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Abstract:

In this paper we discuss some properties of the nth stop-loss order and their

application in risk premium principles. We give a necessary condition and a suf-

¯cient condition for nth stop-loss orders. They are convenient tools to construct

risk pairs with nth stop-loss orders.

The maintenance properties of nth stop-loss orders under the operation of com-

pound, in the situation where counting variables N1 and N2 are not identical,

are proved. The necessary condition for nth stop-loss orders is applied to the

valuation of risk premium principles.

We show that exponential premium principles can di®erentiate between losses

more ¯nely than the net premium principles under some conditions.
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1 Introduction

For an insurance company, each contract of insurance brings a risk with it. A

claim may occur some time in the future and the amount of the claim is a nonneg-

ative random variable which is called a risk. One of the main tasks of actuaries

is to compare the attractiveness of di®erent risks. This helps them to determine

insurance premiums and to decide on the reinsurance needed. Another task of ac-

tuaries is to calculate the risk premiums. The basis of insurance is the hypothesis

that claims can be compensated by ¯xed payments called premiums. Premiums

are calculated by a premium calculation principle. The partial orders on a family

of risks are called risk orders. The theorey of risk orders is a useful mathematical

tool for comparing risks and risk premium principles.

From Bowers (1997), we know if the decision maker has decided on the ¯xed

amount to be paid for insurance, also the expected claims is a ¯xed value, the

stop-loss insurance will maximize the expected utility of the decision maker. Con-

sequently, we concern more with the feature of the stop-loss insurance. The

properties of nth stop-loss orders provide much more information for studying

the stop-loss insurance, since the 1st stop-loss transforms are the stop-loss pre-

miums.

This paper is based upon the works of Goovaerts et al. (1990) and Cheng and Pai

(1999a). Many kinds of partial orders were discussed in Goovaerts et al. (1990).
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The nth stop-loss order is one of them. In Cheng and Pai (1999a), the concept

of stop-loss transforms was generalized to the nth stop-loss transforms. The

maintenance properties of the nth stop-loss order under the individual risk model

and the collective risk model were developed. In this paper, we ¯rst discuss the

properties of the nth stop-loss order, later apply them to risk premium principles

and ruin probabilities.

This paper is organized as follows. In Section 2, we introduce some de¯nitions

and results of Goovaerts et al. (1990) and Cheng and Pai (1999a). In Section 3,

we continue the study by Cheng and Pai (1999a) on nth stop-loss orders. We give

a necessary condition and a su±cent condition for nth stop-loss orders. They are

convenient tools to construct risk pairs having nth stop-loss orders. The main-

tenance properties of nth stop-loss orders under the operation of compound, in

the situation where counting variables N1 and N2 are not identical, are to be

proved. In Section 4, the necessary condition for nth stop-loss orders will be

applied in the valuation of risk premium principles. We will prove that exponen-

tial premium principles can di®erentiate between losses more ¯nely than the net

premium principles under some conditions.
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2 nth Stop-Loss transform and Order

This article deals with risks to be insured, which are de¯ned as non-negative

random variables. Here we cite some de¯nitions and results of Goovaerts et al.

(1990) and Cheng and Pai (1999a).

De¯nition 1 (nth Stop-Loss Transform) Suppose loss random variable X is

nonnegative with its distribution function being F (x), its survival function being

F (x) = 1¡ F (x), and E[Xn] <1. Let

¦(n)(u) = E[f(X ¡ u)+gn]; u ¸ 0; n = 1; 2; ¢ ¢ ¢ ; (1)

where

(x¡ u)+ =

8
><
>:

0; for x · u;

x¡ u; for x > u;

¦(0)(u) = F (u) = 1¡ F (u): (2)

As a function of u, ¦(n)(u); n = 1; 2; ¢ ¢ ¢, will have domain [0;1). We call

function ¦(n)(u) the nth stop-loss transform of X.
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De¯nition 2. (nth Stop-Loss Order) We say that X is less than Y in the

meaning of the nth stop-loss order, denoted by X <sl(n) Y , if

E[Xk] · E[Y k]; k = 1; 2; ¢ ¢ ¢ ; n¡ 1; (3)

and

¦
(n)
X (u) · ¦

(n)
Y (u); for all u ¸ 0: (4)

