortality study, Guo and 

Wang (2001) identified some of the most important risk factors in driving the advanced 

age mortality. In their study with the Society of Actuaries’ (SOA, 2001) data, ranking of 

the importance of mortality factors for older age mortality is determined as shown in 

Table 1. The interactions of these factors are also captured.  

 

Within each segment by the most important factor, the decision tree can be 

applied to identify the relatively important risk drivers and their interactions with the 

segment before the construction of the predictive model. For example, within the 
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“combined” segment, “gender” is found to be the most important variable followed by 

the “annuity size” variable.  

 

                               TABLE 1 
       The Rank of Variables’ Importance 
 

Risk Drivers Importance 
Participation Status 1.00
Gender 0.75
Annuity size 0.43
Pay Type 0.21
Union 0.18
Collar 0.00

 
 

 

FIGURE 1 
Tree Analysis 

 

 
 

 

Based on the analysis, the mortality distribution for this segment is determined by 

“age,” “gender,” “annuity size” and their interactions. Notice that although “annuity size” 

seems not important for male, the model for this segment should include both “annuity 



 9

size” and “gender.”  Since the “annuity size” is not important for male, this is an 

indication for the interaction between “gender” and “annuity size.”  Both “pay type” and 

“union” do not appear on any part of the tree. This implies that they are not significant 

when studying the log odds ration between categories.  

 

Interactions among the risk drivers are also identified with decision tree methods. 

Their study revealed that the male retirees’ mortality model and the female retirees’ 

mortality model depend on different variables. Based on the analysis, the collar and pay 

type are two irrelevant factors for male retiree mortality rate and should not be included 

in the male mortality model:  Male retiree mortality depends on age, annuity size, union 

and their interactions. On the other hand, for the female retiree mortality model, both the 

annuity size and union status are insignificant risk factors based on the current database. 

In addition, the study showed the female demography changed in the past three decades; 

variables such as annuity size and union will play a more important role in determining 

the female mortality. The gender factors play a much-reduced role in determining 

beneficiaries’ mortality models when additional risk factors are considered due to the 

interactions. 

  

Variable selection is an essential part of effective predictive modeling. As shown 

here, the decision tree method is a very effective technique for identifying and selecting 

the most significant predicting variables to be included in the model. The next section 

introduces the generalized linear model and applies it to develop a mortality risk score for 

predicting mortality risk for seniors.  

  

3. Predictive Modeling: GLM 

Generalized linear models (GLMs) extend linear regression models to 

accommodate both non-normal response distributions and transformation of linearity. 

GLMs include a wide range of models with linear models as a special case.  
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3.1 GLM Framework 
 

A formal definition is provided as follows. 

 

GLM Definition. A regression data set containing responses iy  and covariates ix  

is said to follow a generalized linear model (GLM) if 

• The responses }{ iy   are independently observed for fixed values of covariates 

),...,,( 21 ipii xxx , and the covariate variables may only influence the distribution of 

the response iy  through a single linear function 

 

ippiii xxx ββββη ++++= L22110 .      (3.1) 

 

• The mean of the response )( ii yE=μ  is linked to the linear predictor iη by a 

smooth invertible link function 

 

iih ημ =)( ,          (3.2) 

while its inverse function )()( 1 thtg −=  is called the inverse link function. 

 

• The distribution of the response iy   is from one of the exponential family with 

density of form  

{ } ,),()(exp),|( ⎥
⎦

⎤
⎢
⎣

⎡
+−=

i
iiii

i
i A

yy
A

yf φτθγϑ
φ

φβ     (3.3) 

where 

 φ  is a scale parameter called dispersion parameter,  

iA  is a known constant, and  

)()( iηθθ =⋅  is a function of linear predictor iη .  
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The exponential family is a broader class of distributions including Normal, Poisson, 

inverse Gaussian, gamma, binomial and exponential distributions. 

 

Notice that GLM is fully determined by the choices of the link function h and the 

form of response distribution (i.e., the form of the functionγ ). 

 

One can interpret that the slope kβ  as the expected amount increases (or changes) 

in ))(( yEh  with a unit increase (or change) in the thk  covariate. 

 

Remark:  It’s easy to show that )()( iiiyE θγμ ′== . 

