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1 I n t r o d u c t i o n  

During the last decade, a vast activity have been el)served in generalizing of the classical 
discrete distributions. The main idea was to apply the extended versions fur modeling dif- 
ferent kinds of dependent count or frequency data structure in various fields (Econometrics, 
Insurance, Finance, Biometrics, etc.), see for example Bowers et al. (1997), Collett (1991), 
,Johnson et al. (1992), Lucefio (1995), R,olski et al. (1999), Winkelmann (2000) and references 
therein. 

In the general introduction of the recent monographs Bowers et al. (1997), Rolski et al. 
(1999), Winkelmann (2000) is emphasized the need for richer classes of probability distribu- 
tions when modeling count data. Since the probability distributions fur counts are nonstan- 
dard in the actuarial literature, special attention is paid here for more flexible distributions, 
since they can be used as a building blocks for improved count data models with immediate 
application in insurance describing the accumulated claims. 

In thc present paper we suggest cxtcnsions of the classical univariatc geometric, negative 
I)inomial, Poisson, Bernoulli, binomial and logarithmic series distributions, by including an 
additional parameter p. It has a natural interpretation in terms of "zero-inflation", and 
because of this we named the corresponding generalized versions adding "inflated-parameter". 

After giving notations and preliminary results in Section 2, probability mass flmctions 
(PMF) and probability generating functions (PGF) of the corresponding inflated-parameter 
distributions are presented in Sections 3 through 8. The relationships between the inflated- 
parameter distributions, according to the remaining parameters, are the same as between 
their classical analogue. This simply shows that the new generalized distributions compose a 
new class (family) of discrete distributions and this topic is discussed in Section 9, where two 
different representations of the corresponding PMF's of the r.v.'s belonging to the inflated- 
parameter family of the generalized power series distributions are presented. An overdispersed 
property of the new class according the family of generalized power series distributions is 
discussed as well as a new constructive interpretation of the parameter p is obtained. In Section 
1(} we use the inflated-t)arameter Poisson and negative binomial distributions to approximate 
real frequency data. At the end, some conclusions are given. 

2 N o t a t i o n s  a n d  P r e l i m i n a r i e s  

The random variables (r.v.) considered are assumed to be defined on a fixed probability space 
(~,.~', P).  We will deal with a nonnegative r.v.'s represmlting a number of claims oi" a claim 
amount adopting the assumptions of the collective model of risk theory for ;t fixed period 
of time. Let N be a nonnegative integer valued r.v. representing a nmnber of claims, with 
counting density 

P k = P ( N = k ) ,  k = 0 , 1  . . . . .  

For the PGF of the r.v. N we will use notation 

PN(t )= k p ~ t  k, ItI < 1. 
k=O 
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There  are at least three par t icular  cases tha t  are applicable in Insurance as a claim number  
d is t r ibut ions:  the  Poisson, the  binomial  and the  negative binomial  dis t r ibut ions .  We wri te  

• (i) N ~ Po(),) if N has a Poisson d is t r ibut inn  with pa ramete r  fl > O, i.e. 

e ~A k 
P k - -  k! ' k = O , 1 , . . . ;  

• (ii) N "~ Bi(Tr,n) if N has a binomial  d is t r ibut ion with pa ramete r s  7r E (0,1) and 
n c {0,  1 . . . .  }, i.e. 

p k =  [ k )  TCk(1--1r)'~-k , k = O  1 . . . .  n. 

W h e n  n = l ,  we obta in  the  Bernoulli r.v. with a pa ramete r  7r; 

• (iii) N ~ NB(~r , r )  if N has a negative binomial  (NB) d is t r ibut ion  wi th  pa rame te r s  
7r E (0, 1) and r > O, i.e. 

P k =  ( r + k - l )  ~ r ~ ( 1 - 1 r ) k ' k  k = O ,  1, . . . .  

In the  special  case r = 1, we obta in  the geometr ic  d is t r ibut ion wi th  a pa r ame te r  7r, 
G e o ( ~ ) ,  on the  nonnegat ive  integers. 

• (iv) N ~ LS(Tr) if N ha~s a logar i thmic series d is t r ibut ion with pa rame te r  7r C (0, 1), i.e. 

7T k 
k =  1 , 2 , . . . .  

Pk - - k l o g ( 1  - r ) '  

The  logar i thmic  series d is t r ibut ion is used ra ther  rarely. It can be ob ta ined  as a l imi t ing 
d is t r ibu t ion  of the t runca ted  at zero NB dis t r ibut ion.  We include the  logar i thmic  series 
d is t r ibu t ion  since it can be used to model  the numbers  of i tems of a p roduc t  purchased  
by a buyer in a specified period of t ime, e.g. Chatfield et al. (1966); 

• (v) N ~ 5m, if N is concent ra ted  on the  integer m C {O, 1 , . . . } ,  i.e. degenera ted  at 
N = m with  

P r o = l ,  P k = 0  for k # m .  

The  equal i ty of mean and variance is character is t ic  of the  Poisson d is t r ibu t ion  and can bc 
referred to as cquidispcrsiou. Depar tures  from equidispersion can be ei ther  as ove'rdisper.~io'r~ 
(variance is grea ter  t han  inean) or underdispersion (variance is less t han  the  mean) .  The  
Binomial  d i s t r ibn t ion  is underdispersed  and the NB dis t r ibut ion is overdispersed according 
to the  Poisson dis t r ibut ion .  The  logari thmic series d is t r ibut ion  displays overdispers ion for 
0 < - [ log(1  - ~r)]-" < 1 and underdispers ion for - [ log(1  - u ) ] - l  > 1. 
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2 . 1  G e n e r a l i z e d  P o w e r  S e r i e s  Distr ibutions and Panjer ' s  Recurs ion 

Many univariatc  discrete probabili ty distributions,  with a single l)aramctcr belong to the (:lass 
of generalized power series distT-ibutions (GPSD) or to the (:lasses of their generalizations, see 
Gup ta  (1974), Consul (1990). 

D e f i n i t i o n  2.1. The PG F  of the GPSD with a parameter  0 > 0, is given by the following 
relation 

g(Ot) (1) 
~( t ) -  9(o)' 

where g(O) is a positive, finite and diffcrentiable flmction. For an5" member  of lhis family, the 
PMF of the corresponding r.v. X can be writ ten as 

P(N = k )  - a ( k ) O k  g(O) ' k c s ;  0 > 0 ,  (2)  

where S is any nonempty enumerable set of nonnegative integers, a(k) _> 0 and .q(O) = 
E k e s  a ( k )  Ok. 

The binomial,  the NB, the logarithmic series and the Poisson distr ibutions belong to this 
class, see Pati l  (1962). In the binomial and NB cases, the corresponding addit ional  integer 
parameters  n and r are t reated as nuisance parameters.  

In the part icular  cases, the fllnctions a(k), g(O) and the parameter  0, are given by the 
following expressions 

X ~ B i ( O , n ) :  a(k)= (~), g (0)=(1+0)" ,  0 : ~ - - 1  . ,  

X ~ Po(0)  : a(k) - l eo - ~ ,  9(o) = 0 = 2~; 

X ~ N B ( O , r ) :  a(k)= (k+~-,), 9 ( 0 ) = ( 1 - 0 )  ~, 0 = l - l r ;  

x ~ L S ( O ) :  a ( k )  = ~, q(O) = - l ,~ (1  - 0),  0 = 1 - ~ 

The concept of the GPSD and their extensions is not polmlar in actuarial  l i terature. The 
authors  prefer to use as a first step the Panjer-recursion 

p k =  a + ~  Pk 1, k = l , 2  . . . .  (3) 

for some constants  a < 1, and b, el. Panjer (1981). In Sundt  and Jewell (1981) is shown tha t  
the recursion is satisfied if and only if N has a Poisson, a binomial or a NB dis t r ibut ion or 
N ~ dio, respectively. If we s tar t  recursion (3) only at k = 2 then logarithmic series dis tr ibut ion 
also satisfies it as well as the t runcated versions of the above distributions.  The values of the 
constants  a and b in the different cases can be found, for example in St raub (1988), p. 35. 
Let us only note, t ha t  the class of distr ibutions fillfilling (3) is known in actuarial  l i terature 
as a Rl(a, b) cla~s also. 
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So, the GPSD satisfy Panjer's recursion (3). In this paper we will follow the GPSD 
terminology since, at least historically, it appears earlier. 