When n = 0, the formula (3) disappears and formula (4) becomes

FX(u) · F Y (u); for all u ¸ 0:

When n = 1, the formula (3) is trivial and formula (4) becomes

Z 1

u
FX(x)dx ·

Z 1

u
F Y (x)dx; for all u ¸ 0:

De¯nition 3. (Weak nth Stop-Loss Order) Let

 = fH(x); x ¸ 0 : H(x) ¸ 0 monotonous decreasing and lim
x!1H(x) = 0 g:

Suppose H(x); G(x) 2 . We say that H(x) is less than G(x) in the meaning of

weak nth stop-loss order, denoted by H <wsl(n) G, if

¦(n)
H (u) · ¦(n)

G (u); for all u ¸ 0: (5)
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The following results are important and will be used in this paper.

Theorem 1.

d

du
[¦(n)

X (u)] = ¡n¦(n¡1)
X (u); (6)

or

¦
(n)
X (u) = n

Z 1

u
¦

(n¡1)
X (x)dx: (7)

(see Cheng and Pai (1999a), Theorem 6 )

Theorem 2. Let n = 0; 1; 2; ¢ ¢ ¢ and m > n. Suppose risk X <sl(n) Y . Then

X <sl(m) Y .

(see Goovaerts et al. (1990), Theorem 4.2.2)

Theorem 3. Suppose u(x) is a utility function having n¡ 1 continuous deriva-

tives of alternating sign:

(¡1)(k¡1)u(k)(x) ¸ 0; k = 1; 2; ¢ ¢ ¢ ; n¡ 1; (8)

(¡1)(n¡1)u(n)(x) ¸ 0; and non-decreasing in x. (9)
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Let Un = fu(x) : u(x) satis¯es (8) and (9)g, w(x) = ¡u(¡x), and Wn = fw(x) :

w(k)(x) = (¡1)(k+1)u(k)(¡x) ¸ 0g. Then X <sl(n) Y , if and only if

E[u(¡X)] ¸ E[u(¡Y )]; for all u 2 Un;

if and only if

E[w(X)] · E[w(Y )]; for all w 2Wn:

(see Cheng and Pai (1999a), Theorem 10)

Theorem 4. The nth stop-loss order is maintained under the summation of

independent random variables. That is, if

Xi <sl(n) Yi; i = 1; 2; ¢ ¢ ¢ ; k;

where k is a positive integer, then

kX

i=1

Xi <sl(n)

kX

i=1

Yi; n = 0; 1; 2; ¢ ¢ ¢ :

(see Cheng and Pai (1999a), Theorem 15 )
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3 Properties of nth Stop-Loss Orders

From Theorem 3, we can see that the nth stop-loss order can be characterized as

the common preferences of a group of decision makers with increasingly regular

utility functions u(x) 2 Un. We will continue the work of Goovaerts et al. (1990)

and Cheng and Pai (1999a), to give more features of the nth stop-loss order.

Theorem 5 will be used to compare the di®erences of the net premium principle

and the exponential premium principle in Section 4.

Theorem 5. (Necessary Condition) Suppose X , Y are not identically dis-

tributed risks. If X <wsl(n) Y and E[Xn+i] <1 , then

E[Xn+k] < E[Y n+k]; k = 1; 2; ¢ ¢ ¢ ; i:

Proof

If E[Y n+i] = 1 , the result is obvious. If E[Y n+i] < 1 , we ¯rst show that for

k = 1, we have E[Xn+1] < E[Y n+1]. Indeed, let

g(u) = ¦(n+1)
X (u)¡ ¦(n+1)

Y (u):

From De¯nition 3 and Theorem 1 , we have: For all u > 0, g(u) · 0, and

g0(u) =
d

du
[¦

(n+1)
X (u)¡ ¦

(n+1)
Y (u)] = ¡(n+ 1)[¦

(n)
X (u) ¡¦

(n)
Y (u)] ¸ 0:

Further more, there exists u± ¸ 0, such that

g0(u±) = ¡(n+ 1)[¦(n)
X (u±)¡ ¦(n)

Y (u±)] > 0:
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(Otherwise we will have FX(u) = GY (u) di®erentiating g0(u) n times.)

