
A Risk Management Tool for Long Liabilities: 
The Static Control Model 

 
 

B. John Manistre, FSA, FCIA, MAAA, CERA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright 2009 by the Society of Actuaries. 
All rights reserved by the Society of Actuaries. Permission is granted to make brief excerpts for a published 
review. Permission is also granted to make limited numbers of copies of items in this monograph for personal, 
internal, classroom or other instructional use, on condition that the foregoing copyright notice is used so as to 
give reasonable notice of the Society's copyright. This consent for free limited copying without prior consent 
of the Society does not extend to making copies for general distribution, for advertising or promotional 
purposes, for inclusion in new collective works or for resale. 



1 

Abstract1 
 

This paper looks at the problem of valuing and managing the Asset/Liability 

Management (A/LM) risks associated with insurance liabilities that are too long to be matched 

by available investments. Two very different approaches to the problem are explored. The first 

approach called Yield Curve Extension starts with a number of simple ideas for extrapolating a 

yield curve and analyzes them from a risk management perspective. The paper concludes that 

these methods lead to unnecessarily extreme A/LM strategies. The paper then describes a second 

approach called the Static Control Model which allows one to use a total return vehicle as part of 

the A/LM strategy. The model decomposes a long liability into fixed income and total return 

components in a market consistent way. The fixed income component is a static hedge for the 

liability in the sense that it matches the first order sensitivities of the model liability as 

observable market information changes. The paper concludes by arguing that the Static Control 

Model leads to more useful A/LM strategies for long liabilities.  

                                                           
1 The views and opinions expressed in this paper are those of the author and not AEGON NV.  
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Introduction and Summary of Results 
 

The issue of managing long liabilities has been a practical problem for life insurers and 

pension plan sponsors for many years. In developed economies products such as long-term care 

insurance in the United States, or Term to 100 life insurance in Canada, have very low lapse 

rates and can create liabilities with very long durations In less developed economies even 

traditional life insurance products can be difficult to match simply because the local debt markets 

are not well developed.  

 

While the problem is far from new, the advent of market consistent financial reporting 

requirements and the demands of evolving enterprise risk management (ERM) standards mean 

that the inherent difficulties should be addressed more comprehensively than they have in the 

past. 

 

 So what should a comprehensive approach to managing long liabilities look like?  In this 

author’s opinion a comprehensive approach should be able to do the following: 

 

1. Put a value on the liability that can be used in a market consistent balance sheet. 

 

2. The value must roll forward in time in such a way that the resulting market 

consistent income statement makes sense. 

 

3. The method should identify which components of the risk can be hedged in the 

capital markets and which cannot. The hedgeable component of the risk must be 

valued in a market consistent way. 

 

4. Risks that cannot be hedged should be valued using either the cost of capital 

method as described by the European Chief Risk Officers Forum or some other 

method acceptable to the actuarial profession. 

 

This paper illustrates two very different approaches to meeting the above requirements.  
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The first approach, called a Yield Curve Extension Method, starts with some simple ideas 

for extrapolating a forward rate curve and then tries to fine tune the extrapolation so as to meet 

the requirements listed above. The end result of this process is a formal theory of yield curve 

extension similar to the first generation of stochastic interest rate models developed by Oldrich 

Vasicek and other researchers.  

 

The paper ultimately concludes that this approach is a failure because the underlying 

assumed hedging strategies are unrealistic but the model building exercise is very instructive. 

The results of this approach are used as a benchmark for testing the next set of ideas. 

 

The second approach starts with the idea of using available market instruments to match 

the hedgeable component of the risk while taking a total return approach to the unhedgeable risk. 

As before, we start with some simple ideas and then fine tune the process. The resulting model is 

called the Static Control Model here because it ends up solving an optimization problem over a 

space of static (buy and hold) investment strategies. The Static Control Model is technically 

more complex than any simple yield curve extension but it usually arrives at similar values while 

using hedging strategies that, in the author’s opinion, are more realistic. 

 

Despite the use of a total return asset class in the Static Control Model, we are able to get 

an extended yield curve out of the model that we call the Marginal Cost Yield Curve (MCYC). 

This turns out to be a very important tool for constructing hedge portfolios and understanding the 

roll forward in time of the model’s values.  

 

One result of interest to come out of the Static Control Model is an answer to the question 

of what the long forward rate in the extended yield curve should be. If the total return vehicle is 

assumed to be a standard lognormal process )](exp[ tZt σμ + with parameters σμ,  calibrated 

such that the expected total return is 8.00 percent, i.e., 08.1]2/exp[ 2 =+σμ  and the volatility is 

%16=σ  then the model’s implied  long forward rate turns out to be 5.27 percent. This is the 

rate that produces the expected discount factor 0527.1/1]2/exp[ 2 =+− σμ .  
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A property of the Static Control Model that some readers may not like is the fact that the 

implied extension of the forward rate curve is not necessarily continuous. However, we’ll argue 

in the section on Yield Curve Extension Methods that demanding continuity of the forward rate 

curve is part of the problem and not part of the solution.  

 

Following this introduction the paper is divided into three main sections followed by two 

appendices. The first section summarizes the ideas behind the Yield Curve Extension Method 

while the second section describes the Static Control Model. A short conclusions section 

summarizes the author’s arguments in favor of the Static Control Model. The more mathematical 

details required to support both methods are in Appendices 1 and 2, respectively.  

 

The following data will be used to provide numerical examples of all the methods 

discussed in this paper. The chart below illustrates 60 years of quarterly cash flow adapted from 

one of the business units operated by the author’s employer. Like most long liability examples it 

has cash inflows during the early years which then turn into cash payouts that extend for many 

years. Cash flows beyond year 60 have been simplified by collapsing them into year 60. 
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Model Inputs: Long Liability at 9/08
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The chart also shows 30 years worth of the $US swap rates at Sept. 31, 2008 as 

determined by the consulting firm Barrie & Hibbert.2 The numerical examples will assume that 

we can buy, or sell, zero coupon bonds at prices determined by these forward rates. The last 

quarterly forward rate was 4.63%.  

 

The methods of this paper will then be used to add an additional 30 years to this observed 

yield curve. 