The variance is )()( i
i

i V
w

yVar θφ
= , where  

)()( iiV θγθ ′′=  is called the variance function with φ  scales the variance while iA  is a 

constant that assigns a weight, or credibility, to the observation i . 

 

Distribution. A number of familiar distributions in the exponential family are: the 

Normal, Poisson, binomial, gamma, and inverse Gaussian: 

• Normal Distribution: we can write 2σφ =  and 1)( =iV θ .  

So, iii ημθ == and 
2

)(
2

i
i

θ
θγ = . 

  

• Poisson distribution:  we can take 1=φ  and iiV θθ =)( .  

So, ii ηθ =  and iei
θθγ =)( . 

  

• Binomial: Distribution:  we can take 1=φ  and )1()( iiiV θθθ −= .  

So, ii ηθ =  and ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

yn
n

i

i
i log)(θγ . 

  

• Inverse Gaussian: 3)( iiV θθ = . 
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• Gamma: Distribution:  we can take 
α

φ 1
=  and 2)( iiV θθ = .  

So, ii ηθ =  and )log()( ii θθγ = . 

 

Details on the probability functions and their moments can be found in Appendix 5, 

Bowers, etc., 1997.  

 

Link Functions. Some commonly used link functions are listed in the following: 

• Logit 

)
1

log()(
t

tth
−

=  

• Probit 

)()( 1 tth −Φ=  where  dzet
t

z

∫ ∞−
=Φ 2

2

2
1)(
π

. 

 

• Log-link 

)log()( tth =         (3.4) 

 

• Square root 

tth =)(  

 

• Inverse 

t
th 1)( =  

 

Remark:  Traditional linear regression requires that iy  be additive in the covariates. 

GLM only requires that some transformation of iy , written as )( iyg  be additive in the 

covariates. 
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The combination of the response distribution and the link function is called 

the family of GLM. 

 

See Table 2 for the typical GLM models used in actuarial applications. 

 
TABLE 2 

GLM Models Used in Actuarial Science  
iy  Number of 

Deaths 
Average Death Benefit Probability 

Link Function )(xh  )ln(x  )ln(x  
)

1
ln(

x
x
−

 

Error Poisson Gamma Binomial 
Scale Parameter φ  1 1 1 
Variance Function )(xV  x  2x  )1( xx −  
Prior Weights iA  1 No. of claims 1 
 
McCullagh and Nelder (1989) provide more detailed discussion on GLMs.  
 
 
3.2 GLM Example 
 

To illustrate 
how GLM 
works, consider 
a  

Higher Income Lower Income 

Male 50 80 
Female 20 40 

 
The target variable (value to be predicted), Y , is the average number of death. 

The two risk drivers, income level and gender, each have two levels.  

The classical linear model describe Y as a linear combination of four variables (male 

( 1X ), female ( 2X ), lower income ( 3X ) and higher income ( 4X ), plus a Normal error 

random variable ε  with mean zero and variance: 

 

εββββη ++++= 44332211 xxxx       (3.5) 

 

where   ),0(~ 2σε N . 
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Equation (3.5), however, is not uniquely defined. To make it well defined for solving 

parameters iβ , consider instead the following model: 

εβββη +++= 332211 xxx         (3.6) 

  

Equation (3.6) assumes the number of death is an average for male ( 1β ) and an 

average for female ( 2β ), with the effect of being at lower income level having additional 

additive effects ( 3β ); notice that 3β  is the same regardless of gender. The classical linear 

model solution is derived by minimizing the sum of squared errors (SSE): 

     
2

2
2

32
2

1
2

31
2 )20()40()50()80( ββββββε −+−−+−+−−== ∑ iSSE  

 

With the solution: 

 

1β =52.5, 2β =17.5, and 3β =25  

 

and the number of death is predicted as: 

 

 Higher Income Lower Income 

Male 52.5 77.5 

Female 17.5 42.5 

 

Using Poisson distribution for the error and )ln(x for the Link Function in GLM  

(Equation (3.4)), the predictive model yields: 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

===
+

+

−

2

32

1

31

)(][ 1

β

ββ

β

ββ

βη

e
e

e
e

XgYE        (3.7) 
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For the error term, the Poisson distribution has the density function: 

 

!)|( y
eyf

y

i
μμ

μ−
= .        (3.8) 

 

Its log-likelihood function is:  

 

∑ ∑ −+−= )!ln(ln()|(ln iiiii yyyf μμμ .     (3.9) 

 

With the log-link function
∑

= j
jijX

i e
β

μ , GLM maximizes the following function: 

 

  232
)(

131
)( 20)(4050)(80 232131 ββββββ ββββββ +−++−+−++− ++ eeeee  

 

and the solution is: 

 

1β =3.8690, 2β =3.0958, and 3β =0.5390. 