Recently there are many generalizations of the reeursion formula (3) where the densities of 
counting distributions satisfy certain second and higher order difference equations. Recursions 
for the evaluation of related compound distributions have been developed in the case of severity 
distributions which are concentrated on the non-negative integers, see for example SchrSrter 
(1990), Sundt (1992), Dhaene et al. (1996). 

2 . 2  Z e r o - i n f l a t e d  D i s t r i b u t i o n s  

Our study is based on the inflated parameter (zero-modified) discrete distributions, which are 
used to model counts that encounter disproportionally large frequencies of zeros, e.g. Johnson 
at aI. (1992). Let ~ be an arbitrary nonnegative integer-valued r.v. such that 

P ( ~ = j ) = p j ,  j = O ,  1,..., ~ p j = l ,  
j=o 

and let G~(t) = E(t  ~) be its PGF. An extra proportion of zeros, p C (0,1), is added to 
the proportion of zeros from the distribution of the r.v. (, while decreasing the remaining 
proportions in an appropriate way. The zero-inflated modification 7/of ( is defined by 

P ( ~ = 0 )  = p + ( 1 - p ) p 0 ,  

P ( r / = j )  = ( 1 - p ) p j ,  j = l , 2 , . . . .  (4) 

It has as a P G F  
v , ( t )  = p + (1 - p ) C d t )  (5) 

Zero-inflated models address the problem, that the data display a higher fraction of zeros, 
or non occurrences, than can be possibly explained through any fitted standard count model. 
The zero-inflated distributions are appropriate alternatives for modeling clustered samples 
when the population consists of two sub-populations, one containing only zeros, while in the 
other, counts from a discrete distribution are observed. 

If p = 1, than the corresponding zero-inflated distribution is the degenerated at zero one; 
if p = 0, "nothing is changed" in (5), i.e. G~(t) = G~(t). 

In general, the inflation parameter p may take negative values provided that P ( r / =  0) > 0, 
i.e., p _> __.m_l_po and therefore m a x { - 1 , - l ~ p o }  <_ p <_ 0. This case corresponds to the 
"opposite" phenomena - "excluding" a proportion of zeros from the basic discrete distribution, 
if necessary. 

In actuarial literature, e.g. Rolski et al. (1999) p.35, the zero-inflated distributions are 
known as a "0-modification" which can be considered as a reverse truncated operation. 

3 Inflated-parameter Geometric Distribution 

In this section we suggest a generalization of the usual geometric distribution by including an 
additional parameter p E [0, 1). Several simple interpretations of the proposed distribution are 
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presen ted  in Sect ion 3.1 and  a new concept  of "p-tyl)e lack-of m e m o r y  l)roperty" is i n t roduced  
in Sect ion 3.2. 

Let {It",, I~:2 . . . .  } be an infini te  sequence of i ndependen t  h inary  var iables  

14'k = [ 0 wi th  p robabi l i ty  1 - 7r, 

L 1 with p robabi l i ty  ~, 

for k = 1, 2 . . . .  , where the  p a r a m e t e r  ~ E ((}, 1). In the  sequel, we will ident ify the  real izat ion 
"1" as a : 'success". 

Cons ider  i ts co r respond ing  zero-inflated .sequence { W i, W2 . . . .  }, de t e rmined  for h - 1, 2 . . . .  
accord ing  to (4): 

lI--~. = { 0 wi th  p robabi l i ty  (1 - ~)(1 - p) + p, 
1 wi th  probabi l i ty  (1 - p)Tr, 

wi th  m a x { - 1 , - L ~ }  < p < 1. Let the r.v. V be equal  It) the  u m u b e r  of t r ials  Iha l  we 
need to achieve the  first observed "success" in the  new constrm:h!d se(tueIlce { |VI ,  W e , . . . }  of 
i n d e p e n d e n t  b ina ry  variables.  The  P M F  of the  r.v. V is given by 

P ( V = k )  = [ ( l - T r ) ( 1 - p ) + p ] k  ' ( 1 - p ) T r ,  k =  1,2 . . . .  (6) 

T h e  r.v. V has  the  usual  geometr ic  d i s t r ibu t ion  on the  posit ive integers,  V ~ Gel (~*) ,  wi th  
a p a r a m e t e r  

7r* = ( 1 - T r ) ( l  - p )  + p =  1 -  (1 p)u. (7) 

Now, let us define the  r.v. X by the  following rela t ions 

p ( x  = 0 )  = ~,  

P(X=k) = (1- -  Tr)[(1-- ",T)(1-- p) + p ]k - i (1 - -  p)~, k =  1,2 . . . .  (S) 

It is easy to verify t h a t  the  above equa t ions  define a p roper  p robab i l i ty  d is t r i ln l t ion .  Tim 
co r re spond ing  P G F  Px  (s) is d e t e r m i n e d  by the  following express ion 

;r(1 - tp) ~r(1 - tp) 
P x ( t )  = 1 - t i t 1  - 7r)(1 - p )  + p] = 1 - t (1  - 7r + p ~ ) '  (9) 

D e f i n i t i o n  3 .1 .  We say t h a t  tile r.v. X define(l by (8) (or (9)) has an i'nflated-parameter 
geometric distribution with  pa rame te r s  7r E (0, 1) and  p E ( m a x { - 1 ,  - L ~  }, 1) and  will deno te  
th is  by X ~ IGeo(TC, p). 

R e m a r k  3 .1 .  If p = 0, the  defined in f l a t ed -pa ramete r  geometr ic  d i s t r ibu t ion  coincides 
wi th  the  usual  geometr ic  d i s t r i bu t ion  on the  nonnega t ive  integer values, wi th  l ) a ramete r  7r, 
i.e. Geo(TC) = [Ge0(Tr,0).  

R e m a r k  3 .2 .  T h e  mean  and  the  var iance  of the  IGeo(~, p) d i s t r ibu t ion  are given by 

1 - 7r (1  - 7r ) (1  + w p )  
E ( X ) -  and  V a r ( X )  - 

~ ( I  - p )  ~ ( 1  - p)2 
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3 . 1  I n t e r p r e t a t i o n s  

R e m a r k  3 .3 .  Let us consider  a t ime homogeneous  Markov chain {X, ,  n >_ 0} taking values 
{0, 1}. We de te rmine  the  sequence X0, X L , . . .  by the  d is t r ibut ion  of the  initial  s ta tes  

P ( X o = O ) = l - T r  and 

and for n = O, 1 . . . .  , by the  t rans i t ion  probabi l i t ies  

P(X,+, = 0IX. -- 0) -- (1 - 7r)(1 - p) + p, 

and  

P ( x o  = 1) = 

P(X,~+, = 1 [Xn = 0) = (1 - p)Tr 

P(Xn+I=OIX , ,=  1 ) =  ( 1 - ~ r ) ( 1 - p ) ,  P(X, ,+I  = I I X , , = I )  = ( 1 - p ) ~ ' + p .  

