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INTRODUCTION 

I 
N ~CEN~ years a great deal has been published in our actuarial jour- 
nals on interpolation, and a great many different formulas have been 
proposed. Therefore, I wish to reassure the reader at  the very outset 

by stating that no new formulas are presented in this paper, but merely 
a somewhat new method of deriving some of those already in print. This 
method is limited in its application to discrete interpolation formulas, by 
which is meant those which are to be used only to subdivide the intervals 
between given values into a specified number of equal parts. An example 
is the case frequently arising in actuarial work in which the values of some 
function depending on age are given for ages at intervals of five years and 
it is desired to interpolate to obtain the values by single integral years of 
age but  there is no need for any values at fractional ages. Thus, the term 
is used in contradistinction to continuous interpolation formulas, of 
which the osculatory and tangential formulas are examples, since the as- 
sumptions made in deriving these formulas imply the existence of a con- 
tinuous curve which yields values of the function being interpolated for 
all values of the independent variable. I t  is my purpose to show that the 
derivation of such formulas can, in many cases, be considerably simplified 
by employing an interesting analogy between interpolation and gradua- 
tion formulas, with the help of certain mathematical devices. 

The analogy between interpolation and graduatio n formulas, which is 
the cornerstone of the "method, is not original with me, but is due to the 
brilliant Australian actuary, Mr. Hubert Vaughan, who presented it in 
a recent paper entitled "Some Notes on Interpolation" (JIA LXXII ,  
482). The mathematical devices which facilitate the application of Mr. 
Vaughan's principle to the derivation of discrete interpolation formulas 
were suggested in large part by the work of Professor I. J. Schoenberg, 
whose valuable work ("Contributions to the Problem of Approximation of 
Equidistant Data by Analytic Functions," Quarterly of Applied Matke- 
matics, IV, 45 and 112) I have summarized elsewhere (Journal of tke 
American Statistical Association, X_LIII, 428). 
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344 DISCRETE INTERPOLATION FORMULAS 

ANALOGY SETWEEN INTE~OL~TmN AND OgADUATION FOrmULAS 

A discrete interpolation formula should be thought of not as an alge- 
braic expression, but as a table of linear compound coefficients such as 
have appeared, for example, in the papers of Mr. Boyer (RAIA XXXI, 
337) and Mr. Beers (RAIA XXXIII ,  245 and XXXIV, 14). As an illus- 
tration* we may take the coefficients given in Table 1, which are those 
subdividing into five parts the intervals between four equally spaced 
given values, using Waring's (Lagrange's) formula applied centrally to 
three consecutive given values. This is, of course, equivalent to an ordinary 
central difference formula taken to second differences. 

TABLE 1 
COEFFICIENTS FOR SUBDIVIDING INTO FIVE PARTS THE INTERVALS BETWEEN 

EQUALLY SPACED GIVEN VALUES~ USING ORDINARY CENTRAL DIF- 
FERENCE INTERPOLATION TO SECOND DIFFERENCES 

n + l  

COEFFICIENTS OT $¢~ TO OBTArN:  

~v*---- 4 

• 28 
• 84 

--.12 

~ n - -  .2 

.12 

.96 
-- .08 

u n  U n +  .2 

--. 08 
.96 
.12 

U f t + - I  

- .12 
• 84 
.28 

Let us now think of the successive coefficients by which a particular 
given value is multiplied in computing the successive interpolated values. 
For example, in the case of some function of age for which the given values 
are separated by intervals of five years, we may consider the successive 
coefficients by which the value for age 20 is multiplied in obtaining the 
interpolated values for ages 13 to 27, inclusive. Now, iI we set down these 
coefficients in a single row, as follows: 

- - . 12 ,  - . 0 8 ,  0, .12, .28, .84, .96, 1, .96, .84, .28, .12, 0, - - .08 ,  - - .12 ,  

it will be noted that their progression is very similar to that of the coeffi- 
cients in a linear compound graduation formula. In fact, it will be found 
that they are precisely five times the coefficients of Woolhouse's gradua- 
tion formula expressed in linear compound form. If some other interpola- 
tion formula is taken as the starting point, the result will be similar. Again 
it will turn out that the interpolation coefficients, after division by a con- 
stant to make their sum unity, can be used as the coefficients of a gradua- 
tion formula, even though in general it will not be one of the recognized 
formulas to which names have been given. 

* This illustration is due to Mr. Vaughan. 
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To express these ideas more precisely, a discrete interpolation formula 
for dividing the intervals between given values into m parts may be writ- 
ten in the form: 

~ o  

~, = ~ - ~ . , u k . , ,  ( 1 )  

where the u's are the given values, the v's are the interpolated values, and 
the L's are the interpolation coefficients. In practice, of course, the sum- 
mation is between finite limits, the coefficients L being regarded as zero 
outside a certain range. 

Now, these coefficients, if divided by m, may be taken as the coefficients 
of a linear compound graduation formula. Thus, 

V, = - t U , ,  (2) 
r e _  

where the U's are the ungraduated, and the V's, the graduated values. In 
fact, as Mr. Vaughan shrewdly points out, if the series of ungraduated 
values is formed by placing the given values uk,, in every ruth position 
and inserting zeros in the remaining positions, then the graduation 
formula (2), omitting the factor 1/m, will give the complete series of in- 
terpolated values v. For example, if the series: 

• . . , 0,  0,  0,  0, u~ ,  0,  0,  0,  0,  u20, 0,  0,  0, 0, u ~ ,  0,  0,  0, 0, . . . 

is graduated by Woolhouse's formula, the smoothed series so obtained, 
after multiplication by five, is identical with that arrived at by replacing 
the zeros by the interpolated values for the intermediate ages computed 
by central difference interpolation to second differences. In general, we 
may write: 

~ ,=  ] ~ / ~ - ,  Ut ,  (3) 
t u ~ ¢ O  

where 
Uk= = u~= (k . . . .  - - 1 , 0 ,  1 , . . . )  

U, = 0 (n  # k in)  • 

Of course, in the computation of a particular interpolated value, only 
every ruth coefficient L would actually be used, as the others are multi- 
plied by zero terms in the series. 

Alternatively, we could retain the factor 1Ira and multiply the U's by 
m; and this form of the formula, while less convenient algebraically, has 
an interesting philosophical interpretation. If the extent of our informa- 
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tion about a certain series of values consisted in knowing every ruth 
value, we might very tentatively think of m consecutive terms of the 
series as being concentrated at the position of each given value, the in- 
termediate terms being zero. Each given value would then need to be 
multiplied by m, since it would represent m values. The interpolation 
would then take the form of a graduation applied for the purpose of 
spreading out over the entire series the magnitudes which are temporarily 
concentrated at every ruth position. 

EQUIVALENT PROPERTIES OF GRADUATION AND INTERPOLATION FORMULAS 

Since Mr. Vaughan has shown that a discrete interpolation formula is 
equivalent to applying a graduation formula to a specially constructed 
series, it follows that the various properties by which such interpolation 
formulas are usually described have as their counterparts certain specific 
properties of the equivalent graduation formulas. For example, if the in- 
terpolation formula reproduces the given values, this is equivalent to 
having 

L 0 = l  , Lk~-----0 ( k # 0 ) .  