So the following inequality must be true:

g(0) = ¦(n+1)
X (0)¡ ¦(n+1)

Y (0) = E[Xn+1]¡ E[Y n+1] < 0:

Applying the same method and the fact that ¦
(n+j)
X (u) · ¦

(n+j)
Y (u) for j =

1; 2; ¢ ¢ ¢ and for all u > 0, we obtain the relation

E[Xn+k] < E[Y n+k]; k = 2; ¢ ¢ ¢ ; i:

A su±cient condition for the nth stop-loss order is given by Theorem 4.2.3 of

Goovaerts (1990): n+1 sign changes in density functions implies the nth stop-loss

order. Here we give another su±cient condition: n sign changes in distribution

functions implies the nth stop-loss order.

Theorem 6. (Su±cient Condition) Suppose that for two risks X and Y there

is a partition of [0;1) into n+1 consecutive non-empty intervals (closed intervals

containing only one point are acceptable) I0; I1; ¢ ¢ ¢ ; In such that

(¡1)n+1¡jfFX(t)¡ FY (t)g · 0 on Ij:

and the ¯rst n moments satisfy E[X i] = E[Y i]; i = 1; 2; ¢ ¢ ¢ ; n, then X <sl(n) Y:

Proof

For convinence, we let n be an even number. When n is an odd number, we can
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apply the same method to arrive at the result. Let

hi(t) = ¦
(i)
Y (t)¡ ¦

(i)
X (t); i = 0; 1; ¢ ¢ ¢ ; n;

then from Theorem 1, we have hi
0(t) = ¡ihi¡1(t): We only need to show that

hn(t) ¸ 0; for all t > 0: (10)

First we know that

(¡1)j [FY (t)¡ FX(t)] · 0; j = 1; 2; ¢ ¢ ¢ ; n;

and

h01(t) · 0; h1(t) # on I0;

h01(t) ¸ 0; h1(t) " on I1;

...

h01(t) · 0; h1(t) # on In:

On the other hand, from hn(0) = hn(1) = 0, we know that there exists a1 2

(0;1) such that h0n(a1) = 0. Using Rolle's theorem and repeating this process,

we know that there exist b1 < b2 < ¢ ¢ ¢ < bn¡1 such that

h1(0) = h1(b1) = ¢ ¢ ¢ = h1(bn¡1) = h1(1) = 0:

Combin the discussions above, the following conclusion must be true: There exist

c1 2 I1; ¢ ¢ ¢ ; cn¡1 2 In¡1 such that

h1(t) · 0 on [0; c1) = I0
(1);
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h1(t) ¸ 0 on [c1; c2) = I1
(1);

...

h1(t) ¸ 0 on [cn¡1;1) = In¡1
(1):

Repeat the same process, we ¯nally have (10).

We can see that the condition of Theorem 6 implies: FX(t) = FY (t) at least at n

di®erent points in (0; 1).

Theorem 5 and 6 are two useful tools to help us ¯nd out or construct the risk

pairs which have nth stop-loss orders.

Compound risk was discussed in Theorem 16 of Cheng and Pai (1999a) where

the counting variables N1 and N2 have identical probability distributions. Now

we give another result where N1 <sl(1) N2 but Xi and Yi are two sequences of

independent and identically distributed risks.