 

The predicted values are: 

 

 Higher Income Lower Income 

Male 47.89 82.11 

Female 22.11 37.89 

 

In this simple exercise, GLM provided greater mortality risk differentiation for 

male seniors at different income levels than traditional linear regression. The GLM model 

also reveals that income level is a less significant risk drive for female seniors. 
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3.3 GLM Application 
 

Next, we use GLM to predict the mortality risk for the advanced age population. 

  

As with any data mining process, data understanding and the data preparation 

stages are among the most important steps. Preparing the dataset that contains the most 

information available for predicting variables is one of the key steps. Predictive modeling 

practice almost always involves merging data from different sources (policy data, 

underwriting data, external data, etc.). For demonstration purposes, we use SOA RP-2000 

Mortality Tables for all the lives above age 70 as the demo data.  

 

The risk factors in the dataset include age, gender, occupation information, 

financial well-being (income level measured by annuity size), disability status and union 

status, among the others listed in Table 1 in Section 2. 

 

Age and gender have long been used to model the mortality for all populations. 

The impacts of these risk drivers for seniors are in the demo data as well, as shown in 

Figure 2.     

 



 17

FIGURE 2 

Mortality Experience for Advanced Ages 

 

 
 

With predictive modeling, we examined all the available information in the 

dataset to select the key drivers for predicting advanced age mortality. Interactions and 

correlations of the risk drivers are also captured. For example, we consider the gender, 

age and income levels and their impact on the mortality distribution. As shown in Figure 

3, income level is not a significant driver of mortality for the female senior population 

except for the very advanced age group (age 86 or older). The fact that the age 86-90 

group of female seniors has a significantly lower mortality rate if financially sounded 

implies that financial wealth plays a very important role in older female seniors, but not 

much for the younger seniors.  
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FIGURE 3 

Mortality Experience for Female Seniors 

Female Senior Mortality
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On the other hand, income level is a very important driver in differentiating 

mortality risks in the male senior population across all age groups, as shown in Figure 4.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 19

FIGURE 4 

Mortality Experience for Male Seniors 

 
 

To find out how much the income level affects the male senior mortality, we 

compare the male senior mortality experience with different income levels with the 

female senior mortality. Figure 5 shows that the male senior with high incomes fares 

better than the female senior population. 
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FIGURE 5 

                                    Mortality Drivers Interactions 
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The finding suggests that the interaction of the age, the income levels and the 

gender should be captured in predicting senior mortality.  

 

Using SAS, the GLM method as described in Equation (3.1)-(3.3), with Poisson 

distribution and Log-link function, is applied to 40091 observations.  

GLM is applied to predict male mortality rate using age, income level and their 

interactions, shown in Figure 6. 
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FIGURE 6 

GLM for Male Senior Mortality Prediction. 

70
-7

5

81
-8

5

91
-9

5 Income Levels
0

0.1
0.2
0.3
0.4

Mortality 
Rate

Age

Male Mortality

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4
 

 

 

Our analysis also reflects the mortality improvement over the years. Figure 7 

shows that not only the senior population mortality has improved over the years; the male 

senior mortality improvement has been more significant than female seniors’ 

improvement. Figure 8 displays the mortality experience improvement over various age 

groups. 
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                                                        FIGURE 7 

                                    Senior Mortality Experience   
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                                                        FIGURE 8 

                            Mortality Experience for Senior Population. 
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GLM models are developed using experience year as a driving factor to capture 

the mortality improvement, shown in Figure 9. 
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                                                     FIGURE 9 

                                        Senior Population Mortality  
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Overall, GLM provides a reliable predictive model for the senior mortality. The 

validation population has 5.77 percent as the average mortality rate. Model validation 

results are shown in Figure 10, and the comparison is listed in Table 3. 