Obviously, in the case of smoothing (or "modified") interpolation formu- 
las, this condition is not fulfilled. 

If the number of terms in the interpolation formula (that is, the num- 
ber of coefficients L actually used in the computation of each interpolated 
value) is h, then the maximum total number of coefficients is mh or 
mh -- I, according as h is odd or even. These two cases correspond to 
what have been termed midpoint and endpoint interpolation formulas, 
respectively. The subtraction of one in the latter case is due to the fact 
that symmetry requires the use of an odd number of coefficients L in 
computing the "interpolated" values at the points where the given values 
are situated. The case in which h is odd and m is even is peculiar, since 
the total number of coefficients is even, and, as a result, the subscripts 
of the L's are +-~, +{ ,  etc., rather than integers. This means that the in- 
terpolated series does not contain terms corresponding to the given values, 
each of which is situated midway between two interpolated values. 

VAUGHAN'S PRINCIPLE 

Another important property of an interpolation formula is the order 
of differences to which it is correct, or, in other words, the degree of poly- 
nomial reproduced by it. The corresponding property of the equivalent 
graduation formula is not obvious, and its discovery represents Mr. 
Vaughan's distinctive contribution to the subject. This relationship is, as 
the reader will presently see, so fundamental in the theory of discrete in- 
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terpolation that I propose naming it Vaughan's principle. In order to 
state the principle as precisely as our present purpose requires, it is neces- 
sary to define a concept not mentioned explicitly by Mr. Vaughan, and, 
in fact, introduced by Professor Schoenberg. The interpolation formula 
(1) is said to preserve the degree r if it has the property that if uk, is taken 
as a polynomial in km of degree not exceeding r, then vn is a polynomial 
in n also of degree not exceeding r. This condition is weaker than the 
usual requirement of correctness to rth differences, or, in other words, of 
actually reproducing a polynomial of degree r. I t  means that if the values 
of a specified polynomial are used as given values in the formula, the 
resulting interpolated values are the corresponding values of a definite 
polynomial, which is of the same degree as the original polynomial, but  
not necessarily identical with it. However, the coefficients of the various 
powers of the independent variable in the second polynomial are definitely 
determined by those of the given polynomial. 

I t  will be convenient to represent the graduation formula (3) in the 
symbolic form 

v~ = G U~ , 

where G is an operator given by 

G ----- ~L~E - t ,  (4) 

the summation being over integral values of t or over values which are odd 
multiples of 3, as the case may be. An operator of the form (4) will be 
called a linear compound operator. A particular example which we shall 
have occasion to use is the usual summation operator 

[ m] ----E-O.-~)/2 +E-~*-al/~ + . . .  +E<=-I):. 

We can now state the following theorem: 
A necessary and su2~cient condition that a discrete interpolation formula 

for subdivision of the interpolation interval into m parts shall preserve the 
degree r is that the operator G be of the form [m]'+tH, where H is any linear 
compound operator. 

This is the first part of Vaughan's principle. In order to prove the suffi- 
ciency of the condition, we first note that [m] (E ~/~ -- E -1/~) -~E "/~ - -E  -"/2, 
or, in other words, ~[m] --= &., where ~ is the usual central difference 
operator and 6., is a similar operator based on an interval of m units. Now 
suppose the interpolation formula is such that the operator G satisfies 
the condition stated in the theorem, and let uk,. be taken as a polynomial 
in km of degree not exceeding r. Then 

~'+~v. = ~ ' + ~ U .  = ~r+1 [m] ~+IHU. = H~+~U. • 
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The last of these expressions is zero for all values of n; for, if n is a mul- 
tiple of m, ~,+xU, is an (r + 1)th difference of u~.,, a polynomial of de- 
gree r or less, while, for other values of n, it is an (r + 1)th difference of 
a series consisting entirely of zeros. Therefore, ~+'vn = 0 for all values 
of n. I t  follows that v,, since all its (r + 1)th differences vanish, is a 
polynomial in n of degree not exceeding r. 

To prove the necessity of the condition, suppose that the interpolation 
formula (1) does preserve the degree r. Differencing this formula gives 

Since the degree r is preserved, it follows that if u~ is any polynomial of 
degree r or less, v, is also a polynomial of degree r or less, and hence 

~- 'v ,  -- 0. I t  follows that the operator 2 (~-'L~-~")E-"+*"~ must give 
k~--¢O 

zero as the result when applied to any polynomial u,  of degree r or less. 
However, this can be the case only if this operator contains ~,+~ as a fac- 
tor. The factor ~+1 must appear, and not merely 6~+~, since the operator 
in question is a sum of powers of E with exponents proceeding by steps 
of m. By giving n all possible values, we shall obtain m different opera- 
tors of this form, each of which must contain ~+1 as a factor. There will 
be only m different operators; since, for values of n differing by a multiple 
of m, the same operator will be obtained. I t  follows that the sum of the m 
operators contains 6~+' as a factor. But this sum is 

Y.t( ~,+lL,)E-t=--- ~"+'G , 

using the identity (4). Therefore, 

~+~G ----= 6~+'H 

where H is a linear compound operator. In other words, 

~r+l  

G--~- -~  H--- [ m ] ' + l H  • 

This completes the proof. 
In practice, we are not satisfied with mere preservation of a given de- 

gree, but require actual reproduction of polynomials of the specified 
degree: that is, correctness of the formula to the corresponding order of 
differences. This need is met by the following theorem, which constitutes 
the second part of Vaughan's principle: 

A necessary and suCficient condition that a discrete interpolation formula 
shall be correct to rtk differences is that it shall preserve the degree r and, at 
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the same time, the equivalent graduation formula shall be correct to rth dif- 
ferences. 

To prove the necessity of the condition, we first observe that if the 
interpolation formula has the property of reproducing a polynomial of 
degree r, then it certainly preserves the degree r. Moreover, the value of 
v. givenby the graduation formula (2) is the average of m "interpolated" 
values, represented by the m parts into which the summation can be 
broken up by itaking only every ruth term in each case, but starting at 
different places. Now, if the interpolation formula is correct to rth differ- 
ences and if U~ is taken as a polynomial in t of degree r or less, then this 
polynomial will be reproduced, and the m "interpolated" values will be 
identical, each being equal to the value of the given polynomial for the ar- 
gument n. Hence, their average has, of course, this same value. This 
means that if the graduation formula is applied to a series of values of a 
given polynomial of degree r or less, the graduated values will be identical 
with the given values. This is merely another way of saying that the 
graduation formula is correct to rth differences. 