For the  defined Markov chain the  r.v. X de te rmined  by (8) has the following interpreta- 
tion: it gives the  number  of t rans i t ions  until  the  first "success" is observed in the  sequence 

Xo, XI ,  • • .. 

R e m a r k  3.4.  Note, tha t  the pa rame te r  ~* of the  r.v. V ~ Gel(Tr*), given by (7) coincides 
wi th  the  probabi l i ty  P(Wk = 0) for the  zero-inflated sequence {Wk, k > 1} as well as wi th  the  
condi t ional  probabi l i ty  P(X,~+I = (}[ X ,  = I)) for tile two-s ta te  homogeneous  Markov chain 
considered by Remark  3.3. 

Let. us under l ine  tha t ,  in fact, the  pa rame te r  p, represents  the propor t ion  of zeros added 
to the  usual Bernoulli  d is t r ibut ion (when p > 0), decreasing the  "successive" value 1 in all 
appropr i a t e  way. 

R e m a r k  3.5.  Let us consider the  Correlated binomial distribution, in t roduced  by Luccfio 
(1995). A r.v. W following this  d is t r ibut ion counts  the  number  of "successes" in a sample  of 
n sub jec t s  t h a t  give equicorrelated binary responses wi th  correlation coefficient p, probabi l i ty  
of success 7r, under  condi t ion  tha t  its P M F  mus t  depend  linearly on p. The P G F  for n = 2 is 
given by 

P w ( t ) = p ( l - r + T r t  2 ) + ( 1 - p ) ( 1 - ; r + r t )  2. 

From the  last  expression we obta in  the  following equat ions 

P (W = 0) = (1 - ;r)[p + (1 - p)(1 - ;r)], 
P ( W  = 1) = 2(1 - ~)(1 - p)Tr, 
P (W = 2) = 7r[p + (1 - p)Tr]. 

Now, it is easy to ob ta in  the  t rans i t ion probabi l i t ies  given by Remark  3,3. Really, if W1 and 
W2 are two equicorre la ted binary responses,  we have 

P($~ = 1 [ W1 = O) = P(W, = O,l:,V2 = 1) ½P(W, + ~:2 = 1) ½P(W = 1) 
P(Wl = O) = P(I~ '  1 : O) - P(I~'I = O) - (1 - p)R 

and  

P(W2----OIW, = 0 ) =  P ( W , = 0 ,  W 2 = 0 )  __ P ( W ~ + W 2 = 0 )  _ P ( W = 0 )  
P(WI = O) P(W, = O) P(W~ = 0)' 
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i .e,  
p ( w . ~ = 0 1 u ; = 0 )  = ( a - ~ ) ( 1 - p ) + p .  

In th is  ease, the  r.v. X, given by (8), can be interpreted as the  n u m b e r  of t r ia ls  unt i l  t he  first 
"success"  is observed in a sequence {Wl,  W2 , . . . }  of equicorre la ted  b ina ry  responses.  Because 
of the  last  i n t e r p r e t a t i o n  of the  r.v. X, one may  refer the  inf la ted-geometr ic  d i s t r i bu t i on  
IGeoQr, p) as Correlated geometric distribution. 

3 . 2  p-type Lack-of-Memory Property 
It is well known,  e.g. f rom G a l a m b o s  and  Kotz (1978), t h a t  the  equa t ion  

P ( U > b + x l U > _ b ) = P ( U > _ x ) ,  x>_O, b>O, (10) 

is t rue  for a r.v. U which is nonnega t ive  and  non-degenera te  at  zero, if and  only  if it has  
e i the r  the  exponen t i a l  or the  geometr ic  d i s t r ibu t ion .  Equa t i on  (10) is known as the  lack of 
memory prope r ty  c i thcr  for thc  r.v. U or for i ts  d i s t r ibu t ion  funct ion.  

T h e o r e m  3 .1 .  Let X ~ IGeo(Tr,p). Then for any x > 0 and b > 0, the conditional 
probability P ( X  > b + x I X > b) has the following equivalent representations: 

( i )  [ (1 - n ) ( 1  - p)  + p]~; 

(ii) (l-~r)([ p)+p p¢ X > x);  
C1-~) '.~ - 

(iii) P (X  > x) + p ~ P ( X  2 x); 

(iv) P (X  >> x) + prrP(X _> x I X > O); 

(v) (1 - p)P(X >_ x) + pP(X _> :r I X  > 0); 

(vi) P(1/ > x + l), 

where the r.v. V is given by (6). 
P r o o f .  For any  fixed integer  b _> 1 from (8) we have 

P ( X  >_ b) = ~-~(1 - 70[(1 - 7Q(1 - p) + p]k- ' (1  - p)Tr, 
k=b  

i,e, 

T h e n  for any  x _> 0 

P (X  > b) = (1 - 7r)[(1 - 70(1 - p) + p]b-,. 

P ( X  >_ b + x  I X _> b) 
P (X  >_ b + x) 

P ( X  > b) 
- [(1 7r)(1 p)  + p]~ 

and  the  r ep re sen ta t ion  (i) is ob ta ined .  
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By simple t ransformations from (i) one can obtain relations (i 0 - (v). Representat ion (vi) 
follows from the definition of the r.v. V and (i). 

Tile s ta tement  (v) from Theorem 3.1 gives us reasons to suggest the following extension 
of the usual lack-of-memory property. 

D e f i n i t i o n  3.3. We call t ha t  the r.v. U has p-type lack-of-memory property if 

P(U _> b + x I U _> b) = (1 - p)P(U >_ x) + pP(U >_ x I U > 0), 

for a n ) ' x _ > 0 a n d b > 0 .  

We will not discuss here the characterizations of the p-type lack-of-memory property. 

4 I n f l a t e d - p a r a m e t e r  N e g a t i v e  B i n o m i a l  D i s t r i b u t i o n  

Let r be a positive integer and X1, X 2 , . . . ,  Xr be independent  identically dis t r ibuted (i.i.d.) 
r.v. 's having IGeo(~r, p) distr ibution,  given by (8). 

D e f i n i t i o n  4.1. We say tha t  the r.v. Y = X1 + X2 + . . -  + Xr has an inflated-parameter 
negative binomial distribution with parameters  7r E (0, 1), p E (max{ -1 ,  _k~_}, 1) and r >_ 1, 
to bc denoted Y ~ I N B ( w , p , r ) .  

Since XI,  X ~ , . . . ,  Xr are i . i .d .r .v . ' s ,  each having a PG F  given by (9), the P G F  of the r.v. 
Y ~ INB(~r, p, r) has the following form 

[i ~-(I - tp) l Py(t)  (11) - ~ - ~ +  p.) j 
k 

The PMF of the inflated-parameter  negative binomial distr ibution is given by the next 
proposition. 

P r o p o s i t i o n  4.1. The PMF of the I N B( Tr, p, r) distributed r. v. Y is given by the following 
relation 

p ( y = y ) =  7rr ~ ( y l + y 2 + ' ' ' + r - I )  
y,, y~ . . . .  Yl, Y2,. . . ,  r - 1 [(1 - r ) (1  - p) ]"+Y~+/r  v~+2~'~+''', (12) 

where y : O, 1 , . . .  and the summation is over all nonnegative integers Yl, Y'z, Y3,. . .  such tha t  

Yt + 2y.z + 3ya + . . . .  y. 

