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ABSTRACT. In this paper, we derive estimates for the Gompertz dis-
tribution based on maximum likelihood and order statistics. The maximmm
likelihood estimates are determined directly from the underlying distribution
while the BLUE's and BLIE’s are achieved through a transformation from the
Extreme Value distribution. We also include examples to demonstrate the
procedures.

1. INTRODUCTION
Most. computations that are done within Actuarial Science entail using discrete death
rates associated with incremental ages. It’s not that continuous death rates cannot
be wused, it’s just that discrete values tend to be more convenient to work with.
Of the various continuous probability distributions, the one most. closely associated
with Actunarial Science may be the Gompertz distribution. In this paper, we will
take a closer look at the Gompertz, starting with the motivation behind Benjamin
Gompertz proposing this particular distribution, then develop procedures to estimate
the parameters for this distribution, and then to end with a brief example of the
procedures presented in this paper.
Within Actuarial Science, the force of mortality is defined as

B ( 1 ) dl,
Fe ="\1,) da
where [, is the number of individuals living at time x and i is the force of mortality

at time x. The force of mortality is analogous to failure rate which is encountered in
reliability theory, where the failure rate is defined as

3 1\ dS(t)
0=~ (575) %
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and S(t) is the survival function. The notation, k(t) will be used throughout the de-
velopment. to avoid any confusion that may arise with the normally reserved definition
of the greek letter g in the statistical sciences.

Benjamin Gompertz (1825), through his observations while valuing life anmnities,
realized that if a constant force of mortality was in effect for cach age, then regardless
of age, the annuities wonld take on the same value whether they were valued at age 20
or at age 65. However, in practice, this was not the case. The price of an annnity was
considerably less expensive for a person aged 65 than for a person aged 20. Gompertz,
felt that this discrepancy was due to the erroneous assumption that the mortality rate
was constant. He conjectured

“...that death may be the consequence of two generally co-existing causes;
the one, chance, without previons disposition to death or deterioration;
the other, a deterioration, or an increased inability to withstand destrie-
tion.”

From this philosophy he proposed that,

If the average exhaustions of a man’s power to avoid death were such
that at the end of equal infinitely small intervals of time, he lost equal
portions of his remaining power to oppose destruction which he had at
the commencement of those intervals, then at age x his power to avoid
death, or the intensity of his mortality might be denoted by ag®, a and g
being constant. quantities;. . .

Traditionally, in Actuarial literature, a is denoted by B and q is denoted by ¢,
where the parameter B is attributed to chance, and the parameter ¢ is attributed to
*...an increased inability to withstand destruetion.” Now, the "intensity” of mortality
may be denoted as h(t; B, c) = Bc' where the parameter space is traditionally defined
as 2= {(B,¢) : B> 0;¢ > 1} and the variable t € R*.

With the parameter space € defined, it can be seen that the Gompertz distribu-
tion possesses the property of increasing failure rate (IFR). If we would allow ¢ to
vary, we see that if ¢ = 1, the rate of mortality will be constant, and for ¢ < 0, the
Gompertz distribution will possess the property of decreasing failure rate (DFR). This
is consistent with Gompertz's philosophy. As time progresses, it is a logical assump-
tion that the rate of deterioration would increase. Similarly, holding the parameter
B constant at a positive valne will ensure that for each unit. of time, there will he a
positive "chance” of death, as opposed to an unanticipated sitnation (like an organ
transplant) where, due to chance, an individual’s life will sormehow be prolonged.
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It follows that the probability density function (pdf) and the cumulative distri-
bution finction (CDF) may be stated as

fa(t; B,c) = Bc'exp {—fr%(,t—l)} , 0<t< o (1)
B t
Fa(t;B,c) =1 —exp _E(C - 1)] , 0<t < . (2)

Another form that is also encountered, and which will prove to be nseful, is the
generalized Gompertz, given by

f,(t; B,c) = Bc'exp (—Ect> , —x<t<oo (3)
: Inc
B,
Fy(t; B,c)=1—exp (———-c) , —oo<t<oo (4)
' Inc

where the integration is allowed over the entire real line. In this paper we will show
that in the case of the generalized Gompertz, transformations between the Extreme
‘alue distribution and the 2-parameter Weibull distribntion may be achieved from
which some desirable consequences will follow. Namely the ability to calculate the
best lincar unbiased estimators(BLUE) and best lincar invariant estimator(BLIE)
based on the previous work of Mann(1969) and Lloyd(1952). We will develop for
the Gompertz and the generalized Gompertz equations for the MLE’s, moments and
moment generating function. In contrast, the Gompertz will be shown, throngh
appropriate transformation, to be a 3-parameter Weibull. Therefore, due to the
complexity involved, no further development. will be pursued in this regard.
Note that throughout this paper, the distribution described hy equations (1) and
(2} will be called the Gompert: Distribution, while the distribution described by
equations (3) and (4) will be called the generalized Gompertz. To distinguish between
the two, we denote the Gompertz hy subscript G and the generalized Gompertz by
the subseript g.