 

                                                                      TABLE 3 

                                             Relative Mortality Risk Comparison 

Age 

Group 

Predicted Risk 

Relativity 

Experience Risk 

Relativity 

70-75 60.78% 60.67% 

76-79 100.00% 99.01% 

81-85 157.24% 152.78% 

86-90 244.00% 232.42% 

91-95 370.32% 346.48% 

96+ 502.54% 474.65% 

      

Mean  5.77% 5.77% 
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                                                 FIGURE 10 

                             GLM Predicted Mortality Relativity 
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4. Mortality Risk Score 
Finally, a preliminary mortality risk score to predict the mortality risk for the 

senior population using multiple mortality drivers in the demo dataset is presented in this 

section.  

 

Using the decision tree method discussed in Section 2, key risk drives are selected 

and the GLM method (Equations (3.4), (3.7)-(3.9)) is applied to 40094 data points.  

 

Table 4 displays the relative weight for each individual risk drive, which reflects 

its impact on the mortality risk within the multiplicative model. The mortality risk score 

for each individual is calculated by multiplying the assigned weights for each risk factor 

and the average risk. 
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TABLE 4 

Senior Mortality Score 

Mortality Risk 

Factors Risk Class Weight

Age 70-75 0.121 

  76-79 0.199 

  81-85 0.313 

  86-90 0.486 

  91-95 0.737 

  96+ 1.000 

Gender Female 0.619 

  Male 1.000 

Income Level High 0.745 

  Middle 0.969 

  Lower 1.024 

  Unknown 1.000 

Disabled Y 1.560 

  N 1.000 

Occupation High Risk  1.135 

  Non Professional 1.107 

  Professional 1.000 

Union C 1.013 

  N 0.866 

  U 1.000 

For example, a 72-year-old non-disabled female professional, with high income 

level and non-union, belongs to the lowest mortality risk group among all the seniors. 

The lowest mortality risk group has the relative mortality risk score 0.0483 

(=0.121*0.619*0.745*1.000*1.000*1.000*0.866). It implied that the said senior’s 

mortality risk is about 5 percent of the average mortality rate (0.0577) for the seniors in 

the demo dataset. The highest mortality risk group has the relative mortality risk score 
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1.9799 (=1.000*1.000*1.024*1.560*1.078*1.135*1.013), which is 198 percent of the 

average senior’s mortality risk (0.0577) in the demo dataset. The mortality risks for the 

different senior groups range from 0.00279 (lowest) to 0.11424 (highest). 

The mortality risk score derived in this study is a multifactor predictive model 

that effectively separates the good risk from the bad risk. It can also be used in pricing 

and valuation of life insurance products as well as annuity products. Another significant 

application of the mortality risk score, as used in the P&C insurance industry, is in 

underwriting to gain significant competitive advantages for insurers.  

5. Summary 
This paper introduces the predictive modeling method to investigate multiple risk 

drivers and their impacts on the advanced age mortality. Predictive modeling has 

significantly increased the economic values for P&C insurers as well as the health 

insurance industry.  

 

This paper presents two most useful predictive modeling methods—decision trees 

for identifying leading risk drivers and GLM for deriving the mortality risk score for the 

advanced age population. The risk score for the senior mortality not only helps us to 

understand how the mortality risk factors and their interactions impact the senior 

mortality, it also helps insurers in gaining a competitive edge in life insurance and 

annuity products pricing, valuation and enterprise risk management. 

 

As with any data mining process, data understanding and the data preparation 

stages are among the most important steps. Preparing the dataset that contains the most 

information available for predicting variables is one of the key steps. In predictive 

modeling practice, it almost always involves merging data from different sources (policy 

data, underwriting data, external data, etc.).  

In the follow-up study, the predictive models are developed using an expanded 

database. The demo data is derived by appending health-related information from the 

Surveillance, Epidemiology and End Results (SEER) to the demo dataset used in this 
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study. By including more drivers (such as cancer data and geographic data) for mortality 

risk predicting, the mortality risk scores can be used to model the senior mortality more 

effectively. The techniques and the process of merging and combining the dataset used 

for the predictive modeling will be presented in the forthcoming paper. 

Among the challenges facing actuaries adopting predictive modeling techniques is 

the selection of new tools, such as the right statistical package. Predictive modeling 

improves accuracy, but it also brings the need for training, the requirement of 

complicated explanations to customers and the expansion of data needs.  
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