P r o o f .  Using some combinatorial  equations, from the PG F  (11) we consequently obta in  
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7(1 - tp) ]~ 
l~.(t) = 1 -  7 (12~  + prr) 

, f i r  

[1 - (1 - ~r)(1 - P)tT~o] ~ 

m = O  Tfl  i r t l  ~ ? ¥ t 2  ~ . . . \ I l l  I ~ ? 1 ~ 2 ~  • - • 

where  the  last  s u m m a t i o n  is over all nonnega t ivc  integers nq ,  m2, ma . . . .  , such t h a t  m~ + my + 
ma + . . . .  m .  N o w ,  t ak ing  into account  the  equal i ty  

+:: - ') (,,,,, ::; .... ) 
we have 

5,(t)  = .~ ~ [(1 - ,~)(1 p)qm E 
m = O  ? ? / q  ~ / 7 ~ 2 ~  . . . 

= (  r e + r - 1  ) 
\tll t ~ 1112~ . . . ~ t '  - -  1 

m + r - 1 
! 

T i ' l l ,  7 , 1 2 ,  . . . ~ V - -  1 J  

S u b s t i t n t i n g  in the  last  express ion mi = Yi, i _~ 1 and  m = y 
o b t a i n  

Py(t) = ~ tYP(Y = g), 
y = O  

where  the  l ) robabi l i ty  P(}"  y) is given by (12) for !/ _> O. 

- E ) ~ I ( J -  1)ya we finally 

R e m a r k  4 .1 .  If we pu t  p = 0 in (12) the  P M F  of the  usual NB d i s t r ibu t ion  is ob ta ined .  

R e m a r k  4 .2 .  T he  pr<)babilities of the  first four values of the  r.v. Y ~ INB(Tr, p, r) are 
given by tile following exI)ressions 

P ( Y  = 0 )  = ~", 
P ( Y  = 1) - rr"r(1 - rr)(1 - p), 

[ /~+1(1  P ( Y = 2 )  = ~ r " ( 1 - p ) ( 1 - T r )  2 ) - p ) ( 1 - ~ r ) + r p ] ,  

P ( Y = 3 )  = ~-'~(1 p ) (1  ~ )  a ) (  1 ~ + 2  p)2 (1  7r)~ ~ , ' ( , ' + 1 ) ( 1  p ) (1  n ) p + r p  ~ ] •  , 

der ived from (12). 

R e m a r k  4.3 .  Th( '  m e a n  and  tile var iance of the  LNB(Tr, p, r )  d is t r i l )u t ion are given by 

r(1 - 7r) , ' (1 - 7r)(1 + ~rp) 
E 0 " ) -  - -  and  ~ ' a r ( Y ) =  

7r(1 - p) 7r2(1 _ f,)2 
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5 Inf lated-parameter  Poisson D i s t r i b u t i o n  

Here we will ol)lain tile PGF and PMF of a new distribution, by finding the limits of the 
expressions (11) and (12)when 

r-- - -+oc and rr ~ 1, such that r( l  - r r )  = A = e o n s t  > 0 .  (13) 

The limiting PGF is given t)y the following proposition. 

P r o p o s i t i o n  5.1. Under the limiting conditions (13) the following relation is true 

li2~, 1i,21Pr (0 = <':P [ ~ j ,  (14) 

where P r ( t )  the P a F  given by (11). 
Proof .  Taking logarithm on both sides of (11) we have 

h t P y ( t )  = r {ln[1 (1 7r+prrt)] h~[1-  t ( 1 -  Tr + pTr)]} . 

Using the Taylor expansion of the logarithmic flm(:tion In(1 - . r ) ,  after some simple transfor- 
mations we ot)tain that 

l , ,P~.(t) = r(1 ~)( t  - 1) 1 + ~[~t,~t + (1 - ~)( t  + 1)] 

+~l[3(prrt)2 + 3p~rt(t + 1)(1 - r~) + (t 2 + t + 1)(1 - 7r) 2] + . . . }  

Now using the limiting conditions (13) we finally have 

A ( t -  1) 
lim l imlnPv( t )  = k( t  - 1 ) [ l + p t + ( p t )  '~ + . . . ]  - 

r-,.c ~+1 1 pt 

Taking anti-h)garithm in the last relation we obtain (14). 

R e m a r k  5.1. If we l)ltl, p = 0 in the limiting PMF given I)y righl side of 1.he relation (14) 
we obtain the PGF of the usual Poisson distribution wilh l)arameter A > 0. 

Therefore, we have a reason to define the corresponding r.v. by the follmving definition. 

D e f i n i t i o n  5.1. We say that the r.v. Z has an inflated-parameter Poi,s.son distribution 
with parameters ,~ > 0 and p E [0, 1), and will denote this by Z ~ II 'o()~,p),  if its I ' ( ;F  Pz( t )  
is represented by the following equation 

By analogy with the NB ease, we will obtain the PMF of the inflated-parameter Poisson 
distribution by the following proposition. 
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P r o p o s i t i o n  5.2.  The P M F  of  the IPo(A ,  p) distributed r.v. Z is given by the fo l lowing  
relat ion 

P ( Z  = z) = ~ z,'z~' [,X(1- p)l~ '++~+p ~ + 2 ~ + ,  (16) 
Z l ~  Z 2 +  • . . • . . . .  

where z = O, 1 , . . .  and  the s u m m a t i o n  is over all nonnegat ive  integers z, , z2, z3, . . . .such thai 

zt + 2z2 + 3za + . . . .  z. 

P r o o f .  From the  P G F  (15) we have 

Pz( t )  = e x p [ A ( t - 1 ) ( l  + pt + p2t2 + . . . ) ]  

= exp  {A[-1  + (1 - p)t + p(1 - p)t 2 + p2(1 - p)t 3 + . . . ] } .  

Using the  Taylor expans ion  of the  exponent ia l  funct ion exp(x) ,  we obta in  

@ A~[-1 + (1 - p)t + p(1 - p)t '2 + p2(1 - p)t  3 + . . - ] "  
Pz ( t )  

i.e. 

where  the  last s u m m a t i o n  is over all nonnegat ive  integers no, n l ,  n 2 , . . . ,  such tha t  no + nl + 
n2 + . . . .  n. Subs t i tu t ing  in the  last expression n, = zi, i > 0 and n = z - ~ = o ( J  - 1)zj 
we ob ta in  

P~(t) = ~ t ~ ~ IA(I - p)l~'++~+p~+~+.'+ ( A )  +o 
z = 0  Z 1 + Z 2 ~  . . . Z l  ! z 2 !  " " " Z o = 0  Z 0 !  ' 

where  z = 0, 1 , . . .  and tile last summat ion  is over all nonnegat ive  integers z~, z2, z3, • •. such 
t h a t  zt + 2z~ + 3z3 + . . . .  z. Therefore,  

Pz( t )  = ~ t ~ P ( Z  = z), 
Z = 0  

where  the  probabi l i ty  P ( Z  = z) is given by (16) for z > 0. 

R e m a r k  5.2.  Prom (16) we obta in  the  probabil i t ies  of tile first four values of the  r.v. 
Z ~ I P o ( A ,  p), given by the  following expressions 

P ( Z  = O) = e -~, 
p ( z  = 1) = e - ~ A ( 1  - p ) ,  

P ( Z = 2 )  = e - x A ( 1 - p ) [ ~  + p ] ,  

P ( Z = 3 )  = e - ' ~ A ( 1 - p ) [ ~ + A ( 1  p ) p + p 2 ] .  
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R e m a r k  5.3.  We will show how to obtain the PMF (16) of the inflated-parameter  Poisson 
r.v. from the PMF (12) of the inflated-parameter NB distr ibution by using the l imiting 
conditions (13). 