Theorem 7. (Compound Risks) Let X1; X2; ¢ ¢ ¢ and Y1; Y2; ¢ ¢ ¢ be two se-

quences of independent and identically distributed risks, Nj(j = 1; 2) be counting

variables independent of Xi and Yi. In the collective risk models, S1 and S2 are

de¯ned as

S1 =
N1X

i=1

Xi; S2 =
N2X

i=1

Yi:

If Xi <sl(n) Yi; N1 <sl(1) N2; then we have S1 <sl(n) S2:
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Proof

According to De¯nition 2, we need to prove

E[Si1] · E[Si2] i = 1; 2; ¢ ¢ ¢ ; n¡ 1; (11)

and

¦(n)
S1

(u) · ¦(n)
S2

(u); for all u ¸ 0: (12)

First we prove (12). From Theorem 4, we have for all u ¸ 0,

¦(n)
S1

(u) = E[f(S1 ¡ u)+gn]

=
1X

k=0

E[f(S1 ¡ u)+gn j N1 = k] ¢ Pr(N1 = k)

·
1X

k=0

E[f(S2 ¡ u)+gn j N1 = k] ¢ Pr(N1 = k)

=
1X

k=0

E[f(
kX

i=1

Yi ¡ u)+gn] ¢ Pr(N1 = k): (13)

(De¯ne E[f(Pk
i=1 Yi ¡ u)+gn] = 0 when k = 0.)

Let

w1(k) = E[f(
kX

i=1

Yi ¡ u)+gn]:

It is obvious that w1(k) · w1(k + 1); k = 0; 1; ¢ ¢ ¢ : If

2w1(k + 1) · w1(k) + w1(k + 2); k = 0; 1; ¢ ¢ ¢ ; (14)
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we can construct a convex function w2(t), such that w2(k) = w1(k); and w02(t) ¸

0; and non-decreasing in t:Then from Theorem 3, we have E[w2(N1)] · E[w2(N2)];

and (13) becomes

¦(n)
S1

(u) ·
1X

k=0

E[f(
kX

i=1

Yi ¡ u)+gn] ¢ Pr(N1 = k)

·
1X

k=0

E[f(
kX

i=1

Yi ¡ u)+gn] ¢ Pr(N2 = k)

= ¦
(n)
S2

(u):

Now we only need to show (14). Let Ak =
Pk
i=1 Yi: (14) is equivalent to the

following inequality

E[f(Ak + Yk+1 ¡ u)+gn] + E[f(Ak + Yk+2 ¡ u)+gn]

· E[f(Ak ¡ u)+gn] + E[f(Ak + Yk+1 + Yk+2 ¡ u)+gn];

and this follows directly if we look at the conditional distribution with Ak = a,

Yk+1 = y, Yk+2 = z, and use the following inequality

(a+ y ¡ u)n+ + (a+ z ¡ u)n+ · (a¡ u)n+ + (a+ y + z ¡ u)n+: (15)

When u ¸ a, (15) is obvious; when u < a, we can get (15) by using Binomial

Theorem.

Applying the same method, we can prove (11).
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In the following Corollary, we generalized the result of Theorem 3.2.5 in Goovaerts

et al. (1990) from stop-loss orders to nth stop-loss orders.

Corollary 8. (Conditional Compound Poisson Distribution) Let ¤j be a

non-negative structure variable, and Nj be an integer valued non-negative ran-

dom variable. Their conditional distribution given ¤j = ¸ of Nj is Poisson(¸) dis-

tributed, j = 1; 2. Let X1;X2; ¢ ¢ ¢ and Y1; Y2; ¢ ¢ ¢ be two sequences of independent

and identically distributed risks, Nj(j = 1; 2) be counting variables independent

of Xi and Yi. In the collective risk models, S1 and S2 are de¯ned as

S1 =
N1X

i=1

Xi; S2 =
N2X

i=1

Yi:

If Xi <sl(n) Yi; i = 1; 2; ¢ ¢ ¢ ; and ¤1 <sl(1) ¤2; then S1 <sl(n) S2:

Proof

In view of Theorem 7, we only need to know N1 <sl(1) N2: From the proof of

Theorem 3.2.5 of Goovaerts et al. (1990), ¤1 <sl(1) ¤2 implies N1 <sl(1) N2:
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4 The Application in Risk Premium Principles

Now we cite some concepts of risk premium principles in Goovaerts et al. (1990).