On the other hand, suppose the interpolation formula is merely known 
to preserve the degree r. This means that if the given values u,  are values 
of some specified polynomial in n of degree r or less, the formula will give 
as interpolated values the values of some other polynomial v,, also of 
degree r or less. Now, if instead of t a k i n g . . . ,  U(k--m~, Uk,,, U(~+I),,, • . . ,  
as given values, we t a k e . . . ,  uc~)~-l ,  uk.,+x, u~+~),,+x,. . . ,  this is 
equivalent to replacing n by n + 1 in the expression for the polynomial 
u,. We are applying the same coefficients "L"  to an expression of the same 
mathematical form, and the result must be a polynomial for "v" with 
the same coefficients, with n replaced by n + 1. Hence, both sets of given 
values will yield the same interpolated value v, for a specified value of n. 
A similar observation applies if n is replaced by n + 2, n + 3, etc. In 
other words, if u, is a polynomial in n of degree r or less, then the m in- 
terpolated values v,, computed from the m possible sets of given values, 
are identical. I t  has already been shown that the graduated value, which 
is obtained by  applying the equivalent graduation formula to the com- 
plete series of values of u,, is the average of the m interpolated values. 
Since the latter are all identical, they must, therefore, be equal to the 
graduated value. But, if the hypothesis includes the statement that the 
graduation formula is correct to rth differences, the graduated value is 
the value of the "u" polynomial for the argument n. I t  follows that the 
interpolation formula also is correct to rth differences. Vaughan's prin- 
ciple is now completely established. 
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APPLICATION OF VAUGIIAN'S PRINCIPLE 

From an algebraic standpoint, correctness of the graduation formula 
to rth differences means that V. -- ?.7. is an expression involving only 
Y+~U. and higher differences of U.; in other words, the operator G - m 
has 6 "+~ as a factor. Stirling's interpolation formula gives: 

E " - - - - - l + n u 6 + - ~  62-~ n(n2--1)6 n 2 (n ~ - 1 ) 
~ 6 3 +  2 4  64 

n ( n  ~ - 1) ( n * -  4)  n 2 (n  2 - 1) (n  2 - 4 )  

+ 120 ~65+ 720 66+" " " 

By means of this substitution, any linear compound operator may be 
expanded in terms of 1, #6, 62, u6 s, etc. In particular, 

n 2 (n 2 -  1) 
7 " = - E n + E ~ = 2 + n 2 6 ~ +  12 6' 

n 2 (n ~ -  1) (n 2 -  4) 
+ 360 

On the other hand, Bessel's formula gives: 

6 ~ + .  . . } (5) 

E " - ~ u + n 6 + ½ ( n 2 - ¼ )  u62+~n(n~-~)  63-a-- o.-~;1 ( n 2 _ { ) ( n 2 _ ~ )  64 

+ ~ ½ ~ n  ( n ~ -  k) ( n ~ -  ¼) ~ 5 + . . . ,  

whence 
n (n 2 -  1) n (n 2 -  1) (n 2 -  9) 

6, =--E ~/~ - E -'/2 = n 6-+ 2 ~  63"~ 1920 ~b + . . .  , 
and 

6. n (n~- -  1) n ( n 2 - - 1 ) ( n ~ - 9 )  
6 4 + .  

[n] -----~-~ n +  24 Y"~ 1920 "" 

If a discrete interpolation formula is to be correct to rth differences, 
the first few terms in the Stifling expansion of H must be such that  
[ m ] ' + l / / -  m is divisible by ~,+1. Thus, we must have 

G ~  [ m ] ( l + . . . )  

for a formula correct to zeroth differences; 

Ira] 2 
G ~ - - ( I + . . . )  

m 

for a formula correct to first differences; 

[ m ] ' (  m ' - I  ) 
G - -  - - ~ - -  1 8 6 2 + ' ' '  
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for a formula correct to second differences; 

G _~ ~ s ] *  (1 m 2 - 1  
6 ~ s + . .  "/  

for a formula correct to third differences; 

G- -  [m]5[1  5 (m s -  1) 3s_[ (m s -  1 ) (9m s -  1) 84 + ] 
=---m-i-L 24 384 " ' " 

for a formula correct to fourth differences; and 

G-------m-~k[m]~[1 m~--14 ~2+ (mS--1)(4m~--l)120 3 4 + ' ' ' ]  

for a formula correct to fifth differences. 
An interesting illustration is the case of ordinary finite difference in- 

terpolation to rth differences, as exemplified by Newton's advancing dif- 
ference formula or any of the other equivalent formulas. In the case of 
interpolation to rth differences, the number of coefficients in the linear 
compound expression for a particular interpolated value is r + 1; and, 
therefore, the total number of coefficients is rn(r  + 1) if r is even, or 
m r  + m - 1 if r is odd. On the other hand, the number of coefficients in 
the expanded form of [m] r+l is m + r ( m  - 1) - m r  + m - r; and the 
number added by those terms of H which are determined by Vaughan's 
principle is r if r is even, or r - 1 if r is odd. This makes a total of pre- 
cisely m r  + m if r is even, or m r  + m - 1 i f  r is odd, as before. This result 
is to be expected, as these formulas are unique for their respective spans 
and the orders of differences to which they are correct. This means that 
by limiting the expressions given in the preceding paragraph to the terms 
which actually appear there, we obtain the graduation operators which 
are equivalent to ordinary finite difference interpolation. For example, 
ordinary fourth difference interpolation for the purpose of subdividing 
the interval into five parts is represented by 

_ [ 5 ]  
G ~ - 6 ~ - ~ -  (1 - -  5 3 2 +  1 4 3 4 )  . 

MANIPULATION OF LINEAR COMPOUND OPERATORS 

In applying Vaughan's principle to derive special formulas, certain 
general properties of linear compound operators will be needed. Consider 
an lrbitrary linear compound operator 

C ~ - - X t L , E - ' .  
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The operator 
C' -~ ~tLLE*, 

which is C applied in the reverse direction, will be called the reflection of 
C. We now introduce a special operator S, which is an operator on an 
operator, defined by  the relation: 

S (C) = ~ tL~.  

In  other words, S operat ing on a linear compound operator gives a num- 
ber, which is the sum of the squares of its coefficients. We shall need also 
another  special operator  F defined by:  

F ( C )  = L o  • 

From these definitions it imnaediately follows tha t  

S (C) = F (CC') .  (6)  

If,  as is usually the case, we are dealing with symmetrical  linear com- 
pound operators (by which is meant  that  L, = L-t),  we m a y  write: 

C ~ L o + ~ t L t ~ t  , 

s (c) =L~+-~,L~, 

where the summations are over  positive values of t only. Also, in this case, 
C' ---- C, and the relation (6) becomes: 

S (C) = F (C ~) . (7)  

The following easily verified relations will also be found useful: 

7 - ~  --  3',+p + ~ - ~  } (8)  
~,~ ------ 2 + r~ , .  

DERIVATION OF SPECIAL FORMULAS 

As our first example,  we shall derive Mr. Beers'  6-term, minimized 
fifth difference, reproducing formula, correct to fourth differences ( R A I A  
XXXlII, 245). In  this, as in subsequent examples,  we shall take m = 5. 
Therefore, the total  number  of coefficients is 6 X 5 -- 1 = 29. Applying 
Vaughan's  principle, we find that  

_ [ 5 1  ~ 

G = - 6 7 f f / / ,  
where 

H---- 1 - 5 62+ 14 54+ k 6 ~ + l U .  
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We now wish to discover what restriction, if any, reproduction of the 
given values places on the values of k and l. Now, it is known that the 
interpolation formula associated with the graduation operator 

[515  
625 (1 - 5 ~2-}- 14 ~4) 

reproduces the given values. Therefore, the formula based on the operator 
5-41515(k/} e + 168) must give zero for the "interpolated" values corre- 
sponding to the arguments at  which the given values are situated; and 
this must be true no matter what the given values are. This operator may 
be written as 5-4~(k~  q- Ibm). If this is expanded in powers of E, only the 
coefficients of those powers whose indices are multiples of five will enter 
into the calculation of the particular "interpolated" values under con- 
sideration. However, careful examination of this expression brings out 
that all such coefficients are zero. Hence, the requirement of reproduction 
of the given values is automatically satisfied, and does not impose any 
restriction on the values of k and l. 