                                                           
2  While we treat the “observable” yield curve as a hard fact in this paper this is not really the case. There is an element of art in 

the process of estimating the yield curve. 
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The Yield Curve Extension Approach 

 

The Simple Monopole 

 

Perhaps the simplest idea one could start with is to assume a constant single forward rate 

for all durations greater than 30. To be consistent with later examples we’ll assume this is an 

annual effective rate f = 5.27% which corresponds to a continuously compounded 

rate %14.5=f . The value that we assign to cash flows beyond the yield curve horizon can then 

be written as KZV 30= where 30Z  is the value of a 30 year 0 coupon bond as determined by the 

yield curve and K  is the present value of cash flows in years 30+ discounted to year 30 using f. 

In symbols 

,)1(

,

30

)30(
30

30

∑
>

−−+=

=

j

j
j faZ

KZV
 

where the 30, >ja j are the cash flows beyond the yield curve horizon which we will assume are 

deterministic in this paper. 

 

We ask two types of questions of this model: 

 

1. How does the value react to an instantaneous shock in the observed yield curve?  

Can we hedge random movements in the observed yield curve?  If so, we will call 

the resulting hedge portfolio the static hedge. 

 

2. Is the static hedge portfolio, if it exists, risk free and self financing as time moves 

forward?  If not, we will say that the model has an unhedged risk, a bias or 

perhaps both. 

 

The assumed model is simple enough that we can give a complete answer to both 

questions. Since the quantity K is independent of the observed yield curve we can construct a 

static hedge simply by investing the entire value KZV 30= in a 30-year 0 coupon bond. The chart 
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below shows what the resulting static hedge portfolio looks like for the entire liability assuming 

we buy 0 coupon bonds to match all cash flows less than 30 years out. 

Long Liability Monopole Static Hedge
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For obvious reasons we will refer to this as the monopole strategy. Let’s ignore the issue 

of how impractical such a strategy might be and look at how the static hedge rolls forward in 

time. Table 1 below walks through the steps. 
 
 TABLE 1 
 Monopole Static Hedge 

∑
>

−−+=
30

)30()1(
j

j
j faK  

Assets Liabilities Difference 
t = 0 

30KZ  30KZ  0 

t = 1 
303029 )1( ZKfZK ′′+=′  30)1( ZKf ′+  3030 )( ZKff ′−′   

 

The table assumes that at time t = 0 assets and liabilities are matched in the sense that we 

are invested in the static hedge portfolio.  
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One time period later the yield curve has changed and our 30-year 0 coupon bond has 

become a shorter bond, say 29 years, whose value is given by 303029 )1( ZKfZK ′′+=′    where 30f ′  

is the new forward rate at year 30. However, the liability K factor has rolled forward at the 

discount rate used to extend the yield curve. The net result is a gain/(loss) which is determined 

by the difference )( 30 ff −′  between the new forward rate and the discount rate. 

 

Is this an acceptable risk management strategy?  If the 30-year forward rate were known 

to fluctuate randomly around a well defined mean f  in such a way that the expected gain/(loss) 

in any given reporting period was always zero then this might be acceptable. Economic capital 

would be required to protect against an unexpected loss in any given period and providing for the 

cost of that capital would require a margin Δπ  in the discount rate. Here π is the company’s cost 

of capital and Δ is the size of the spread loss at the company’s VaR level. Plausible estimates for 

these parameters 025.,04. ≈Δ≈π  suggest the required margin is on the order of 10 bps so a 

final discount rate might be 5.17% = 5.27% - 0.10%. This valuation would be supplemented by 

holding economic capital equal to 2.5% of the long liability value. Problem solved. 

 

What if the 30-year forward rate did not behave so nicely?  The observed forward rate of 

4.63% at Sept. 30, 2008 might take several years before it reverts back to its assumed mean of 

5.27% . There is also the risk that it goes lower before it mean reverts. If that is the case then the 

simple model has a bias since we would expect to take losses for several years. The model 

therefore needs to be modified to remove the bias and account for the risk of further random 

movements. This is done in Appendix 1 where we show that correcting the bias creates almost as 

many problems as it solves with the result that much larger margins are required. However, 

correcting the bias and building in a cost of capital for the unhedged risk does not change the 

monopole nature of the static hedge strategy. 

 

We’ll explain the source of the new problems in the corrected model after discussing the 

dipole model. 
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Finally, we note that there is also an issue of parameter risk in this model. However we 

determined that the right expected forward rate should be 5.27% it is possible that new 

information could arrive that causes us to reevaluate this assumption. An appropriate response 

might be to shock this important parameter down to say 5.00% and hold enough economic 

capital to cover the shock. Covering the cost of that capital would require additional margins.  

This problem is solvable but beyond the scope of the current paper. 

 

The Simple Dipole 

 

If the simplest idea was a failure then why don’t we try the next simplest idea of using the 

last observed forward rate %63.430 =f  and using that to discount cash flows beyond year 30?  

This method has been widely used by many researchers and, at first glance, appears to solve the 

bias problem in the monopole model just discussed while eliminating the parameter risk issue.  

 

As before we start by looking for a static hedge portfolio and then see what roll forward 

issues we may have. 

 

Let 30ZZ =  be the value of the longest 0 coupon bond available and let Z~  be a shorter 

bond used to determine the forward rate f that will be used for discounting. Thus 

ZfZ Δ+= )1(~ where Δ  is the time difference between Z and Z~ . In our numerical examples 

25.=Δ  years. 

 

In this notation the model value of the long liability is  
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A portfolio of assets ZbbZA ~~
+= , which has the same value and instantaneous 

sensitivities to market movements as the liability, is given by setting  

.)1(~
~
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Here KfjaD
j

j
j /])1)(30([

30

)30(∑
>

−−+−=  is the duration of the long liability as seen 

from the 30-year point.  

 

The static hedge consists of investing the value K in a monopole together with a strategy 

that we will call a dipole in this paper. The dipole consists of taking a short position 

Δ+ Δ− /)1( fKD  in the Z~  bond and investing the proceeds in the Z bond. This strategy is 

necessary to get the additional duration needed to hedge the liability which is now much more 

sensitive to a change in the observed yield curve. 

 

The chart below shows the size of the dipole components relative to the monopole 

component and the underlying liability cash flows in our example. 

Long Liability Dipole Static Hedge
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If the reader thought the monopole strategy was unrealistic then this is even more so. 