2. PROPERTIES
One of the most generally accepted and well known methods of estimating parametoers
for a distribution is with the method of moments. In this section, we develop the
mornent’s aixl moment generating function{mgf) for the Gommpertz, and state withowut
development the results for the generalized Gompertz. In addition, we provide a
transformation to the Extreme Value distribution as well as a transformation to the
2-parameter Weibull distribution.
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2.1. Moments. The first moment for the Gompertz distribution is

dc

o0 B
Ec(x) = /0 z- B¢ exp [—m (eF-1)

B _B

and if we integrate by parts with u = z and dv = ;- exp { (e — 1)]dm, we have

> B
EG(I) = e% / exp (“_E'x hl(') d.L'
0

Inc

which is of the form - )
/ exp(—ae™)dzr = TEz'(—a)
0 ,

where a = B/ Ine and n = Inec. If we make these substitutions, we then have

ro =8 (52) (1)

where Ei is the exponential integral defined by Ei(—a) = —a [ ¢~ % In xdx. Procecd-
ing i a similar fashion, the first moment for the generalized Gompertz will be given

by
E,(z) = (lnc)T [1 + (H?E) 1}

where I'(«) is the Gamma Function defined by I'(a) = f§® w* e *dw. For more dis-
cussion of the properties of the exponential integral, we refer the reader to Gradshteyn
and Ryzhik(1980).

The second moment for the Gompertz distribution is

B )
——{c" = 1)|dz

E 2 :/OC,Q.B,I
a(z®) o cfexp =

. . . . rlhie L
and if we make the substitutions, w = %e“"‘, dw = Be"dr and z = In [wln (¢5)]/ Ine,
we see that the range on w becomes > < w < oo and the we may now state the
second moment as

B
einc o0 2 w
Eg(w?) = W /)L [ln w+In (lncﬁ)} e Yduw. (6)

The intricate computations involved in (5) and (6) render the method of moments
intractable. In fact, within actuarial literature (see London, 1988), applying a Taylor
Series expansion is generally utilized in conjunction with the method of moments
so that (5) and (6) become more tractable. However, if we expand the range of
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integration from % < w < oo to [0,00), we see that we will obtain an upper bound
for the true value. Furthermore, if it is discovered that the quantity, (B/Inc) is
“close” to zero, the quantity obtained from integration will be “close” to the real
value. With this approximation, we may now use the following equalities

o 2 1 [ 2
/ e (Inz)dr = — |- 4+ (Cruer +1np)
0 pl1 6

- ~1
/ e’ lnzdzx —(Cruer + In )
0 p

where Cgyt.. is Euler’s constant, and is defined as Cpyier = .57721566. Now we may
bound the second moment from above and write

B_
eme
In¢?

The second moment will exist and converge by virtue of the Dominated Convergence

Theorem.
In the case of the generalized Gompertz, we will be able to achieve an exact value
for the second moment, and will be defined as

EG(ZL“Z) <

{7+ Chur + 2In(In€?) — Cpuier + In (Inc?)]?}.

inc

E,(z%) = (In¢)’T [1 +2 (%)G

Now, we develop the moment generating function. The mgf is
Eg(etz) = Mg.(t) = f ' Be” exp [—E(CI — 1)]0!1
0 Inc
2 [ B zl
Me.(t) = elnc/ Bexp [m(lnc+t) ~ e’ ”“}da:
0 ne

and with the substitutions w = £e*!"¢, dw = Be™"¢dz and z = In[wln (c®))/Inc,
the moment generating function becomes

Mg.:(t) = eme(IncB)ie e~ wlnet DTy, (7)
We may write an exact expression for (7) as

¢ t B
Mea(t) = ens (Inch )wel" (— n 1) [1 -r (—; L 1”
Inc In¢ Inc
where T'(-;-) is the incomplete Gamma function. Again, expanding the range of
integration to [0, 00), the mgf may be bounded by
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With the moment generating function bounded, the existence of the moment gener-
ating function is guaranteed.