The constants k and I are to be determined so as to minimize the sum 
of the squares of the coefficients which express the fifth differences of the 
interpolated values in terms of the fifth differences of the given values. 
These coefficients are obtained from the relation 

~sv.  = 5 - 4 ~  5 [5]  5 / / U .  = 5 - * / / (  ~ U . ) .  

Hence, the sum of their squares is proportional to 

S (H)  = F ( / /2) .  

To find the values of k and l for which this expression is a minimum, we 
must equate to zero its partial derivatives with respect to these two quan- 
tities. Thus, 

0 S ( / / )  2F / / ~  = 2 F ( / / 8  ~) - - 0  
Ok 

O H ) _  2 F ( H 8 8  ) 0 0 S ( H )  = 2 F  H - ~ -  
Ol 

Multiplying out the expressions H66 and H~ s, and recalling that  ~r _-- 
(E  1/2 --  E--1/2) r gives the equations: 

- -  ~Ca - 5 8C, - 14 l°C 5 -~ k 12C 6 - -  114C 7 = 0 

sC 4 + 5 loC 5 + 14 1KTa - k 14C7 + 116C8 = 0 . 
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On substituting numerical values and combining, we have: 

9 2 4 k - - 3 4 3 2 1 =  3898 

3 4 3 2 k - -  1 2 8 7 0 l =  1 4 2 6 6 .  

Solving these equations gives k = 10.65 and l = 1.73. Hence, 

_ [ 5 ]  6 . 

G = 6--~- (1 -- 5 ~s-t- 14 ~4-t- 10.65 M-t- 1.73 ~8). 

Obtaining the expanded coefficients of H/625 and summing them in fives 
five times, we shall have the linear compound coefficients for interpo- 
lation. 

I t  may be desired to experiment with various rounded values of k/625 
and//625 in order to find the combination which actually gives the small- 
est value of S(H), using coefficients only to a specified number of decimal 
places. For this purpose, we may use the expression: 

S ( H )  = F ( H  s) = F [ 1 - - 1 0 M + 5 3 ~ * q -  ( 2 k - - 1 4 0 )  ~6 

+ ( - -  l O k +  21+ 196) ~s+ ( 2 8 k - -  10l) ~ o +  (kS+ 281) ~ 

+ 2kl~14+12~ le] = 1 + lO~Cl+ 53 KT~-- (2k - 140) %73 

+ ( -- l O k +  2 l +  196)sC4 - ( 2 8 k - -  lOl)~°C' 6 

+ (kS+ 28l) I~C 6 -- 2k11%77+ I2t6Cs 

= 1 6 8 5 9 - 7 7 9 6 k + 2 8 5 3 2 1 + 9 2 4 k  2 - 6 8 6 4 k l + 1 2 8 7 0 p .  

USE OF LAGRANGE MULTIPLIERS 

Sometimes the derivation of a discrete interpolation formula can be 
appreciably shortened by the use of Lagrange multipliers, a device to 
which I have called attention in a previous paper (RAIA XX_XIV, 33). 
An example is Mr. Beers' 6-term, minimized fourth difference, non-repro- 
ducing formula, correct to third differences (RAIA XXXIV, 14). Apply- 
ing Vaughan's principle and using the same kind of reasoning as in the 
preceding example, we find that G ----- .0081514H, where H = 1 - 462 4- 
k~ 4 4- l~ ~ + n~ 8 4- p~t0 4- q~ .  As the formula is not required to repro- 
duce the given values, we could now proceed immediately to find the 
values of k, l, n, p, and q for which S(H) = F(/~),  a quantity propor- 
tional to the sum of the squares of the coefficients which express the 
fourth differences of the interpolated values in terms of the fourth dif- 
ferences of the given values, is a minimum. However, this would mean 
solving a set of five simultaneous equations in as many unknowns; and, 
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moreover, the equations would run into big figures, involving binomial 
coefficients of degrees up to 24. 

Therefore, we shall use a somewhat different approach, writing instead: 

H ~--~ a"~- b3,x.-[-- c,'y~--~ dT3.-~- ew,+ J75+ g~'e , 

and shall find the conditions on the coefficients a, b, c, etc., so that, when 
H is expanded in powers of 6, the first two terms will be 1 - 46 ~. Expand- 
ing ~'1, 72, etc., by formula (5) gives: 

a +  2 b +  2 c +  2 d +  2 e +  2 f + 2g= 1 \ 
(9) 

f b-k-4 c-k- 9d-k  16 e +  2 5 f + 3 6 g  = - 4 .  

The procedure is, therefore, to equate to zero the partial derivatives with 
respect to a, b, c, etc., of the expression: 

½F(H 2) - X(a -b  2b-k 2c -b  2 d +  2 e-k- 2f-k- 2g) 

-- u(  b + 4 c  + 9d+16e-k -  25J + 36g) .  

Making use of the relations (8), we thus arrive at the equations: 

a = X  

2 b =  2 X + #  

2c = 2 X + 4 #  

2 d =  2 ) , + 9 #  

2 e = 2 k +  16z 

2 f  = 2 ) , +  25~ 

2 g =  2),-+- 36~. 
(10) 

Substituting these values of a, b, c, etc. in the equations (9) and simplify- 
ing gives: 

1 3 k + 9 1 ~ - - 1  91~-b1137.5~-- -  - -4 .  

Solving these equations for k and t~ gives X = .2308 and ~ -- - .0220. 
Substituting these values in the equations (10), and computing the values 
of .008a, .008b, etc., to four decimal places, rounding them by trial in 
such a way that the equations (9) will hold exactly, we obtain the follow- 
ing values, in alphabetical order: .0018, .0018, .0015, .0010, .0005, -- .0004, 
- .0013. Writing out the complete series (with .008a in the middle and 
.008g at each end) and summing in fives four times gives the interpola- 
tion coefficients published by Mr. Beers. 

SPECIAL CONDITIONS ON THE COEFFICIENTS 

In some instances, the specifications of the formula have the effect of 
imposing special conditions on the undetermined coefficients in the ex- 
pression for the graduation operator. For example, the requirement of re- 
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production of the given values will not always be automatically satisfied 
as it was in the first example. This situation is illustrated by my !bown 5- 
term, minimized fourth difference, reproducing formula, correct to third 
differences (RAIA XXXIV,  26). Reasoning as in the previous cases, we 
find that G ~ .0081514H, where H ---- 1 - 4~ 2 + k~* + l~ 6 + m~ 8. Con- 
tinuing as in the first example, we conclude that for reproduction of the 
given values, the expression .0081514(k3 * + 136 + m~ 6) -- .008~(k + 
l~ 2 + rn~ *) must have zero coefficients for those powers of E whose in- 
dices are multiples of 5. These terms in the expansion in powers of E are 
given by the expression .008~(k - 2l + 6m). I t  follows that  we must 
h a v e k - -  2 l + 6 m - - 0 ,  o r k =  2 l - - 6 m .  