Ignoring this issue again, we examine the roll forward properties of this new strategy.  

 

As was the case in the monopole model the dipole model is not self financing. The details 

of the analysis are more complex than they were for the monopole strategy, so they are presented 

in Appendix 1. However, the end results are fairly intuitive. To first order in small quantities, 

there are two sources of bias in the dipole model 

 
.))(2/1( 2VdfDCgDVdtGain Δ+−=  

 
The first term is driven by the slope g of the forward curve at the 30-year point. This is 

the cost or benefit of carry that arises from borrowing at one point on the curve and investing at a 

neighboring point. The second term is a convexity cost that arises because the dipole strategy 

matches the first order sensitivities of the liability but not the second order sensitivities. The 

liability is more convex than the assumed assets and the result is a convexity bias. 

 

In addition to the bias terms described above there is an unhedged risk that arises from 

random movements in the quantity g. 

 

Appendix 1 goes through a tuning exercise to remove this bias from the valuation and to 

estimate the capital required to deal with the g risk. The conclusion reached is that the first bias 

term is immaterial while the second term creates significant costs that must be priced into an 

extended yield curve. 

 

The chart below shows the end result of the fine tuning process for both the monopole 

and dipole models.  
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Yield Curve Extension Models: Fwd Rates
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The key simplifying assumptions used here are: 

 

• The last observed continuously compounded forward rate f satisfies a mean 

reverting process dzdtffdf σα +−= )( . 

 

• The last 0 coupon bond Z behaves as it would in a Vasicek type model 

][30 sdwdtZdZ +−= μ  where s is a constant and dtdwdz ρ= . The constant ρ is 

essentially the correlation between the long forward rate and the long spot rate. 

This assumption is only used for the corrected monopole model. 

 

• The slope of the forward curve dsdfg /= at the end point also satisfies a mean 

reverting process of the form wvddtggdg ~)( +−= β . This assumption is only 

used for the corrected dipole model. 
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In terms of this notation the extrapolated forward rates for the corrected dipole model are 

approximately given by the formula 

222

2
1

2
11),,( uuegfugf

u

σσ
β

δ
β

−Δ−
−

+≈
−

. 

We can think of this result as the starting simple assumption fugf =),,(δ  together with 

an adjustment to correct for the bias described earlier. Appendix 1 has all the details and an exact 

expression for ),,( ugfδ  under the stated assumptions. 

 

The end result for the corrected monopole model came as a surprise to the author. There 

is a large spread of just under 200 bps between the expected future forward rate and the ultimate 

forward rate in the extrapolated yield curve. There are two reasons for this 

 

1. Correcting the bias in the base monopole strategy basically requires a term that 

depends on the current forward rate f. The resulting bias correction then has an 

element of dipole risk in it. By sticking with a monopole investment strategy we 

are essentially going naked on this risk so we have to put up some economic 

capital. The cost of that economic capital explains roughly a third of the spread. 

 

2. The majority of the spread margin is related to the correlation between 

movements in the long bond and the K factor. In the bias corrected model 

ZKV = the quantity K must depend on the current forward rate f. The roll 

forward of the liability then satisfies a relation of the form 

.dKdZZdKKdZdV ++=  The monopole investment strategy hedges out the ‘Z’ 

risk in first term but not the third. This gives rise to a new bias that must be priced 

into the yield curve. 

 

The final formula for the extrapolated forward rates in the corrected monopole model is  
 

2
2

22

)1(
2

)1()1)(30(),( uuu eDeDsffeuf ααα

α
σλπ

α
λσπρσδ −−− −

+
−−

+
−+= . 

 



14 

This formula assumes the cost of capital is π and if ),(),,( ftZKfZtV = we hold 

economic capital in the amount )],(),([ ftKftKDZ −− λσ  for the unhedged dipole risk. 

 

The table of values below shows what happens when we apply each of these approaches 

to value the example long liability. These are values for the entire liability, but only the portion 

beyond 30 years changes when we change valuation methods. The value of the first 30 years is 

981. 

TABLE 2 
Numerical Examples 

 
Value Duration Capital IRR

Simple Monopole 1,796         34.1           20              4.84%
Simple Dipole 1,832         37.4           N/A 4.78%

Bias Corrected Models
Corrected Monopole 1,873         34.0           74 4.72%
Corrected  Dipole 1,847         37.5           0                4.76%  

 

The table shows the total value after an arbitrary scaling, the duration in years of the 

static hedge portfolio, an economic capital number where available and the interest rate that 

discounts all 60 years of cash flow to the model value. 

 

A capital number has been estimated for the corrected dipole model but it is immaterial. 

 

We note that, despite large differences in method, the total values are actually quite close 

together. This is not an artificial result due to a poor choice of example.  

 

It should be clear that the models presented here are the tip of a very large iceberg. There 

are many possible variations on the theme introduced here. However the author believes that all 

such approaches will end up relying on what are unnecessarily extreme investment strategies. To 

actually justify using such a model an insurer would have to hold additional economic capital for 

the mismatch gains and losses that occur when the actual assets held fail to behave like the static 

hedge portfolios.  
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The Static Control Model 

 

As before we start with a very simple idea and then evolve the process to deal with the 

issues we encounter. The initial idea is to use nothing but a simple total return vehicle as the only 

asset class available to back the liability. 

 

The Pure Total Return Model 

 

In this section we will assume that the only available total return vehicle can be modeled 

by a standard lognormal process )](exp[)0()( tZtStS σμ +=   where )(tZ  is a standard Wiener 

process. As noted in the introduction, the parameters have been chosen so that 
tStSE )08.1)(0()]([ =  and %16=σ . These are clearly important parameters subject to parameter 

risk considerations. 

 

Given this assumption we generate a large number N = 5,000 of total return scenarios and 

then calculate N present values NPV ,...,1, =αα  where each present value is the amount of 

money that must be invested in the total return vehicle to satisfy the liability on that scenario. 

∑
>

−−=
0

)](exp[
j

j jZjaPV αα σμ  

In order to get a single number for the liability we apply a coherent risk measure, such as 

the conditional tail expectation or CTE(x%), to the distribution of outcomes. CTE(x%) is defined 

as the average of the worst (100-x)% of outcomes. 