It is easy to show tha t  the following equality is true 

Y l + Y 2 + ' " + r - 1  = ( r - l + y i ) ( r - l + y i - 1 ) . . . [ r - l + y , - ( y , - 1 ) ]  = 1 1 A i .  
Y l , Y 2 , . . . , r -  1 Yi! i=l i=1 

Then (12) can be represented as 

p(y = y) = rT ~ (1 - p)~'+~+"p~+'2Y3+'"A1(1 - ~)Y' f i  &(1  - ~)Y', 
Yl, Y2, •. - ~=2 

Under the l imiting conditions (13) the following two relations 

lira l imlr  ~ =  lira 1 -  = e  -~ and l i m ( 1 - ~ r )  ~ -  i = 1 , 2 ,  
r--+oo ,r ~ t r--+oo r-~oo ryi ' "" 

are valid. Then 

e-~)# ' A~' 
lim lim AlrV(1 - rr) v' - and lim lim Ai = - -  i --- 2, 3,. 

r - -*oc  ~ ~ 1  Yl ! r--+oo 7r~+ l Y i  ! ' 

Therefore, 
lim lira P ( Y  = y) = P ( Z  = z),  

r - + c ~  ~--+ 1 

where P ( Z  = z) is given by (16) for z = 0, 1 , . . . .  

R e m a r k  5.4. The mean and the variance of the IPo(Tr, A) distr ibut ion are given by 

A )~(1 + p) 
E ( Z )  - ( 1 -  p) and V a r ( Z )  - -(~--p-~ 

R e m a r k  5.5.  Let us note tha t  the IPo(A ,  p) coincides with the P61ya-Aeppli dis tr ibut ion,  
introduced by Evans (1953). 

6 Inf la ted-parameter  Bernoulli Dis t r ibut ion 

Until  now, we defined tile inflated-parameter geometric distr ibution,  the inf lated-parameter  
NB dis t r ibut ion (by summing r i.i.d. IGeo(~r,p) r.v.'s) and the inf lated-parameter  Poisson 
dis t r ibut ion (from the INB(~r ,  p, r) distr ibuted r.v. by using the l imiting conditions (13)). 

Our aim is to obtain the same inflated-parameter Poisson dis t r ibut ion (given by (15) or 
(16)), but  s tar t ing from an appropriate defined inflated-parameter Bernoulli  distribution (as 
in the classical theory). 

Let us define the r.v. Q as follows: 

P ( Q = O )  -- l - n ,  

P ( Q  = k) = 7rp k - l ( 1 -  p), k = 1 , 2 , . . .  (17) 
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The above equations defiim a l)rOl)Cr l)robability distribution o~l the m~t v f  the: nonncga twc  
integers. 

D e f i n i t i o n  6.1. We call the r.v. Q defined by (17) an i~lflated-paTumctcr Bernoul l i  
dis tr ibuted with parameters u E (0, 1) and p E [0, 1), and w(' will denote this by Q ~ I B ~ ( ~ ,  p). 

R e m a r k  6.1. If p = 0, the inflated-parameter Bernoulli distribution /Be(u ,0 )  coin(dales 
with the usual Bernoulli distributed r.v. with t)aramet(w 7r, taking values () and l. 

From (17) we (:ah:ulate the corresponding PGF P~(t) giv~m by the following ('xl)ressi(m 

~(1 -~) 
P Q ( t ) -  1 (]8) 

1 - tp 

7 Inf lated-parameter  Binomial  D i s t r i b u t i o n  

Now, if we sum 77 i.i.d. IBe(~r,p)  r.v's we will obtain ttw r.v. B with the fi)llowing PGF 

Pt~(t) = [1 ~l_-__t)]".i_tp J (19) 

D e f i n i t i o n  7.1. Wc (:all the r.v. B defined by the PGF (19) iTzJlatf~d-param¢<t,r bi- 
nomia l  dis tr ibuted with paramet('rs u C (O, 1), p C [0, 1) and ~z. and will d(mot(~ this I)y 
B ,-~ IBi(rc,  p, n). 

The next proposition represents the PMF of tile IBi(rr ,  p, n) distrilmt[,d r.v. 

P r o p o s i t i o n  7.1. The P M F  of  the [ B i ( ~ ,  p, n) distributt:d r.v. B i,s gwcu  by the fo l lowing 
relation 

- . . . . .  I . ~ 1  I;i , b2 

where b = O, 1 . . . .  and the .~'ummation is over all nomwg~t iv t  iTltefler.~ hi, b.,~ b:~ . . . such that 

bl + 2b~ + 3b:~ . . . .  b. 

P r o o f .  From the PGF (19) we consequently obtain 
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PB(t) = 1 - - T r +  1-- pt ] 

= (1 -- 7r) k [p(1 - n)(1 - pt)J 

. [ .(1 (p~ + d t  2 +...) 
= (1 -~ - )  k [ p ( 1 - ' ; r ) '  

~ ( 1 - - 7 1 " )  

kl, k2 , . . .  ' .. 

where  the  la~st s u m m a t i o n  is over all nonnega t ive  integers kl, k2 , . . . ,  such t h a t  kl + k2 + . . . .  k. 
S u b s t i t u t i n g  in the  last  expression ki = bi, i >_ 1 and  k = b ~ ] ~ l ( J  - 1)bj we finally ob ta in  

co 

P•(t) = ~ t b p ( B  = b), 
b=0 

where the  p robab i l i ty  P ( B  = b) is given by (20) for b > 0 

R e m a r k  7.1 .  [¢epresentat ion (20 / has the  following equivalent  tbrm: 

( n ) ( l  _ ;r),~O[~r(l _ p)]~,+b~+...pb~+2b3+... ' (21) P ( B  = b) = ~ no, bl,b~,.. .  
hi,b2,. . .  

with  b = 0, 1 , . . .  and  s u m m a t i o n  over all nonnega t ive  integers bt, b2, b3 , . . . ,  such t h a t  bl + 
262 + 3ba + . . . .  b, under  condi t ion  t h a t  no + bl + bu + . . . .  n. 

R e m a r k  7.2 .  Let  us note  t ha t  our  IBi(;r, p, n) d i s t r ibu ted  r.v. can take in.finite number 
of non-nega t ive  values,  since by cons t ruc t ion  the  cor responding  in f l a t ed -pa rame te r  Bernoul l i  
d i s t r ibu ted  r.v. can  take all non-nega t ive  values. 

R e m a r k  7.3 .  T h e  first four values of the  prol)abil i t ies of a r.v. B "~ IBi(;r, p, n) are given 
by the  following expressions 

P ( B = 0 ) = ( 1 - n y ,  
P ( B  = 1) = (1 - 7r)'~-lTr(1 - p)n, 
P ( B  = 2 ) =  ( 1 -  ,~ ) ' - 'Z ; r (1 -  p ) [ ( ; ) ~ ( 1 -  p ) + n ( 1 -  ~)p] , 

P ( B  3) (1 ; )n-37r(1 p) "¢[(3)~r~(1 _ p)2 + n ( n  - 1)(1 7r)~(1 - p)p + n(1 - ; )2p~] .  

Now, by l m t t i n g  in (19) 

n ---+ oc and  7r ---+ 0, such t h a t  nTr = A = co'rt~t > 0, (22) 
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we would like to obtain in the limit tile PGF (15) of the inflate(t-parameter Poisson distribu- 
tion. Indeed, 

[ k ( l_ -  1) 1" [ A ( t -  1)] 
, l in~ l i~PB( t )  = l i2n 1 n(1 - pt)J = e r~p L ~ j  

R e m a r k  7.4. The PMF (16) call be obtained fiom the PMF (21) by using the limiting 
conditions (22) also, but we omit these calculations (compare with Remark 5.3). 