Subject to the other conditions mentioned, this formula minimizes the 
sum of the squares of the coefficients which express the fourth differences 
of the interpolated values in terms of the given values themselves. Since 

~4 vn = .008 ~4 [5] 4H U~ = .008 ~ H  U~, 

we may, therefore, equate to zero the partial derivatives with respect to 
l and m of S(~H) -- F (~ /F ) ,  after replacing k by  2l - 6m. This gives 
the equations: 

F [ ~ H ( 2 ~ ' +  ~8)] = 0  F [ ~ H ( - 6 M +  ~8)] = 0 ,  

which, after expansion and simplification, become: 

i 0 4 4 / - -  5 0 4 8 m  = 640 5 0 4 8 / - -  2 4 8 3 8 m  = 2 8 4 2 .  

This gives l = 3.46 and m = .59, whence 

G-----.008 [514(1 -- 4 ~ 2 + 3 . 3 8 ~ 4 + 3 . 4 6 d s + . 5 9 ~ s ) .  

INTERLOCKING FORMULAS 

While the interlocking interpolation formulas recently developed by 
Mr. White (TASA XLIX,  337) do not have to be considered as discrete 
formulas, nevertheless, the interlocking approach seems peculiarly ap- 
propriate in the derivation of a discrete formula. As an illustration we 
shall take Mr. White's interlocking analogue of Sprague's formula, for 
the case of m = 5. We shall take the interval between successive inter- 
locking points the same as that between interpolated values. (This means 
that  h= .2  in Mr. White's notation.) This is a 6-term formula cor- 
rect to fourth differences, so that we must have G -- .00161515H, where 
/ /  ------ 1 -- 5~ 2 + 14~ ~ + k~ 6 + l~ 8. The formula also reproduces the given 
values, but investigation readily brings out that this requirement is auto- 
matically satisfied. 



DISCRETE INTERPOLATION FORMULAS 357 

AS the formula is of the fifth degree, and there are three interlocking 
points in the neighborhood of each point of junction, there are eight con- 
secutive interpolated (and given) values in and around each interpolation 
interval which lie on the same fifth degree curve. Therefore, in any set of 
five consecutive sixth differences of the interpolated values, two must be 
zero. If differences are taken centrally, these zero sixth differences will 
correspond to the two middle values in each interval. As these differences 
must vanish whatever the given values may be, it follows that ~6L~, ~6L3, 
~6L7, ~6L8, ~SL12, ~L13, and ~SL1~ must vanish. Now, 

6 ~ G ~ . 0 0 1 6 6 ~ H ~ . 0 0 1 6 6 ~ s ( ~  - 5 33+ 14~5+ k ~ + l ~ ) .  

Careful study reveals that ff the expression in parentheses is expanded in 
powers of E, only the coefficients of E 1/2 and E g/2 (and those of E --~/z and 
E -9/2, which are, of course, the same) will affect the values of those ~SL's 
which are required to vanish; and further that the vanishing of these two 
coefficients is both necessary and sufficient for the vanishing of all seven 
~6L's. This gives the equations: 

1 5 6 - - 3 5 k + 1 2 6 1 = 0 ,  l = 0 .  

Hence k = 156/35, l -- 0, and 

G-----.0016 [5] ~ (1 -- 5 82+ 1 4 6 4 + 1 3 ~  ~0). 

I t  is interesting to note that while this graduation operator might be 
expected on general principles to have 29 terms, it actually has only 27, 
since l turns out to be zero. This is always the case when the interval be- 
tween interlocking points is the same as that between interpolated values 
as is borne out by the fact that s~-h 2 will be found to be a factor of the 
coefficient of 34u,+~ in Mr. White's formula (26). 



DISCUSSION OF PRECEDING PAPER 

AI3BREY W H I T E :  

We should be grateful to the Papers Committee for allowing those of 
us who are still interested in the former actuarial subject of graduation 
theory to use this forum for our harmless play. Perhaps some future 
Wolfenden among the vital statisticians will someday rediscover in our 
transactions an important series of papers by Dr. Greville, laying the 
foundation for future progress in this field. Although I am not sure that 
these summation expressions will normally be as efficient in producing the 
required linear compound factors as the classical continuous curve, the 
primary value in Dr. Greville's paper would seem to lie in the creation of 
a new technique for research, out of which better forms and processes may 
emerge. I have no useful comments to offer in developing this approach, 
but I would like to refer to some incorrect statements regarding my inter- 
locking curves which the original draft of this paper contained. At the 
same time, I wish to give full credit to Mr. D. C. Duffield, who first no- 
ticed the original errors, and whose sound suggestions for correction have, 
I believe, been adopted by Dr. Greville. 

Mr. Duffield points out that my curves, when interlocking points are 
also interpolated points (as they should always be in practice), are funda- 
mentally discrete interpolation formulas, so that my h will always be a 
multiple of 1/m in Dr. Greville's notation. Also, he notes that by their na- 
ture they must always involve less than the maximum range of given val- 
ues in the expressions which determine the interlocking points. 

This may be seen from general reasoning. Although a classical inter- 
polation curve by its nature uses the same group of given vMues for deter- 
mining each interpolated value (including the given values themselves), 
it is obvious that if two adjacent curves must invariably meet at certain 
fixed points, they must both use the same set of given values in the same 
proportions at those points. This can only be done if each drops the one 
given value not common to both curves. Therefore, the rule for an inter- 
locking curve using h given values for noninterlocking points, with m 
points determined by each curve and with r interlocking points, is that the 
number of nonzero linear compound factors is a maximum of mh-r, less 
one if h is even and the given value is not an interlocking point, or if h 
is odd and the given value is such a point. In the interlocking analogue of 
Sprague's formula, h is even (6) and the given value is an interlocking 
point, so that the maximum is 27 factors for m = 5. 

358 
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My minimum curves illustrate a peculiar variation of Dr. Greville's 
summation notation. As stated in TASA X'LIX, 361, each may be ex- 
pressed as 

5 { 5 } "+~ D u , + , ,  

where 
Dux+ ~ is zero unless t is a multiple of 5, and 

5 { 5 } r + 1  D u + 6 ,  ~ = u + ~ , , ,  . 

The last line could have been relaxed somewhat, if perfect fit was not 
required. If I had used Dr. Greville's Uk, series, and defined D as an oper- 
ator of the form 1 + a3~ + b~ + . . .  , my first condition would have 
been automatically satisfied. Then the second condition could have been 
relaxed to 

(a) whatever D may be, the curves preserve the degree r," 
(b) if the expansion of (1 + a~  + B~. • .)D (set equal to unity in my 

paper) differs from unity by powers of/~5 greater than r, the curve witl 
reproduce an rth degree curve; 

(c) if this expansion is identically equal to unity, the curve will reproduce 
the given values. 

I t  follows that if Dr. Greville's / /  operator were replaced by an oper- 
ator of the form of D above, my minimum curves would represent the 
general expression in continuous form for the resulting interpolation oper- 
ation. This also illustrates the essential unity of the several graduation 
processes, since the same smooth, powerful interpolation may be per- 
formed by applying either a summation operator or an interpolation for- 
mula to a series adjusted by means of a difference equation (or a linear 
compound operator if given value reproduction is not required). 