 

In practice one sorts the results to get the order statistics ...)2()1( ≥≥ PVPV  and then 

estimates the risk measure by  
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The function ),...,( 601 aaL is homogeneous of degree 1 in the sense that if 0>λ then 

),...,(),...,( 601601 aaLaaL λλλ = . Given any function with this property we can differentiate with 

respect to the parameter λ  and then set 1=λ . The result is called the Euler allocation of the 

value back to the individual cash flows 

),...,( 601

60

1

aaLa
a
L

j
j j

=
∂
∂∑

=

. 

We conclude that the partial derivatives jaL ∂∂ / can be thought of as discount factors. If 

we knew what all of these discount factors were we could build a yield curve that we will call the 

Marginal Cost Yield Curve (MCYC). This yield curve has two useful properties 

 

1. It discounts the cash flows to the desired risk measure. 

2. It tells us how the risk measure would change if we perturbed the cash flows 

jjj aaa Δ+→  in some way since .),...,(),...,( 601606011 ∑ Δ
∂
∂

+≈Δ+Δ+
j

j
j

a
a
LaaLaaaaL  

A theoretical result due to the German risk manager D. Tasche3 (2000) tells us that we 

can actually estimate the first partial derivatives from the simple expression 

.)](exp[
%)1(

1 %)1(
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j

jZj
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The resulting MCYC is a function of both the cash flows and the risk measure. 

 

The table below shows the results of applying these ideas to the long liability cash flow 

for a range of CTE risk measures. 

                                                           
3 For a rigorous derivation of this result see Tasche, D., “Risk Contributions and Performance Measurement” Preprint (2000). 
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TABLE 3 
Simple Total Return Approach 

 
 

Since the process used to estimate these values is statistical there is sampling error in 

each value. The right-hand column reports an estimated standard error in the CTE level using the 

method of Manistre and Hancock4 (2005).  

 

The next column overreports the value at risk (VaR) level indicating what percentage of 

the simulated results are lower than the estimated CTE level. The IRR is simply the rate that 

discounts all cash flows to CTE value. 

 

The total return hurdle is an estimate of the rate we would have to earn on any assets 

backing the liability in order to avoid a loss over the next reporting period. Except for the 

CTE(0%) result all total return hurdles are higher than the corresponding IRR.  

 

In order to explain the total return hurdle we first need to look at the MCYC for each line 

in the table above. The chart below does this for the entire 60-year period. 

 

                                                           
4  Manistre,,B.J. & Hancock, G.H., Variance of the CTE Estimator,  North American Actuarial Journal (May 2005).  

Total
Static Total Return Total VaR 

CTE Hedge Duration Return Hurdle Liability IRR Level Std Err

0% 1,522   5.23% 1,522  5.30% 64% 28  
20% 1,911   5.21% 1,911  4.66% 72% 34  
40% 2,394   5.06% 2,394  4.01% 80% 43  
60% 3,092   4.77% 3,092  3.25% 87% 60  
80% 4,366   4.33% 4,366  2.21% 94% 102  
90% 5,829   3.89% 5,829  1.33% 97% 173  
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Simple Total Return: Annual MCYC Spot Yields
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Were it not for sampling error, the MCYC for the CTE(0) case would be a flat 5.27% . 

This is because CTE(0) corresponds to taking the mean of the distribution and the expected 

discount factor is, for our choice of parameters 

.
0527.1
1

],
2
1exp[)][exp( 2

=

+−=−− σμσμ zE
 

 
It is clear from the chart that all of the MCYCs are heading toward this value but the time 

scale required to get there depends on the risk measure. The model is clearly telling us that 

5.27%  is where the long end of the yield curve should be. Since the spot yield curves are almost 

parallel after 40 years it appears as if the MCYC forward rates have converged to 5.27% by 

about year 40. 

 

The earlier parts of the MCYC are telling us what “bad” scenarios look like from a CTE 

perspective. The curves tell us that the worst that can happen is for bad returns to occur early on. 

This is not entirely intuitive since the early cash flows in the example are negative so early bad 

return might indicate an opportunity to buy equity on the cheap. 
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We can now explain why the total return hurdles H behave the way they do. Over a short 

time period we can model the passage of time as a change in cash 

flow )( 11 jjjjj aaaaa −+=→ ++ . 

 

Assuming this change is small enough that we can use first order analysis we can 

estimate the change in value as HLaa
a
LL

j
jj

j

=−
∂
∂

=Δ ∑ + )( 1
. This is essentially equivalent to 

assuming that the MCYC does not change, to first order, as time moves forward. The present 

value of each cash flow therefore accumulates at the corresponding MCYC forward rate. The 

aggregate total return hurdle is therefore a present value weighted average of all the MCYC 

forward rates. Since the early cash flows, with low forward rates, are negative this leverages up 

the average. 

 

The chart also shows the spot yields implied by the simple monopole model introduced at 

the beginning of this paper. Since the MCYC spot yields do not agree with the observed market 

spot rates there is an opportunity to reduce the cost of meeting the liability by using a mixture of 

bonds and the total return strategy.  

 

The Simple Bond Strategy 

 

An intuitive next step is to use bonds to match the first 30 years of cash flow while using 

the total return approach only for the cash flow beyond the horizon. The table below shows those 

results together with the results from the previous section. 
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TABLE 4 
Simple Bond Approach 

 
 

There is a substantial reduction in values at all CTE levels, which was expected. 

Furthermore the total return hurdle rates have dropped a bit. The next chart shows how the 

MCYC has changed. 
 

Simple Bonds: Annual MCYC  Spot Yields
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Quarterly 
Time Step Total

Static Total Return Total VaR 
Strategy CTE Hedge Dur'n Return Hurdle Liability IRR Level Std Err

No Bonds 0% 1,522  5.23% 1,522  5.30% 64% 28   
20% 1,911  5.21% 1,911  4.66% 72% 34   
40% 2,394  5.06% 2,394  4.01% 80% 43   
60% 3,092  4.77% 3,092  3.25% 87% 60   
80% 4,366  4.33% 4,366  2.21% 94% 102   
90% 5,829  3.89% 5,829  1.33% 97% 173   

Simple Bonds 0% 981    37.6   696  5.21% 1,677  5.03% 67% 12   
(match first 20% 981    37.6   836  5.08% 1,817  4.81% 74% 15   
30 years) 40% 981    37.6   1,020  4.90% 2,001  4.53% 81% 19   

60% 981    37.6   1,298  4.60% 2,279  4.15% 87% 27   
80% 981    37.6   1,833  4.12% 2,814  3.53% 94% 47   
90% 981    37.6   2,469  3.74% 3,450  2.92% 97% 83   
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The CTE(0) curve has not changed but all of the other curves reflect the new lower risk 

profile. The range of values has compressed considerably. The main point to be made here is that 

there is still room for improvement by modifying the bond strategy. For each CTE level (other 

than 0) we can still get a lower value by shorting bonds where the MCYC is below the swap 

curve or doing the reverse if the MCYC is above the swap curve. 