We make three assumptions.

1. If X <sl(0) Y , then ¼[X] · ¼[Y ], with equality only if FX = FY .

2. If P [X = c] = 1; 0 · c, then ¼[X] = c.

3. Let X, X 0 be risks such that ¼[X] = ¼[X 0], p 2 [0; 1], then

¼[pFX + (1¡ p)FY ] = ¼[pFX0 + (1¡ p)FY ]:

These assumptions lead to the Mean Value Principle. The premium is calculated

from the formula

¼[X ] = f¡1(E[f(X)]);

for some suitable increasing continuous valuation function f . For example, f(x) =

¡u(w ¡ x) where u(x) is a utility function and w is the wealth of the decision

maker. We can narrow the class of premium principles even further by adding

the fourth requirement of additivity.

4. A premium principle ¼ is called additive if for independent risk X and Y ,

¼(X + Y ) = ¼(X) + ¼(Y ).

From Theorem 6.2.2 in Goovaerts (1990), we can see that by the four requirments

mentioned above the set of feasible premium principles is reduced to the net

premium principles f(x) = x and the exponential principles f (x) = e®x.
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For net premium principle, we can not distinguish the risk X and Y if E[X] =

E[Y ] but X <sl(1) Y (that is V ar(X) < V ar(Y ) by Theorem 5), the situation

is di®erent if we use exponential principle, from the following theorem we can

see that the exponential premium principle can di®erentiate between losses more

¯nely than the net premium principle under some conditions .

Theorem 9. Let X and Y be two risks. If E[Xk] = E[Y k]; k = 1; 2; ¢ ¢ ¢ ; n ¡ 1,

and X <sl(n) Y , then ¼(X) < ¼(Y ); under the exponential premium principle for

the same ®.

Proof

From Theorem 5, we know that E[X j] < E[Y j]; j = n; n+ 1; ¢ ¢ ¢ : Consequently,

¼(X) =
1

®
ln[E[e®X ]]

=
1

®
ln(1 + ®E[X ] +

®2

2!
E[X2] + ¢ ¢ ¢+ ®n

n!
E[Xn] + ¢ ¢ ¢)

<
1

®
ln(1 + ®E[Y ] +

®2

2!
E[Y 2] + ¢ ¢ ¢+ ®n

n!
E[Y n] + ¢ ¢ ¢)

= ¼(Y ):
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5 Concluding Remarks

The theory of partial orders of risks is interesting and useful in many ¯elds. This

paper discussed the properties of nth stop-loss orders. The necessary condition

and the su±cient condition for the nth stop-loss order are convenient tools to

construct risk pairs that can have nth stop-loss orders. The applications of these

partial orders in evaluating existing risk premium principles and setting up new

risk premium principles are worth further study.

17



References

[1] Goovaerts, M.J., Kaas, R., Van Heerwaarden, A.E., Bauwelinckx, T. (1990),

E®ective Actuarial Methods, North-Holland.

[2] Cheng, Y. and Pai, J.S. (1999a), The Maintenance Properties of nth Stop-

Loss Order, Proceedings of the 30th International ASTIN Colloquium.

[3] Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A., and Nesbitt, C.J.

(1997), Actuarial Mathematics, SOA.

[4] Cai, J. and Garrido, J.(1998), Aging Properties and Bounds for Ruin Prob-

abilities and Stop-Loss Premiums, Insurance: Mathematics and Economics

23, 33-43.

[5] Thomas N. Herzog (1996), Introduction to Credibility Theory, Mad River

Books, Winsted.

[6] Hogg, R.V. and Klugman, S.A. (1984), Loss Distributions, John Wiley &

Sons, Somerset.

[7] Hossack, I.B., Pollard, J.H., and Zehnwirth, B. (1983), Introductory Statis-

tics with Applications in General Insurance, Cambridge University Press,

New York.

[8] Ross, S.M., Stochastic Processes, John Wiley & Sons, Inc.

18