R e m a r k  7.5. The mean and the variance of the IBi(Tr, p, n) distritmtion arc given by 

n~r 7~7r(1 - 7r + p )  
E ( B ) -  and V a t ( B ) -  

1 - p ( 1  - p)'~ 

8 Inflated-parameter Logarithmic Series Distribution 

Let Y ~ INBQr, p,r) and its PGF Py(t) is given by (11). From (12) we find that  P(Y = 
0) = 7rL Then P (Y  > 0) = 1 - ~ ' .  Now, let us consider the truncated at zero INB(u  p r) 
distributed r.v. !~. Its PMF is given by' the following relation 

P(Y~ = Y~) - P(Y  = Y~) YL = 1,2, 
1 7r" 

The corresponding PGF Py~ (t) has the form 

7r ~ { ( 1 -  pt)~ - [1-  t(1-- Tr + pTr)] ~ } 
Py~(t) = ~ l - n "  

Assuming r - -+  0 in the last expression, after using the L'H6pital 's  rule, wc obtain the 
relation 

[ i - p t  ] ( - /nTr) - ' .  ~imoPy,(t ) = In l _ t ( 1 7 ~ - + p T r  ) 

If wc denote by L the r.v. having the limiting PGF, then the following equality is fidfillcd 

PL(t) = In [ l+  1 ( 7 1 - ~ ) ( 1 - p ) t  ] 

After simple transformations, the PGF PL(t) can be given by the following equivalent 
representation 

PL(t) = ln [l ( i - T r ) ( 1 - p ) t ] - '  i----pt (lnTr) '. (23) 

R e m a r k  8.1. If we put p = 0 in the last expression, we derive the PGF of the usual 
logarithmic series distribution. 

So, we are ready to give the following definition. 
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D e f i n i t i o n  8.1.  We say that  the r.v. L has an inflated-parameter logarithmic series 
distribution with parameters  7r C (0,1) and p C [0,1), and we will denote  this by L 
ILS(rc, p), if its P G F  PL(t) is given by (23). 

The  following proposit ion represents the P M F  of the defined inf la ted-parameter  logar i thmic  
series distr ibut ion.  

P r o p o s i t i o n  8.1. The PMF of the ILS(A, p) distributed r.v. L is given by the following 
relation 

P ( L = l ) =  ~ ( - l + l ] + 1 2 + " ) ! [ ( 1 - n ) ( 1 - p ) ] h + t ~ + p ' = + 2 ' ~ + ,  (24) 
I1,12,... (-hmr)ll !12! . . . 

where l = 1 ,2 , . . .  and the summation is over all nonnegative integers Ii, 12, 13,... such that 

11 + 212 + 313 + . . . .  l. 

P r o o f .  From (23) we have 

Pn(t) = In [1 - (1 -- ~r)(1 - p)t(1 + pt + p2t2 +. . . ) ]  ( l n n ) - '  

f t .  [ t (1  - ~ ) ( l  - p ) ( 1  + pt + p~t ~ +...)]"' 1 
L., i=o i +  1 ' 

after using the Taylor expansion of the logari thmic flmction In(1 - x). Therefore,  

PL(t) = --( lnTr)- '  ~ i + 1 ~ [(1--p)(1--~r)]"+'*2+P"2+2":'+t"'+2"~+3":*+ 
~ = O  n h  Tl21  . . . \ ~ 1 ~  n 2 ~  • • 

The last summat ion  is over all nonnegat ive integers nl ,  n2 , . . . ,  such tha t  nl + n.~ + . . . .  i + 1. 
Subs t i tu t ing  n ~ = l i ,  i >  1 and i + l  = l - ~ ° = l ( j - 1 ) l  i w e o b t a i n  

o o  

PL(t) = --(InTr)-' ~ t  t ~ (--1 + l, + 12 + . - " ) ! [ ( 1  -- p)(1 -- ~r)]"+'~+ p '~+2.: '+, 
z=l l],12,... 11!12!... 

i.e. we derived the P M F  (24). 

P r o p o s i t i o n  8.2. Let the r.v. Y ~ I N B ( ~ , p , r ) .  Then the following convergence is 
fulfilled 

lira P ( Y  = y t Y >- 1) -- P(L = y), 
r + 0  

where the r.v. L ~ ILS(Tr, p). 
P r o o f .  Since P ( Y  > 1) = 1 - 7r ~, we have 

P ( Y = y , Y >  1) P ( Y = y , Y >  1) 
v ( v = y l r  >_ 1) = = 

P ( Y  _> 1) 1 - 7r ~ 
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From the last relation and (12) we have 

n ~ ~ ( y , + y 2 + . " + r  1) 
P l Y  = ylY_> 1) - l - rr~ [(1 ~r)(1 - p)ly,+y~+.pw*2y:,+ 

Y l , Y 2 , . . .  Y l , g 2 , . . .  , r  1 

-- 1 rn~-Tr ~ Y] (Yl+g2+'' '+ylr!y2!--l) ' ' ' . . .  ( r + 2 ) ( , ' + 1 ) [ ( 1  ~r)(1--p)]~J'+Y:+ p~:+2v:,+--. 

Y l , Y 2 , . . .  

Notice that according to the L'Hdpita]'s nile lim ~'' = (/nTr) -~ Then it can be seen that 
r-+O 1 ~r* 

lim P l Y  = yl )" > 1) converges to the PMF P ( L  = y), y = 1, 2 . . . .  of the inflated-parameter 
r - + 0  

logarithmic series distribution as given by (24). 

R e m a r k  8.2. The classical NB and logarithmic series distributions are related with the 
same limiting results stated t)y the last two propositions, see Qu at al. (1990). 

R e m a r k  8.3. The probabilities of the frs t  three values of the r.v. L ~ l L S ( x , p ) ,  are 
given by the follmving expressions 

P ( L  = 1) = -(/nTr)-~(1 - p)(1 - 7r), 

P(L = 2) = - ( I n . ) - ' ( 1  - 0)(1 - ~ ) [ 0  p ~ l - , , )  + , o ] ,  

P ( L = 3 )  = (lnu) ' ( l - O ) ( 1 - u ) [  (. Pfl3 (1 ~)~+(1 O ) ( 1  7r)p+p2].  

R e m a r k  8.4. The mean and the variance of of the r.v. L ~ ILS(~r, p) are given by the 
following expressions 

- (1  - ~T) --(1 -- 7r)[lnTr(1 + rp)  + 1 -- 71 
E L L ) -  and Vat(L) = 

9 A Family of Inflated-parameter GPSD 

Having in hands our inflated-parameter discrete distributions studied in the previous sections, 
it is natural to propose an "inflated-parameter" generalization of the GPSD. In this section we 
define the family of inflated-parameter GPSD. We give eoIillllOn representation of the PMF's  
attd PGF 's  in the corresponding subsections. An overdispersed properly of the new fanlily is 
discussed and a new constructive interpretation of the additional parameter p is given. \Ve 
will assume hereafter that p C [0, 1). 