 

The Optimal Bond Strategy 

 

There are a number of technical challenges associated with estimating the optimal bond 

strategy but it can be done. Some additional detail is in Appendix 2. Here we will focus only on 

results. Table 5 below shows the numbers that come out of the optimization process. 

 
TABLE 5 

The Static Control Model 

 
 

Not surprisingly, values have dropped again and the range of results has compressed even 

further. The total return hurdles have also come down. If one used the total return hurdle as a 

criteria for setting the CTE level ,one could easily justify a number in the CTE(20) to CTE(40) 

range.  

 
Quarterly 
Time Step Total

Static Total Return Total VaR 
Strategy CTE Hedge Dur'n Return Hurdle Liability IRR Level Std Err

Simple Bonds 0% 981     37.6   696  5.21% 1,677  5.03% 67% 12   
(match first 20% 981     37.6   836  5.08% 1,817  4.81% 74% 15   
30 years) 40% 981     37.6   1,020  4.90% 2,001  4.53% 81% 19   

60% 981     37.6   1,298  4.60% 2,279  4.15% 87% 27   
80% 981     37.6   1,833  4.12% 2,814  3.53% 94% 47   
90% 981     37.6   2,469  3.74% 3,450  2.92% 97% 83   

Simple Monopole N/A 1,796     34.0   N/A 1,796  4.84% 
Simple Dipole N/A 1,832     37.5   N/A 1,832  4.78% 

Corrected Monopole N/A 1,873     34.1   -  N/A 1,873  4.72% 
Corrected Dipole N/A 1,847     37.4   -  N/A 1,847  4.76% 

Static Control 20% 1,016     40.7   792  4.78% 1,807  4.82% 75% 13   
40% 1,509     35.3   389  2.35% 1,898  4.68% 82% 10   
60% 1,683     34.5   321  -2.17% 2,004  4.53% 88% 10   
80% 1,883     34.1   276  -10.90% 2,159  4.31% 94% 12   
90% 2,108     32.5   193  -27.62% 2,301  4.13% 97% 16   
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We don’t show a value for CTE(0) since this optimization problem is not well defined.  

The next chart shows that the MCYCs now agree with the swap curve for the first 30 years. This 

is one of several ways in which the method is market consistent. 

Static Control: Annual MCYC Spot Yields
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In Appendix 2 we show that the method described above has three important theoretical 

properties. 

 

1. Market Consistency—the model reproduces the market information that has been 

input, in this example the values of 0 coupon bonds for 30 years. 

 

2. Existence of a Static Hedge Portfolio—the solution to the optimization problem is 

the static hedge portfolio from a market shock perspective. 

 

3. Convexity Margin—liabilities which cannot be expressed as a static linear 

combination of the available instruments have a convexity margin which gets 

released as time moves forward. 
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In addition to these very mathematical properties we also have: 

 

4. Method is Sub-Additive—using a coherent risk measure on the present value 

distribution means that the method is sub additive rather than additive. However 

this only applies to the portion of the risk that cannot be hedged so market 

consistency is not violated. One implication is that the static control method must 

be applied at a product portfolio level. Once the total value is determined, tools 

like the MCYC can be used to allocate that value back to individual contracts. 

 

5. The extrapolated forward rate in the optimal MCYC is not continuous. This is 

clear from the spot rate chart above. The extrapolated forward rate takes an 

immediate drop at time 30+0 and then starts grading back to 5.27% . While some 

may find this property to be undesirable it one of the ways in which we avoid 

dealing with the dipole issue that arose in the early models.  

 

We discuss some of these points a bit more here. 

 

Market Consistency: The fact that the model reproduces the input swap curve is an 

example of market consistency. One might argue however that we did not use market volatility 

in the total return model and that if we did the estimated liability values would go up. However, 

suppose there was an observable market for puts and calls on the total return vehicle. If we made 

those instruments available to the model, two things would happen: 1) the optimization process 

would mean that the model prices for the puts and calls would be equal to the observed market 

price; and 2) the value of the long liability would go down because the universe of available 

investment strategies over which the optimization takes place got larger.  

 

The implication is that “simple” models which use a relatively small number of market 

instruments have an element of conservatism that can be removed by making the model more 

sophisticated. 
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Static Hedge: The fact that the solution to the optimization problem is also a static hedge 

is an extremely useful result. The mathematics behind this statement are presented in Appendix 

2. The chart below shows what the optimal bond portfolio looks like for the CTE(40) risk 

measure as compared to the input liability cash flows. 

 

Static Control CTE(40) Optimal Bonds
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The right way to think of this static hedge is that is the sum of the simple bond portfolio 

that matches the liability cash flows for the first 30 years plus a second portfolio whose purpose 

is to mitigate the total return risk. This second portfolio appears to have a monopole component 

and a number of seemingly random fluctuations during the first 30 years.  

 

The monopole component is fairly intuitive. What is important here is that the size of the 

monopole is much smaller than it was in the early monopole model. This is a much more realistic 

static hedge portfolio. 

 

From a theoretical viewpoint, the fluctuations are an important element of the total return 

risk mitigation process. A succession of over/under cash flow mismatches means that we are 

never, in the model, consistently buying or selling the total return vehicle.  
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From a more practical perspective, the fluctuations can almost be ignored. Since the static 

hedge changes over time it should not be thought of as a cash flow matching target. Rather, the 

right way to use the static hedge portfolio is as a tool to estimate quantities like the sensitivity of 

the liability to principal component shocks in the yield curve.  