I would also like to point out again that the so-called "interpolation" 
processes can be applied advantageously in any case where quinquennial 
totals are either the only available data or better-behaved than individual 
entries, without any need for a preliminary determination of central val- 
ues. If v, is a good series completing the special series U,, then {51 v, should 
be an equally good substitute for the special series { 5 } U,,; and the latter is 
easily visualized as the histogram of data given in quinquennial sums. Mr. 
Beers gave a set of factors for this operation in his reply to the discussion 
of his paper on the six-term formula (RAIA XXXIV, 60) and Dr. Grev- 
ille's present paper gives added emphasis to the appropriateness of this 
approach. 

I wish that Dr. Greville or some other equally qualified analyst could 
devote some time to a critical analysis of the other finite difference gradu- 
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ation processes. Despite Mr. Spoerl's very thorough and scholarly paper 
on the difference equation, much remains to be done in exploring the 
philosophy of this method, and also much could be done in analyzing the 
criteria commonly used for judging graduations. I t  seems to be inevitable 
that adjusted average methods as such will lose their appeal as practical 
devices; and I note that  Dr. Greville does not apply his new analysis to a 
single osculatory curve. I can foresee a considerable further reduction in 
the required reading, and I hope that some time in the future we will not 
have to ask a nonactuary to advise us when we have a real graduation 
job to do. 

• t'U I~ERT VAIIGHAN : 

I am deeply impressed by the generosity of Dr. Grevflle, who has ele- 
vated a proposition of mine to the basis of a principle, embellished by his 
own sense of form and knowledge of recent research. 

Under any circumstances I would esteem it an honour to be permitted 
to contribute to the discussions of this body. 

Dr. Greville enunciates the principle in his own way, carefully scruti- 
nizing the necessary and sufficient conditions. He supplies a mathematical 
device to facilitate the derivation of formulae and gives examples of its 
use. 

Dr. Greville also introduces the concept of maintenance of degree and, 
in doing so, reduces the three steps of my demonstration to two. I had 
considered first the effect of simple summations, then the operand neces- 
sary for absolute reproduction, and thirdly the case of additional coeffi- 
cients. The first and third steps are now taken up in the maintenance con- 
cept, which elucidates the part  played by the summations, whatever the 
operand. 

In working on this subject of interpolation I had a curious experience. 
Some years ago I set out to investigate the possibility of basing interpola- 
tion upon a smoothing test, but the work dragged on over years on ac- 
count of war conditions and the impossibility of publication at the time. 
Unknown to me others were working in the same field and, as time passed, 
the matter  in hand was covered by papers from several writers in TASA 
and RAIA.  The main thesis of a projected paper was accordingly dis- 
carded and, had time, place and circumstance permitted, the residue 
would have been offered as a contribution to the discussion of American 
papers. As it was, a truncated paper eventually appeared in J IA  L X X I I  
as "Some Notes on Interpolation." As a further coincidence, Dr. Michalup 
of Venezuela informed me last year that my paper reached him exactly at  
the moment when he was working on the relation between interpolation 
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and summation formulae (which had been the distinctive feature of my 
own efforts). 

It  is on the generality of this relation that Dr. Greville now seizes, per- 
haps because the growing number of good special formulae is becoming 
formidable and it is a relief to find a connection between them. 

The existence of some relation between interpolation and the summa- 
tion process has, of course, been known for over sixty years, and several 
early graduation formulae were deduced from the average of a set of inter- 
polations; but  the investigation seemed to become frozen at a certain 
point. This was no doubt due in the first place to the development of a 
type of summation formula ascertained without reference to interpolation. 
Then independent research restored the neglected outlook of De Forest, 
and actuarial thought came to be in terms of linear-compounds rather 
than summations. The powerful difference-equation method, absorbing 
much of the current interest, pushed the old enquiry even further back 
into the position of a mere episode in history. 

However, on arranging the linear-compound coefficients of a finite- 
difference interpolation formula in suitable order, it turns out that they 
form a series divisible by a set of summations; and it now appears that 
not only some special averages of interpolations but each separate inter- 
polation can be expressed as a summation formula. The application to in- 
terpolation is in fact wider than to graduation, because there are linear- 
compound graduation formulae that cannot be expressed in the old sum- 
mation form, while in the case of interpolation we find that all formulae 
with certain properties must be so expressible. A summation formula then 
seems essentially a natural part of the theory of interpolation rather than 
of graduation. The possibility arises that we can reverse the old objective: 
in lieu of seeking a graduation expression by compounding interpolations, 
we can start with the summation form as a generalised interpolation for- 
mula, and use the principle of this paper to derive and classify interpola- 
tion methods. One advantage in research, as Dr. Greville remarks, is that 
only some two or three coefficients in the operand require determination 
to establish particular properties. I t  also weighed with me that recorded 
investigations into summation formulae provided much available data 
and that there was a standard of smoothing power ready-made. To use the 
principle in this way, it was necessary to provide a proof which would for- 
mulate it generally and specifically. 

Though the form is discrete, it is the case that osculatory formulae can 
be expressed in the same way. Some such formulae have in fact been de- 
rived from the summation form, either by accident when experimenting 
with changes in the operand terms, or deliberately by considering the 
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limit when the interval of interpolation becomes small. I did not get to the 
point of examining the infinite case beyond regarding it as a number of 
integrations applied to an operand and discarding coefficients that would 
become infinitesimal. Though this worked for particular cases, it is far 
from graceful mathematics. However, it suggests that the form could be 
modified to cover the case of a continuous curve, and one would expect to 
find such a limiting form related to that devised by Professor Schoenberg. 
As his work was previously unknown to me and has been set down for fu- 
ture study, I am not able at present to form any view on the point. Per- 
haps Dr. GreviRe can enlighten me. 

An actual example of the use original|y made of the principle may be 
interesting. Starting with the second-difference interpolation form, 
5-31513(1 - 3~2), the operand was modified for third-difference smoothness 
(as was done for certain cases by J. R. Larus in TASA X~X). The result 
was to extend the operand by ( -  2.305~ ~ -- .376~6). This produced inter- 
polation coefficients identical with those given by Dr. Greville in RAIA 
XXXIV, 25. Having now the best theoretical formula, the operand can 
(by a method published in JIA LXV) be modified for simplicity while 
retaining most of the virtue. The first modification indicated was to re- 
place the above-mentioned extension by (-2.48* - .4~e), but this turned 
out to be a "rediscovery" of Karup's formula (which incidentally is 
osculatory). The next attempt was (--2.75~ 4 -- .5~8), which provides a 
very simple interpolation form--it  is Formula I I I  of Mr. E. H. Wells 
(RAIA XXXIV, 43) given during the discussion of one of Mr. Beers' 
papers. 

An interesting case was m-'[m]4 { 1 - I ( 1  -- 1 ) 8 ~  } • This was chosen 

for experiment on account of its simplicity and because the operand is an 
approximate reciprocal to a difference-equation expression connected with 
minimizing second differences. I t  was noticed that the formula would be 
interlocking, and hence osculatory at the limit. The osculatory formula 
was obtained and turned out to be a very pleasing and simple one, vi~.., 
Jenkins' fifth-difference modified formula. This unexpected result can be 
verified another way. Jenkins' formula, by the methods of the present 
paper, can be written m-4[m]4(1 - ~ ) ( 1  + -~).  Giving m the value 5 
or any other number, the expansion of this will produce the interpolation 
coefficients for a corresponding subdivision. Now if we increase m so that 

1 
the interval of interpolation becomes infinitesimal, fi2 and ~i  both ap- 

proach zero, so that at the limit the two summation forms coincide. We 
thus have a connecting link between the difference-equation method for 
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62 (which at the limit becomes Henderson's difference-equation osculatory 
method), Jenkins' formula, and two summation forms, one of which repre- 
sents Jenkins' formula at all ranges, while the other branches off as an 
interlocking formula. 