9.1 C o m m o n  R e p r e s e n t a t i o n  o f  t h e  P M F ' s  

One can observe that the PMF's  of tile inflated-parameter bimnnial, Poisson, negative bino- 
mial and logarithufie series distributions given by (21), (16), (12) and (24) correspondingly, 
have similar representations according to the additional parameter p. Therefore, we can expect 
a common expression of the corresponding PMF's, as states the following proposition. 
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P r o p o s i t i o n  9.1. The PMF's given by (21), (16), (12) and (2~), correspondingly, have 
the following common representation 

1 ~ a(k)[O(1 - p)]k~+k:+.,.pk~.'2k.a+..., (25) P ( N  = k )  = g ( o )  k~, k,~ . . . .  

with k = O, 1, 2 , . . . ,  p E [0, 1),/9 > 0, and the summation is on the set of all nonnegative integers 
kl, k2,. •., such that kl + 2k2 + . . . .  k. If  the r.v. N ,~ ILS(O, p), its realizations begin from 1 
and the summation in (25) is over the nonnegative integers, such that k] + 2k2 + . . . .  k + 1. 

In the particular cases, the functions a(k), g(O) and the parameter tg, are given by the 
following expressions 

( ° ) g ,~ IBi(O, p, n) : a(k) = , k,-k2-...,k,,k ...... g(O) = (1 + 8) '1, 0 = V~,  

N ~ I P o ( O , p ) :  ~ ( k )  - : g(O) = e °, 0 = ~,  kl !k2!,,. 

N ~ I N B ( O , p , r ) :  a (k )=  (kl+k2+...+r 1' I k , ,  . . . . . . . .  , j ,  g ( o ) = ( l - O ) ~ ,  O = I -  

N ~ ILS(O, p) : a(k) = (-l+kl+k~+..)! k~!k:! . . . .  g(O) =- - In ( I - -O) ,  O= 1-- ~r. 

Proof .  Using simple transformations one can obtain the above relations from (21), (16), (12) 
and (24), respectively. 

De f in i t i on  9.1. The r.v. N belongs to the family of Inflated-parameter GPSD with 
parameters 0 > 0 and p E [0, 1) if its PMF can be represented by (25). 

R e m a r k  9.1. Let us note that the defined family is different than the corresponding 
family studied by Gupta et al. (1995). 

Thc following statement gives alternative expressions for thc corresponding PMF's. 

P r o p o s i t i o n  9.2. The PMF's of the IBi(O, p, n), IPo(O, p), INB(O, p, r) and ILS(O, p) 
distributed r.v. 's can be given by the following equivalent expressions 

N .'. IBi(Tr,  p, n ) :  P ( N  = k) = 

~T ~ I P o ( ~ ,  0 ) :  P ( N  = k) = 

N ~  I N B ( T r ,  p , r )  : P ( N = k )  = 

N ,'~ ILS(Tr ,  p ) :  P ( N  = m) = 

min(k,n) 

7 r r ~ _ l ( k i ~ ) ( r + : - - l ) [ ( 1 - - T r ) ( 1 - - P ) ] ' P k - ' ;  

, . ()  (-lnzr)- '  ~ m -  1 [(1 - n ) ( l_ -  p)]ipm , 
i=; i - 1  i ' 
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where k = 0, 1 , . . . ,  m = 1 ,2 , . . .  and it is assumed that ~ - 1  = 1. 
P r o o f .  We will demonstrate how to obtain the PMF for the r.v. N ~ IPo(A,p). The 
remaining expressions can be deduced in a similar way. 

The starting point here is to use the following relation 

(1-y)J  yt, 0 < y <  1, (26) 
l = 0  

valid for any j = 1, 2 . . . . .  
For the PGF (15) we have 

Pu(t) = e:cp{A[-l + ( 1 - p ) t  + p ( 1 -  p)t 2 + 7,2(1.- p)t ~ +. . . ] } .  

Using the Taylor expansion of the exponential fimction ezrp(zr), alter some algebra we obtain 

P N ( t ) = e - X {  I+~-~[A(1.~=1 ~'J" p)t]' 1 } ( 1  - pt)-' 

Applying (26) in the last expression we have 

~ - ~ P ( N : k ) t k  e ~{1+~-~. [A(1 p)t]~ ( ~ -  ) } = t=0 Pttt " 

The PMF of the r.v. N ~ IPo(A,p) given by the proposition is obtained by equating the 
coefficients of t ~ on both sides of the last equality for fixed k = 0, 1, 2 . . . . .  

9.2 C o m m o n  Representation of  the PGF's  

Let Ply(t) and Px(t)  be PGF's  of the non-negative integer valued r.v.'s N and X, respectively. 
Let N denote the number of claims and let Xi denote the amount of the i-th claim, i = 1, 2, . . . .  
Let {Xt, X~ . . . .  } be a sequence of i . i .d . r .v . ' s ,  with common PGF Px(t). Assume that the 
X / s  are also independent on N and consider the random sum 

5" = X1 + X~ + .-- + X~¢, 

with the convention that 5" = O if N = 0. Then S equals aggregate claims, and the cor- 
responding PGF Ps(t) = PN(Px(t)), see for example Bower et al. (1997). This situation 
describes the portfolio of insurance policies during a given length of time. 

Now, if N belongs to the family of GPSD with parameter 0 defined by (1) and X is an 
arbitrary discrete distribution, then the resulting random sum 5, has a PGF given by the 
following expression 

o(opx(t)) 
l~.(t) - .q(O) ' (27) 

where the possible choices of the fimetion 9(0) are given by Proposition 9.1, see Hirano ct al. 
(1984). 
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According to Proposition 9.1 the inflated-parameter binomial, Poisson, NB and logarithmic 
series distributions have a common representation for their PMF's. Therefore~ one can expect 
that  they have the corresponding common representation of their PGF's.  This is precised 
by the following statement, which gives the PGF of the inflated-parameter GPSD defined by 
Definition 9.1. 

Proposition 9.3. The PGF of the inflated-parameter GPSD is given by (27), where the 
.functions g(O) are 9iven by Proposition 9.1 and 

t(1 - p) (28) 
P x ( t ) -  T - - t p  

Proof: Using simple transformations from the corresponding functions g(0), given by Propo- 
sition 9.1, relations (27) and (28), one can get easy the PGF's  (19), (15), (11) and (23), 
respectively. 

R e m a r k  9.3. In fact, Proposition 9.3 gives a constructive representation of the distri- 
butions belonging to the family of inflated-parameter GPSD. Indeed, (28) is the PGF of the 
geometric distribution with parameter 1 - p and taking positive integer values. 

In terms of the collective risk model, this means that the aggregated claim S h~us inflated- 
parameter GPSD when the individual claims have geometric distribution with parameter 1 - p ,  
i.e. Xi ~ Gel(1 - p), and number of claims N for a given length of time is a r.v. belonging 
to the usual family of GPSD with parameter 0. 

R e m a r k  9.4. Proposition 9.3 gives, in fact, a new interpretation of the additional param- 
eter p (being a parameter of geometric distribution), different than "zero-inflated" proportion 
and correlation coefficient, as discussed earlier. 

R e m a r k  9.5. From (27) and (1) it is easy to establish, that the variance-mean ratio of 
the inflated-parameter GPSD is greater than the corresponding variance-mean ratio of the 
original GPSD, i.e. our new family is overdispersed according the family of GPSD, if the 
additional parameter p E (0, 1). 

10 Applications 

In this section we will approximate the frequency data given in the column headed "Observed" 
of the Table 10.1 by using IPo(~, p) and INB(% p, r) distributions. The statistics are taken 
from Daykin et al. (1994) p. 52, and relate to claims under UK comprehensive motor policies. 
The 421240 policies were classified according to the number of claims in the year 1968. 

Let us denote by ) ( ,  and cr~ the sampling mean and variance. Then the average number 
of claims per policy is )(,, = 0.13174 and a~ = 0.13852. 