 

The detailed structure of the fluctuations is also sensitive to things like the size of the 

time step and the particular sample of total return scenarios. The above example was calculated 

using a quarterly time step. If we increase the time step to a year the fluctuations get bigger but 

the more important information, such as principal component shock sensitivities and values, does 

not change materially. 

 

The next chart shows how the static hedge changes as we vary the CTE level. As we 

become more risk averse, the size of the monopole grows and the fluctuations become more 

pronounced. At the CTE(20) level the total return vehicle is so much more attractive than the 

available bonds that the long bond is being shorted. At the other extreme we see a dipole 

structure starting to emerge at the CTE(80) level.  
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In the author’s opinion all of these static hedge portfolios are more useful than the simple 

monopole introduced earlier. 

 

Table 6 below shows how the CTE(40) values change when the base yield curve is 

shocked up and down by 50 bps. 

 
TABLE 6 

Yield Curve Shock Analysis 

 
 

There are two points we would like to make here. The first point is that the static hedge is 

working. As a simple example consider the dollar duration of the static hedge, which is  

35.3 x 1,509  =  53,286. This value is within 1%  of the dollar duration estimated by looking at 

the shocked values (2,174 – 1,636)/.01 = 53,781.  

 

The aggregate duration of the total liability is (53,781/1,898)  =  28.3 years. This duration 

is shorter than the result produced by any of the other models considered here. The reason this 

happens is  the long end of the yield curve is essentially fixed at 5.27%. This is a major reason 

why the static control model makes the A/LM process more manageable. 

 

The second point is that the mix of bonds and total return vehicle can change 

considerably as the yield curve moves. In particular, as the yield curve drops, the bonds look less 

attractive so the model uses more of the total return instrument. Unfortunately, the total return 

hurdle is also going up. This is the element of interest rate risk that has not been hedged. 

 

 

Total
Yield Static Total Return Total Level VaR Std Err

Curve CTE Hedge Duration Return Hurdle Liability Val'n % Level

+50 bp 40% 1,360    36.8    276  -0.72% 1,636  5.10% 82% 8  
Base 40% 1,509    35.3    389  2.35% 1,898  4.68% 82% 10  

 - 50 bp 40% 1,477    34.7    697  4.47% 2,174  4.29% 82% 14  

Static Hedge $Dur'n 53,286  Simple $Dur'n Calc 53,781  
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If a company using this model encountered a prolonged period of low interest rates (a 

“Japan” scenario), it would ultimately find the total return requirements of the model to be 

unmanageable. The only solution to this problem would be to adjust one or more of the key 

parameters ( %,, xσμ ) so that the total return issue became manageable again. The shock from 

the resulting increase in liability value would be a risk for which an appropriate amount of 

economic capital should be held. For example, if the company decided to manage off the 

CTE(40) model then it might be appropriate to hold enough economic capital to cover a jump to 

the CTE(60) level.  

 

Convexity Margin:  As a partial offset to the cost of holding economic capital, the 

inherent conservatism of the static control model gets released over time as a series of convexity 

gains. This conservatism arises because we are optimizing over a set of static (buy and hold) 

investment strategies rather than a set of dynamic strategies. This turns out to imply the 

mathematical fact (see Appendix 2) that the static hedge portfolio is always more convex than 

the model liability. Quantifying the convexity margin issue is possible but we do not do so here 

due to time and space limitations. 

 

For an alternative approach to long liabilities that does not build in a convexity margin 

see Platen5 who argues that long liabilities can be priced using a concept he calls the Growth 

Optimal Portfolio. 

 

Discontinuous Forward Rates:  As mentioned earlier, the MCYC extrapolated forward 

rates are not continuous. If the risk measure is conservative enough it is possible to get a negative 

forward rate. If this occurred in the “tradable” part of the yield curve it would be a serious 

problem for the model. However, we can’t actually trade beyond the 30-year horizon so this is 

not a problem.  

 

A reasonable way to think about this result is that the bulk of the unhedged interest rate 

risk is in the middle of the yield curve. Short cash flows (<30 years) can be matched with market 

instruments and the longest cash flows have the benefit of time diversification. The MCYC is 

telling us that the risk is in the middle.  
                                                           
5 Platen, E. “Investments for the Short and Long Run” available at http://www.qfrc.uts.edu.au/research/research_papers/rp163.pdf. 
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Summary and Conclusion 

This paper has looked at two very different approaches to the issue of valuing and 

managing long liabilities. The first half of the paper started with some very simple yield curve 

extension ideas and then used risk management concepts to fine tune those ideas. A formal 

theory of yield curve extension was built that corrected for any bias in the original models. 

Unfortunately all of these models relied on static hedge strategies that, in this author’s opinion, 

are unrealistic. 

 

The second half of the paper described a version of the static control model which was 

developed to allow the use of a total return vehicle in the risk management of a long liability. 

After choosing a coherent risk measure we were able to put a value on the liability and come up 

with a matching A/LM strategy that consists of a static hedge portfolio and a total return 

component.  

 

A key advantage of the static control model is that the implied hedging strategies are 

more realistic.  

 

A disadvantage of the static control model is that it is technically more complex.  

 

The static control model does have bias. If one were actually invested in the model’s 

hedge portfolios there would be three sources of gain or loss as time moves forward. 

 

1. There is a gain or loss on the total return component of the investment strategy 

equal to the difference between the actual returns and the total return hurdle on 

the assets backing the total return piece. 

2. There is an interest rate convexity gain on the fixed income component. 

3. Any changes to the key parameters would result in a gain or loss. Some amount of 

economic capital should be held for this parameter risk. 

On balance, the author believes that if a company has a material exposure to long liability 

issues then an investment in the tools and ideas needed to make the static control model work are 

worth the effort.  
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Appendix 1. Mathematics of the Yield Curve Extension Approach 
 
Corrected Monopole Model 
 

Assume we invest in a monopole A/LM strategy in the amount A = KZ where Z is the 

value of the n period 0 coupon bond (e.g., n = 30 years) and K is the value of cash flows beyond 

the n period horizon. Let f be the instantaneous forward rate at time t, then the first order roll 

forward for the monopole asset is  

KdZfAdtdA += . 