Dr. Greville is judicious in writing his finite integral as from - ~ to co, 
as this enables difference-equation interpolation to be included. For ex- 
ample a graduation formula corresponding to the difference-equation for 
minimizing on second differences may be written 5-21514(4E-5 + 17 + 
4E5) -~ which is a combined summation and difference-equation formula 
similar to those of Henderson (TASA XXXIV).  If we expand symmetri- 
cally the reciprocal of the expression in E's, this becomes a summation 
formula with an operand of infinite length, but the same conditions hold as 
for finite ranges, e.g., the central coefficient of the expanded interpolation 
coefficients will be unity, and coefficients at intervals of 5 zero. The above 
summation form bears the same relation to the difference-equation inter- 
polation as Woolhouse's graduation formula to an ordinary second-differ- 
ence interpolation. I t  could be applied by using expanded coefficients 
(which Dr. Grevllle has, I think, published) or by factorizing into 
(E --6 + 4) (4 + E6), and might have an application in graduating popula- 
tion mortality. 

I will close with the minor suggestion that to help students it might be 
well to mention specifically that when r is even, the graduation formula 
applied to a complete series will be correct to (r q- 1) differences, though 
as an interpolation formula it is correct only to r differences. The reason is 
that, in a graduation, terms are taken equally from each side so that the 
odd orders of differences cancel out. This does not of course affect the cor- 
rectness of Dr. Greville's statement. 

I hope the subject will be of some interest to members, because over the 
years I have obtained so much information from the Transactions and 
Record that any information I can give is a very small return. 

HARWOOD ROSSER: 

Dr. Greville disclaims any new formulas at the outset, stating that he 
is dealing here only with alternate derivations. However elegant his the- 
ory may be, not many actuaries will be deeply interested. Even someone 
who elected the advanced graduation option under Part  8 finds it heavy 
going. 

But he and Vaughan, between them, have suggested a revolutionary 
thought--namely, interpolation by graduation formulas. Since actuaries 
require interpolations much oftener than graduations, and since the latter 
are often easier to perform, there seems to be a field for investigation here. 



364 DISCRETE LNTERPOLATION FORMULAS 

This discussion is devoted to emphasizing that point, chiefly by illustra- 
tion, as lack of time prevents a more thorough examination. 

Interpolation by Graduation 

Dr. Greville notes that application of Woolhouse's graduation formula 
to the series: 

• . . , O, O, O, O, ul~, O, O, O, O, U2o , O, O, O, O, u2~ , O, O, O, O, . . . 

and subsequent multiplication by five throughout, is equivalent to second- 
difference central difference interpolation on the series: 

• . . , I t l 5 ,  U 2 0 ,  U25~ • , . 

A numerical example is given in Table 2, starting from the figures in 
Table 1, Column 1. 

TABLE 1 

B A S I C  V A L U E S  

x ux Auz  A~u~ 
(1) (2) (3) 

3 5  . . . . . . . . . .  

4 0  . . . . . . . . . .  
4 ~  . . . . . . . . . .  

50 . . . . . . . . . .  
55 . . . . . . . . . .  
6 0  . . . . . . . . . .  

311 
231 
316 
591 

1016 
1531 

- -  80 
85 

275 
425 
515 

165 
190 
150 
90 

~I2U~ U~ 

= ~  (3)x-1 ( I ) - - ( 4 )  
(4) (5) 

19.8 211.2 
22.8 293.2 
18 573 
10.8 1005.2 

The following short-cuts make the process easier: 

1. The w-column can be obtained by summation in fives twice of the u's 
and division by five. But  it is quicker to use straight line interpolation 
between the quinquennial values. 

2. 40% of the figures in Column 3 are copy work--Le., those where x 
ends in 2, 3, 7, or 8. 

3. While it is instructive to compare Columns 4 and 7, Column 5 can be 
taken directly from Table 1, rendering the differencing of Columns 
3 and 6 unnecessary. 

There is a set of "G" formulas in the section headed "Application of 
Vaughan's Principle." The above example corresponds to the one correct 
to second differences, with m = 5. The one below it, to third differences, 
could be used by repeating the process in Column 3, and substituting 4~ 2 
for 35 ~ in Column 5. This would be more work, and would give a smoother 
result. 



TABLE 2 

I N T E R P O L A T I O N  BY WOOLHOUSE~S G R A D U A T I O N  F O R M U L A  

35 . . . . . . .  
36 . . . . . . .  
37 . . . . . . .  
38 . . . . . .  
39 . . . . . . .  
40  . . . . . . .  
41 . . . . . .  
42 . . . . . .  
43 . . . . . .  
44 . . . . . .  
45 . . . . . .  
46 . . . . . .  
47 . . . . . .  
48 . . . . . .  
49 . . . . . .  
50 . . . . . .  
51 . . . . . .  
52 . . . . . .  
53 . . . . . .  
54 . . . . . .  
55 . . . . . .  
56 . . . . . .  
57 . . . . . .  
58 . . . . . .  
59 . . . . . .  
60 . . . . . .  

Crude 
u= 

(1) 

311 
0 
0 
0 
0 

231 
0 
0 
0 
0 

316 
0 
0 
0 
0 

591 
0 
0 
0 
0 

1016 
0 
0 
0 
0 

1531 

(2) 

311 
295 
279 
263 
247 
231 
248 
265 
282 
299 
316 
371 
426 
481 
536 
591 
676 
761 
846 
931 

1016 
1119 
1222 
1325 
1428 
1531 

i51 

(3) 

279 
263 
253.6 
250.8 
254.6 
265 
282 
306.6 
338.8 
378.6 
426 
481 
542 
609 
682 
761 
846 
934.6 

1026.8 
1122.6 
1222 
1325 

3~2(3) 
A~(3) = 3(4)z-1 

or Table  1) 
(4) (s) 

6.6 
6 .6  19.8 
6.6 19.8 
6 .6  19.8 
6 .6  19.8 
7.6 19.8 
7.6 22.8 
7.6 22.8 
7.6 22.8 
7,6 22.8 
6 22.8 
6 18 
6 18 
6 18 
6 18 
3.6 18 
3.6 10.8 
3.6 10,8 
3.6 10,8 
3.6 10.8 

10.8 

Interpo- 
lated ~= A=v= 
(3)-(5) 

(6) (7) 

243.2 6, 6 
233.8 6 .6  
231 6 .6  
234.8 3 .6  
245.2 10.6 
259.2 7.6 
283.8 7.6 
316 7.6 
355.8 12.4 
403.2 1.2 
463 6 
524 6 
591 6 
664 13.2 
743 - -3 .6  
835.2 3.6 
923.8 3 .6  

1016 3 .6  
1111.8 . . . . . . . .  
1211.2 . . . . . . . .  