In the column headed "Poisson" of the Table 1{).1 are given the corresponding expected 
vahms by using the usual Poisson distribution with a parameter )~ = . ~  = 0.13174. The col- 
umn of the Table 10.2 headed "NB" sets out the resulting NB approximation with parameters 
7r = 0.951 and r = 2.558. The last rows show the corresponding values of the Pearon's X 2. 
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The value of the chi-square in the Poisson case is too high, so the insufficiency of tile 
Poisson law for the da ta  is evident. The reason is tha t  the sampling variance is greater than 
the sampling mean, whereas they should Ire ahnost  equal if tile Poisson law were valid. The 
value of X 2 in the NB case is 9.18 which gives probabili ty 0.05 for 5 degrees of freedom, so 
tha t  the representat ion is acceptable. 

We will not discuss here the Maximum Likelihood (ML) estimates of the parameters  and 
their  properties, but they can be ca]culated numerically. Itere we give the corresponding results 
for comparison only. The .k'lL estimates are obtained by a dire(:t minimizat ion ~l)proach of' 
the log-likelihood following Mickey and Bri t t  (1974). The minimizat ion procedure is ba~se(l on 
derivative-free algori thm for nonlinear least squares prol)osed by Ralston and ,lennri(:h (1978). 

1 0 . 1  IPo(A, p ) - c a s e  

The mean and variance of the IPo()~,p) (tistribution are given by Remark 5.4. Solving the 
corresponding system we obtain the following moment  estimates for the parameters  A and p: 

2 _ Xn 2.\',, 2 
cr  and A = - - ~  

= o-;~, + R,, .?, + x , ,  

R e m a r k  10.1. The same estimates can be found, tbr example, in Johnson et al. (1992) 
pp. 381-382, where they were reported for the Pdlya-Acppli distribution,  see Remark 5.5. 

In our ease we obtain the values 

= 0.0251 attd A --- 0.12843. 

The corresponding expected values are given in the column headed "lPo" (if the Table 10.1. 

T a b l e  10.1. Poisson case 

k Observed Poisson IPo IPo-ML 

0 370412 369246.88 370469.93 370435.30 
1 46545 48643.57 46385.30 46447.48 
2 3935 3204.09 4068.21 4045.88 
3 317 140.70 296.20 291.57 
4 28 4.63 19.14 18.61 
5 3 0.12 113 1.09 

> 6 0 0.01 0.07 (I.06 

Chi-square 667.52 13.60 13.(il 

The comparison of the. expected values given in the columns headed "Poisson" and "IPo" 
shows tha t  IPo(.~, p) distr ibution fits the observed frequencies much bet ter  than the usual 
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Poisson distr ibution,  whidl  has a shorter tail than the data. The value of X 2 is 13.60 which 
gives probabil i ty 0.04 for 5 degrees of freedom, so the approximation by IPo(A, p) dis t r ibut ion 
is acceptable (observe tha t  the use of the NB distr ibution is preferable if our criterion is the 
value of the X 2 statistics). 

R e m a r k  10.2. We calculated a positive value for the moment  est imate of the parameter  
p. This can be interpreted in the following way: the observed number  of zeros is more than it 
can be predicted by the usual Poisson distr ibution (as it can be seen from the Table 10.1). 

We obtain the following ML estimates 

PML = 0.02441 and ~ML = 0.12852 

with X 2 = 13.61. One can see tha t  the ML estimates of the parameters  are close to the values 
of the corresponding moment  estimates. The corresponding expected values are given in the 
last column of the Table 10.1. 

10.2 INBQr, p,r)-case 
To est imate the parameters  of the INB(~r, p,r) distr ibution we need additionally the third 
moment  together with sampling mean and variance. 

The mean and the variance of tile r.v. X ~ INB(Ir, p, r) are given by Remark 4.3. From 
the P G F  (11), after some algebra we obtain the following relation for the third moment  

3(r+1)(p+l)(l-~) (r+l)(r+2)(i-~) ~] E(Xa ) _  r ( 1 - T r )  l + 4 p + p 2 +  + 
71" 71" 7 r  2 " 

The solution of the corresponding system gives the following procedure tbr calculation the 
moment  estimates of the parameters.  

S t e p  1. The moment  est imate of the parameter  p is a solution of the following quadrat ic  
equat ion 

ap2 +bp+ c=O,  

where 

and 

a =  X. + o~ X .  + 2a~ _ m:~ - a" 

b = 2 - 2  X . +  X .  / ~ ] + 2 ~ ,  

c=  £ . +  x,,/  x . /  2,, 

with m~ being the third sample moment; 

S t e p  2. The moment  est imate for the parameter  7r is given by 

317 



where/5 is the result from Step 1; 

S t e p  3. Finally, the moment  est imate of the parameter  r (:an be calculated by' the following 
formula 

_ , % # ( 1  - ~ )  

1 - 7 7  ' 

where fi and ~ are the calculated values from Step 1 and Step 2, correspondingly. 

For the considered da ta  we obtain the following moment  estimates 

/5 = - .03869, ~ = 0.88428 and ÷ = 1.04564. 

In the column headed "INB" of the Table 10.2 are given the corresponding est imated fiequen- 
ties, when using the computed moment  estimates of the paraineters. One can see tha t  the 
INB(rr, p, r) distr ibut ion fits the observed frequencies perfectly. 

T a b l e  10.2. NB case 

k Observed NB INB INB-ML 

0 370412 370459.94 370409.99 370412.37 
1 46545 46413.30 46553.37 46545.63 
2 3935 4043.97 3922.17 3928.82 
3 317 300.92 325.21 324.23 
4 28 20.48 26.85 26.58 
5 3 1.32 2.21 2.17 
6 0 0.09 0.20 0.19 

Chi-square 9.18 0.78 0.76 

R e m a r k  10.3. We calculated a negative value for the moment  est imate of the parameter  
p. This is possible (see Section 2.2) and can be interpreted in the tbllowing way: the observed 
number  of zeros is less than predicted by the classical NB distribution.  Let us note, tha t  in 
the Poisson case we observed just  the opposite situation (compare with Remark 10.2). 

We obta in  the following ML cstimates for tile parameters  

fiMr = --.03670, irMr = 0.88748 and ~ML = 1.07727, 

with )/2 = 0.76. The corresponding estimated frcqucneies arc given in the last column of thc 
Table 10.2. 

R e m a r k  10.4. The computer  program code in FORTRAN for computa t ion of the corre- 
sponding P M F ' s  is available from the third author  upon request. 
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11 Conclus ions  

In this paper we introduce extensions of some classical univariate discrete distributions. This 
can be considered as a new method for adding a parameter to a family of distributions. The 
natural interpretation of the additional parameter p E [0, 1) being "zero-inflated" parameter 
(see Section 2.2), correlation coefficient (see Remark 3.5) and parameter of a mixing geometric 
distribution (see Remark 9.3), gives possibility to use the proposed class of inflated-parameter 
GPSD for modeling dependent count or frequency data structures, which naturally appear 
in Insurance, Finance and Economics. The corresponding variance-mean ratios show that 
the inflated-parameter distributions are overdispersed according to their univariate analogue. 
The results in Section 9 show that it is possible to define different classes of extended GPSD, 
taking a mixing discrete distribution, different than the geometric one. The simulation results 
from the last two subsections show that the inclusion of the additional parameter p improves 
significantly the corresponding approximations of our frequency data when using IPo()~,p) 
and INB(Tr, p, r) distributions. 

This paper is only a starting point, giving a theoretical basis for the distributions that 
belong to the new class of inflated-parameter GPSD. We are sure, the additional parameter 
p will lead to a second-order difference equation, which will help to estimate effectively the 
tails of distributions. Some future investigations related with this topic as well as with some 
statistical score-tests are currently in progress. 
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