One way to derive this is to note that at time dtt +  the n period 0 coupon bond has 

become shorter so its value at that time is  

)]()exp[( dZZdtdff ++  

where dff + is the new forward rate and dZZ + is the new n year 0 coupon bond. Expanding 

this out using the rules of stochastic calculus we get  

...
...))(1()]()exp[(

+++=
+++=++

dZfZdtZ
dZZfdtdZZdtdff

 

To analyze the liability we assume ),( ftKK = is the present value of cash flows beyond 

the horizon discounted using an extrapolated yield curve that depends on f. Since K depends on f 

the roll forward of the liability is  

dZdKKdZZdKdL ++= . 

The net surplus now satisfies dZdKZdKfAdtdLdAdS −−=−= . We see that the 

monopole strategy has hedged out the ‘Z’ risk but leaves us naked on any risk associated with 

random movements in the variable f since ),( ftKK = . This is the risk for which we must hold 

economic capital. 

 

In order to make further progress we need to make some assumptions about how the 

random variables f, Z move. The following assumptions were chosen to be simple enough that 

we can get closed form solutions for the yield curve extension problem. This simplicity does not 

affect the final conclusions. 
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For the forward rate we will assume a mean reverting process of the form  
 

dwdtffdf σα +−= )(  
 

where σα ,, f  are constants and dw is standard Brownian motion.  
 

For the zero coupon bond we will assume that we can write  
 

][ wsddtZndZ ′+Δ−= μ  
 
where n is the number of periods of length Δ in the observed yield curve , s is a constant and 

dtwdwd ρ=′ . We won’t need to make any assumptions about μ  because this is the risk that has 

been hedged out. The quantity ρ  is effectively the correlation between the n period spot rate and 

n period forward rate. It will play an important role in what follows. 

 

Using Ito’s lemma we can write the roll forward for surplus as  
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Note that the term dZdK  in the surplus roll forward ends up adjusting the effective 

expected future forward rate term. 

 

Since we are going naked on the ‘f” risk, we need hold enough capital that we can 

withstand an unexpected movement in the long forward rate. A reasonable amount of capital to 

hold is then  
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Hereλ  is the number of standard deviations needed to get the required VaR level and D is a 

factor which reduces the amount of required capital to recognize any appropriate diversification 

benefits.  
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Let π be the cost of capital. The pricing equation for this risk is then the statement that the 

expected return is equal to the cost of capital.  

.]
2

)([}
2

])([{

or
,][

2

22

2

22

dt
f
K

f
KDZdt

f
K

f
Ksnff

t
KZfKZdt

ECdtdSE

∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

Δ−−+
∂
∂

−

=

λσλσπσρσα

π
 

Simplifying this expression we find that the Z factor drops out and we are left with a 

partial differential equation for ),( ftKK =  that is formally identical to that derived by Vasicek6 

in 1974. The result is  
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One more manipulation puts it in the form  
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This form of the pricing equation tells that the yield curve extension is priced as if the 

forward rate f mean reverts to a risk adjusted target αλσπρσθ /][ Dsnf +Δ−=  with a risk-

adjusted volatility σλπσ )1(~ 2D+= . The adjustments coming from the cost of capital are fairly 

intuitive but the correlation adjustment will be explained more fully later. 

 

If we are valuing a cash flow at time wn +Δ  the formal solution to the above equation 

can be written as  

],),(exp[),,(
0
∫−=
w

duufwftK δ  

where the extrapolated force of interest is given by  
 

2
2

2

)1(
2

~
)1(),( www eefewf ααα

α
σθδ −−− −−−+= . 

 

                                                           
6  There are now many good books on interest rate modeling. One source is Hull, J.C. “Options Futures and Other Derivatives” 

fifth edition. Prentice Hall 2003. 
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The first two terms represent a simple grading from the current forward rate f to the long 

term target θ  while the last term builds in a convexity margin. As ∞→w  we find the ultimate 

long forward rate is  
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We will call the three adjustments to the expected forward rate the convexity spread, the 

correlation spread and the cost of capital spread respectively.  

 

In order to get a sense of the relative importance of these issues we use some ballpark 

estimates for the parameters to estimate each spread component, 

 

For the forward rate process let’s assume %1%,15.5 == σf  and %20=α . This leads 

to a convexity spread of  bp5.12)2/( 22 =ασ  which is fairly modest. 

 

Next we estimate the cost of capital spread assuming 8.2%,80%,5 === λπ D . The 

resulting spread estimate is bpD 60)]
2

1([ ≈+
α
λσ

α
λσπ . This is large enough to get noticed but 

reasonable given the risk that is going unhedged. 

 

Finally, we estimate the correlation spread assuming %1%,75,30 ===Δ syrsn ρ . The 

estimated spread is bpsn 113/)( ≈Δ αρσ .  

 

The final estimated long forward rate for the extrapolated yield curve is then about 

3.30%, which is significantly lower than what most people would find intuitive. The correlation 

spread is clearly an issue. 
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Since the correlation spread is almost twice the size of the other two issues put together it 

requires some discussion. Mathematically this spread arises from the dZdK term in the liability 

roll forward. The problem is that the monopole investment strategy assumes the liability is 

independent of the forward rate and so has no offsetting term. The resulting bias must then be 

priced into the liability. The only way to correct this issue is to take on some dipole exposure in 

the investment strategy. 

 

We conclude that there is a hidden cost in the monopole approach that makes this 

approach undesirable. We therefore explore the dipole model to see if there are any surprises 

there. 

 

The Corrected Dipole Model 

 

As before we assume cash flows beyond the yield curve horizon have been discounted to 

the horizon date to get a value K. We will assume this amount is fully invested in a monopole as 

before but we will also assume a position in a dipole. 

 

A dipole strategy consists of selling the Δ− )1(n period bond short and investing the 

proceeds in the Δn  period bond. The starting value of such a strategy is zero but the end result is 

not.  

 

To analyze this situation let Z ′  denote the value of the Δ− )1(n bond. If f is the forward 

rate as before we assume ZfZ ]exp[ Δ=′ . Also let dsdfg /=  be the slope of the forward curve 

at the horizon. Using the same logic that was developed earlier we find that an investment 

ZJA ′′= in the Δ− )1(n bond rolls forward according to  
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If the same amount JZA = is invested in the Δn  bond we must have JfJ ]exp[ Δ−=′ . 

The net return for investing in a dipole is then, to first order of small quantities. 
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Note that a correlation term dfdZ  has now appeared in the asset roll forward. 
 