TABLE 3 

I N T E R P O L A T I O N  W I T H  S O M E  G R A D U A T I O N  

Crude Interpolated 
, I s ] ,  /x% 

x Tab le  1 

(1) (2) (3) (4) 

40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
48. 
49. 
50. 
51. 
52. 
53. 
54, 
55. 

211.2 
0 
0 
0 
0 

293.2 
0 
0 
0 
0 

573 
0 
0 
0 
0 

1005.2 

211.2 
227.6 
244 
260.4 
276.8 
293.2 
349.2 
405.1 
461.1 
517 
573 
659.4 
745.9 
832.3 
918,8 

1005.2 

244 
260.4 
284.7 
316.9 
357.1 
405.1 
461.1 
523.1 
591.3 
665.5 + 
745.9 
832.3 

7.9 
7.9 
8 .0  
7.8 
8 . 0  
6.0  
6.2 
6 .0  
6.2 
6 .0  
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In terpola t ion  with  Some  Graduat ion  

A smoother result with no extra work, but at the sacrifice of reproduc- 
tion of pivotal points, is illustrated in Table 3. This is somewhat analogous 
to modified osculatory interpolation. The procedure differs from that in 
Table 2 only in that the adjustment in Column 5 thereof is made at the 
beginning instead of at the end. 

(AUTHOR'S REVIEW OF DISCUSSION) 

THOMAS N. E. GREVILLE: 

I wish to thank all three discussants for their contributions, and I am 
especially glad that Mr. Vaughan, to whom this subject owes so much, 
found it possible to prepare a discussion. Also, I particularly want to 
thank Mr. White for his kind remarks concerning the paper, and I am 
grateful to him and to Mr. Duffield for pointing out the incorrect state- 
ments concerning interlocking curves which appeared in the original draft 
of my paper. 

Mr. White's discussion of the number of linear compound factors in an 
interlocking formula is to the point, and 1 am glad he included it in his 
discussion. However, it appears that he and 1 are not entirely in agree- 
ment as to the formula to be applied. To avoid possible confusion, it 
should be pointed out that by "the number of nonzero linear compound 
factors" he means the maximum number in the general formula for given 
values of m, h, and r. He does not mean to exclude those coefficients which 
may vanish because of the setting of other conditions (such as reproduc- 
tion of the given values), or as an accidental result of the particular com- 
bination of characteristics chosen. With this understanding, it seems to 
me that the number of linear compound factors in an interlocking formula 
is m h  - -  r without any exception or qualification. If I am correct in this, 
then the portion of Mr. White's discussion which reads "less one if h is 
even and the given value is not an interlocking point, or if h is odd and the 
given value is such a point" should be deleted. 

Referring specifically to the two cases cited by Mr. White as excep- 
tions, I would point out that, if h is even, the given values would be points 
of junction of adjacent interpolation curves. In this case it would appear 
that either (1) the composite interpolation curve is discontinuous at these 
points and two distinct "interpolated" values are obtained at each such 
point, or (2) it is not intended to include in the final complete series values 
corresponding to these points. The deduction of one is not called for, it 
seems to me, on either of these assumptions. 

In the other case, where h is odd, the given values would be the mid- 
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points of the ranges of the respective curves. Therefore, if the given value 
is an interlocking point, it would have to lie on three curves: the one of 
which it is the midpoint and the two on either side. Thus, in a sense, there 
would be two interlocking points at this one point. This fact was appar- 
ently overlooked by Mr. White, as he has acknowledged in private cor- 
respondence. Here again the deduction of one should not be made. 

In order to avoid possible confusion it may be well to point out that the 
letter h is used in an entirely different sense in the second and third para- 
graphs of Mr. White's discussion. 

I was aware of the fact pointed out by both Mr. White and Mr. 
Vaughan that the same general principles can be applied to formulas of 
infinite range, such as Mr. White's "minimum curves" and the formulas 
based on a difference equation for minimizing on a specified order of dif- 
ferences which Mr. Vaughan and I have discussed elsewhere (JIA 
LXXlI ,  491-7 and Boletim do Instituto Brasileiro de A tudria, No. 2, 7-34). 
However, I have not fully explored this aspect of the matter and have 
encountered certain mathematical difficulties in trying to formulate a 
general treatment of the subject. Therefore, it seemed best to limit the 
present paper to formulas of finite range. 

The situation is similar as regards another question raised by Mr. 
Vaughan: whether a similar method can be applied to continuous inter- 
polation formulas. On the basis of Professor Schoenberg's work and of 
certain results which Mr. Vaughan has communicated to me in a letter, I 
am sure this can be done, but some further work is needed to put these 
results in a satisfactory form for publication. 

It  had not occurred to me to use the summation form of an interpola- 
tion formula for the purpose of actual computation, as Mr. Rosser does in 
his discussion. I had regarded the summation form merely as a mathemati- 
cal device for deriving formulas required to satisfy certain prescribed con- 
ditions, and had supposed that the availability of calculating machines 
would make the linear compound form the most suitable one for computa- 
tion. However, I must admit that Mr. Rosser has described a most ef- 
ficient computing process which probably involves fewer actual computa- 
tional steps than the linear compound method, although I suspect it might 
be somewhat more difficult to explain to a computing clerk. 

I am afraid the ingenuity of Mr. Rosser's process might not be fully 
appreciated, as his very brief description does not adequately state the 
theoretical basis underlying his various steps. For example, it might not 
be clear to all readers why the figures in column (5) in his Table 2 are the 
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same as those in column (4) of Table 1. The graduation operator in 

[5]3 (1 -- 35~). (It should be Woolhouse's formula is, in symbolic form, 1-~ 

noted that my 55 is the same as Mr. Rosser's 5P.) Since 5s -= [5]5, this 

can be written in the form [5]3 3 ~JS~. Now 5~u, is zero for all values 
125 25 

of n not multiples of 5, so that column (4) of Table I gives all the nonzero 
values of this quantity. I t  follows that each value of [5]~u, is the sum of 
five numbers, four of which are zero. This explains why the figures in 
column (5) of Table 2 are the same as those in column (4) of Table 1. As 
Mr. Rosser points out, this makes it possible to omit columns (3) and (4) 
of Table 2 and makes column (5) purely a copying job, as Table 1 has 
previously been computed. As column (7) is given for information only, 
and is not an essential part of the computation, his process can be made 
a very short and compact one. 

The theory underlying Mr. Rosser's Table 3 is also very interesting. 
If we expand the operator [5] 3 in linear compound form, and then pick out 
the linear compound coefficients which multiply the nonzero values of U, 
when the operator is applied to one of the given values, it is found that 
the operation performed on such a given value may be represented by 
1 + ~5~. Therefore, if we use as an operand the expression 1 -- ~5~, the 
graduation of the given values will be correct to third differences. The 

[5]3 (i - ~ )  is the symbolic representation of the resulting operator 1-~ 

computation shown in Table 3. As this operator can be written in the form 

125 [513 " _ ( 1  - 3 - ~  [515 o °~\ ] - = ~ [5]3 [1 - 35~(1 + 25 ~ + • .  • )], it follows from 

Vaughan's principle that this produces an interpolation correct to second 
differences. The graduating effect on the given values is indicated by the 
relation v, = (1 - ~z~5~)u,. 