Proceeding in a similar manner for the generalized Gompertz, we arrive at an
exact expression for the mgf, namely

A[q:r(t) = (lIl C%)ﬁr (L + l)

2.2, Gompertz-Weibull Transformation. We may rewrite (2) as

‘tlnc ~1
Fg(t;B.c) =1 —exp (P—W—)
B

and comparing this to the 3-parameter Weibull

(w=1)°
]

FW':3parm(w; 0* 7-6) =1- exp [

we see that with the substitutions 8 = (In¢)/B, § = v = 1 and w = !¢, we achieve
a transformation from the Gompertz to the 3-parameter Weibull.

We now establish a transformation between the 2-parameter Weibull and the
generalized Gompertz. The CDF for the the Weibull is given by

Fw(t,8.0) =1 —exp [— (é){jcmn(}

. 3
which when making the substitutions ¢t = Int, 3 = Inc¢ and (é) = 17?{ vields the

In B
CDF for the generalized Gompertz.

2.3. Gompertz-Extreme Value Transformation. Next, we establish a trans-
formation between the Extreme Value distribution and the generalized Gompertz.
Rewriting (4) with % = exp [ln (F.BT)]’ the CDF becomes

Fy(t: B,c) =1~ exp {—("I“""]“[“l'_f)].

inc
Making the following substitutions o = F‘c) and p = hl—l(nfl—) the CDF becomes
1-p -
Fo(tiB,c)=1—exp (vc " ) (8)

and with Z = T—;ﬂ, equation (8) becomes Fy(z) = 1 — exp(—e?), which is the Extreme
/alue distribution, described in Gumbel(1958) as the second double exponential dis-
tribution.

70



THE GOMPERTZ DISTRIBUTION-ESTIMATION OF PARAMETERS

3. ESTIMATORS
In this section we will develop MLE’s and estimators based on order statistics. How-
ever, estimators based on the method of moments will not be presented due to the
complexity of (5) and (6).

3.1. Complete Data. The likelihood function for the Gompertz with n obscrva-
tions is

i B
Lo(B,cz) = H(Bc")exp [————(c" — 1)] ,1=1,2,...n.

balr} Inc

Differentiating the natural logarithm of the likelihood function with respeet to B and
¢, we have

Oln Lg n 1 &

55~ B e
dln Le 1 & B . B &
de c? 1z1+ c(lne)? ;(C nc)?;}jlr

Setfing these partial derivatives equal to zero, and solving the system of two equations
for the two nnknowns, yields the following solutions:

B— nlnc

i= 1((‘1'—.1)
Z"lxvc" 4 1
ez - 1) = T e

where T is the arithmetic mean.
The MLE’s for the generalized Gompertz for complete data may be shown to take
the form

nlne
B= ——— 9
e (9)
7 1
thli —T 4 —. (10)
Ve Inc

In the case of the generalized Gompertz, we can show that these estimators are
unique and do indeed achieve a maximum. However, with respect to the Gompertz,
these estimates will be unique and maximized only if

Tz \ (1)2 Dot
( ?:1(01"1)> = In{c) +ZL1(»I’_1).
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3.2. Censored Data. We develop MLE’s for Type II censored data, where n
denotes the total number of lives under investigation and r denotes the munber of
obscrved deaths. For Type 1T censoring, the likelihood function is

! B n-r
L(,'(B.(",i) = (nhir—)i {exp [————(er — 1)}} H Be™ CXp

Ine fate

e

nc

and differentiating the natural logarithm with respect to B and ¢, we have

Olnle r 1 A
dB B luc

Z(CIJ — 1)+ (n—r)(c — 1):|

J=1

6111 L(w 1 2, i
(‘Z ln( [z — )+ (n—r)c 1)}

Setting these partial derivatives equal to zero, and solving the system of equations
vields the following solutions:

B= r1n(c)
Sia(e =D+ (n=r){em — 1)
T 1 = 25:‘ I)CIJ + (n - 7')‘["(.1',

+— =
Ine  Ti_(¢% = 1)+ (n~r)(er —1)

where T, = ;‘rl—rj The MLE’s for the generalized Gompertz for complete data may

be shown to take the form

In(c
B=— rln(c) (11)
Y+ (n—r)etr
1 T T,¢7 4 (n— 1)
r+_:Z]_i 7 ( ) (12)
Inc Te1 ¢+ (n = T)e

As in the previous section, estimators for the generalized Gompertz are unigue
and achieve a maximum. Again, the estimates for the Gompertz will also have this

property when
2 2t + 2i(n — r)e*r 2
(7) s Bt (1)
t* t* Inc

where #* =377 (¢™ = 1) + (n —7)(c* — 1) and t** = i aet +a(n - )™
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3.3. Estimators Based on Order Statistics. Using the work of Lloyd(1952)
and Mann(1969), we develop estimators based on order statistics for the generalized
Gompertz nfilizing the transformation from the Extreme Value distribution.