Assuming the dipole can actually be put into practice we can go through the same 

modeling steps that were used for the monopole model. The main difference is that we now 

assume that the quantity K is a function of the two state variables f, g.  

 

We also have to make an assumption about the dynamics of g which we will write as 

 
dtwdwdwvddtggdg ρβ ~~,~)( =+−= . 

 
Plausible assumptions for these parameters are that g  is small but positive while ρ~ is 

close to 0 and β  is larger than α . 

 
As before we find  
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If we set 
f
KJ
∂
∂

Δ
−

=
1  then the ‘f’’ risk is hedged, we are naked on the ‘g’ risk and both 

correlation terms dfdZ drop out. The simplified result is  
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As before we set up economic capital for the unhedged ‘g’ risk  
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and then write the pricing equation as ECdtdSE π=][ . The final equation for K is 
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We now have a two factor Vasicek model which has a closed form solution of the form 

∫
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The economics of this model are quite different from the monopole model. In the limit 

where 0→u we see that 2/)( 2uuG ≈  and so 

)()
2
1(),,( 22 uOugfugf +Δ−+≈ σδ . 

The short end of the extrapolated yield curve is approximately constant at the current 

forward rate with a small adjustment to account for the bias in the dipole strategy. However, as 

∞→u  we find that 2/)( βuuG → and the extension is dominated by the convexity adjustment 

in square brackets.  

 

What this result is telling us is that, although we have hedged out the ‘f’ risk, there is a 

large convexity mismatch between the liability and dipole asset strategy that has to be priced into 

the liability. Plausible values for the new parameters appearing in the extension formula suggest 
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that terms involving the ‘g’ risk and cost of capital are negligible compared to the pure convexity 

terms. A simplified extension formula which captures the most significant issues would then be  
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The details of these two extensions depend on the specific simplifying assumptions that 

have been made here but the general features do not. No matter how we decide to model the 

details the correlation issue in the monopole model and the convexity cost in the dipole model 

will not go away. Any reasonable model will suggest that material margins need to be added to 

the simple intuitive models in order to correct for the risk management shortcomings of each 

approach. 
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Appendix 2. Mathematics of the Static Control Model 
 

The main purpose of this Appendix is to derive the key theoretical results stated in the 

section on the Static Control Model. In addition to that goal we want to emphasize that the Static 

Control Model can be considered to be a very general approach to valuing unhedgeable risks that 

extend over time. In this paper the concept is being applied to long liabilities but the tool has 

more potential than that. 

 

In its most general form the Static Control has five basic ingredients 

 

1. A large set of real world (P measure) economic scenarios indexed by N,...,1=α . 

2. An instrument that we wish to value that produces cash flow α
ta at time t on 

scenarioα . 

3. A universe of available market instruments whose current observed market values 

are MiZi ,...,1, =  and which produce cash flow α
itCF  on the modeled scenarios. 

4. A coherent risk measure, such as CTE(x%), which assigns a weight αw to the 

scenario with rank order α . 

5. An asset class to serve as numeraire. We will denote the discount factor 

corresponding to time t on scenario α by α
tv . 

 

In the body of the paper, these assumptions were simplified by taking the numeraire to be 

a lognormal equity process and the universe of available market instruments was restricted to 0 

coupon bonds with maturities out to 30 years. 

 

The method starts by considering an arbitrary position ib  in each of the available 

instruments which generates cash flow ∑
i

itiCFb α  at a cost of∑
i

ii Zb . If this does not match the 

liability perfectly we apply the coherent risk measure to the present value distribution of the 

residual cash flow ∑−
i

itit CFba αα . The value we put on this structure is then written as  

])([),,( )()()( ∑∑ ∑ ∑ −+=
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t
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ii CFbavwZbZbaW αα

α

α
α . 
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The round bracket around the index )(α  indicates that sorting has been done on the 

present values ∑∑ −=
i

itit
t

t CFbavPV )( αααα . 

 

Given this setup, the formal definition of the static control value is  
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The first theoretical result, market consistency, follows from Tasche’s theorem which 

tells us how to differentiate once through a risk measure. The result is  
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The first order optimality condition 0=
∂
∂

ib
W is therefore equivalent to the statement that 

the weighted scenarios price the available market instruments properly. This result is also 

important for estimating the optimal mix ),(** Zabb ii =  since having an estimate of the first 

derivative of the function W we are trying to optimize allows us to use the tools of non-linear 

optimization.  

 

Another way of stating this result is that the optimization process has allowed us to assign 

weights to each P measure scenario in such a way that we now have a calibrated risk neutral set 

of scenarios. CTE risk measures are particularly useful in this regard since they assign a weight 

of 0 to many scenarios. This implies the resulting calibrated scenario set is smaller than the set 

we started with.  

 

A technical caveat is appropriate at this point. There is no guarantee that, for a general set 

of inputs, there is a unique local minimum. If the problem is improperly specified or the scenario 
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set is too small, there can appear to be a statistical arbitrage. If that happens then the minimum is 

effectively ∞−  and the optimization step fails. An example is using a risk measure that is “too 

close” to CTE(0) for a given problem. 
 

The author’s practical experience is that a failed optimization step is usually the indicator 

of an error that, once corrected, is no longer a problem.7   

 

Static Hedge: Having solved the optimization problem we can write the static control 

value as 
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Using Tasche’s theorem again we calculate 
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The large round bracket vanishes by virtue of the first order optimality condition so we 

get the result stated earlier that the optimal asset mix also gives us the static hedge exposure. 

 

We can also write the optimized value as  
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This simply says that the static control value of the liability is the risk neutral present 

value of the cash flows we are trying to value where the value is calculated using the calibrated 

scenario set. In particular this means that if the liability can be expressed as a static linear 

combination of the available market instruments then it will be priced as such. 

 

                                                           
7  If the risk measure is coherent the function W(a,b,Z) is convex in the variables b. This means we have one of a) a unique local 

and global minimum, b) the minimum is at infinity or c) we have a convex set of local minima with the same value. Option c) 
won’t occur if the set of available market instruments is linearly independent and option b) usually means we have 
improperly specified the problem.  
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Convexity Margin:  If we start with the static hedge result just derived we find  
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To do this it helps to introduce the notation ),(),,( baLZbZbaW
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easily find .,
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as 

required.  
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