Best Linear Unbiased Estimators{BLUE). We dcfine X .,,...,X,, as the
n order statistics from a sample of size n and let p and ¢ denote the location and
scale parameters from the distribution. Now, let

F(z;,u,n):H(x;u)

where, H(-) is a parameter-free distribution. Defining the following:
Xi:n y

(o4

E(Xin) = p+aE(Z)
Cov(Xim, Xjin) = a2Cov(Z;, Z;)

W'h(‘l‘(‘

/Yl:l
x = | .
X;lln
E(Z) = e
Cov(Z) = V
C =1 ¢
X = C8+6

)

@
Il
—
SIS

i = —e'IX (13)
5 = 1rX (14)
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where T = HLJ;LT)V_-I and A = |CTV-IC|. The vectors Z, e and 1 are n x 1
column vectors, V is the variance-covariance matrix for Z and C is the design matrix.
Through the appropriate transformation, we find that the BLUE's for the gencralized
Gompertz are

€ = exp (i) (15)
o (-5) 09

The estimators for the generalized Gompertz Distribution , ¢, and B, which are
based on the BLUE’s and BLIE’s for the Extreme-Value distribution may now be
calculated by substituting equations (13) and (14) into equations (15) and (16).

B,

il
|
]
=
o=/

Best Linear Invariant Estimator(BLIE). Mann(1969) developed equations
for the best linear invariant estimators for the Extremne Value distribution based on
the BLUE’s, which are given by

Gy = Da (17)

iy = i — & (18)
where D = A—Hf‘vj and £ = A;ST‘C—‘I:’T' We may use equations (13), (14), (17) and
(18) to write ¢y and By in terms of ¢; and B;, which is

(ln cy )
cy = exp
D

_ Inc, 1 ' Iney
B, = (fD—> exp {—D [ln(,l ln( B, ) 5}}

4. EXAMPLES
To demonstrate the results in this paper, we will use two data sets from a United
States Air Force study that was conducted from 1964-1969 (see Yochmowitz, Wood
and Salmon, 1985). In brief, the study dealt with effects of ionizing radiation on
primates.

4.1. Complete Data. From the USAF study, of the 5 groups of rehsus monkeys
that had expired as of 1989 was the group which received the highest level of radiation.
This cohort. size consisted of 9 rhesus monkeys and their survival times are 1,9 =
1.9167, ryq = 24167, 39 = 29167, 249 = 2.9167, 159 = 3.4167, x4 = 4.1667,
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7.9 = 44167, 759 = 4.8333, and z¢9 = 6.25. From (9) and (10), we see that the
MLE’s will be

¢, = 2.113300 and B, = .028611.

Using the tables provided by White(1964) for the expected values and vari-
ance/covariance matrix for the Extreme Value distribution, we find that the BLUE’s
are

¢ = 1.984435 and B, = .033093
and the BLIE’s are
&y = 2.097531 and B, = .027333.

4.2. Censored Data. The control group from the USAF study consisted of 33
lives, of which 14 were censored. The observed survival times, as of 1989, were
Ty33 = 50833, To.33 = 66667, Z3.33 = 68333, T4:33 = 7.0833, I5.33 = 13, Tg.33 — 15,
L7333 = 155, Tg.33 = 1833337 T9.33 = 18757 T10:33 — 19, T11.33 — 20.1667. Ly2.33 —
203333, ry3:.33 = 21, T14:.33 — 214167, T15:33 — 215833, Tri6:33 — 219167, Ty7.33 =
22.8333, 118133 = 22.9167, 1033 = 22.9167 and the remaining xg0.33 through 3433 ave
censored values and set to 25.

The MILE’s for the generalized Gompertz were determined after taking the natural
logarithm of the original observations, and from (11) and (12) were found to be

g = 11.918494 and B, =7.086 x 107

White(1964) only provides tables for sample sizes of 20 or less, so no values for
the BLUE’s and BLIE’s are presented.
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