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ABSTRACT. In this paper, we derive estimates for the Gompertz dis- 
trilmtion based on maximum likelihood and order statistics. The maximmn 
likelihood estimates are determined directly from the underlying distribution 
while the BLUE's and BLIE's are achieved through a transformation from the 
Extreme Value distribution. We also include examples to demonstrate the 
proced,~res. 

1. INTRODUCTION 

Most ( 'olnputations that  are done within Actuarial Science entail using disrretc death 
rat(is a.ssociated with incremental ages. It 's riot that  contimtous death rates cannot 
be used, it 's just that discrete vahles tend to be more convenient to work with. 
Of the various continuous probability distributions, the one most closely assoriatcd 
with Actuarial Science may be the Gompertz distribution. In this paper, we will 
take a ('loser look at the Gompertz, starting with the motivation behind Benjamin 
Gompertz proposing this particular distribution, then develop procedures t o  estimate 
the parameters for this distribution, and then to end with a brief example of the 
procedures presented in this paper. 

Within Actuarial Science, the force of mortality is defined as 

# ~ = -  ~-z 

where/~, is the number of individuals living at time x and #~ is the force of mortality 
at. time x. The force of mortality is analogous to failure rate which is encomgered in 
reliability theory, where the failure rate is defined ms 
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and S(t) is the survival flmction. The notation, h(t) will be used throughout the dc- 
velol)menl to avoid any confllsion that may arise with the normally r('served dcfiniti(m 
of the greek letter tL in tile statistical sciences. 

Benjantin Gompertz (1825), through his observations while vahling life anmlilies, 
realized thai  if a constant force of mortality w~s in effect for each age, then regardless 
of age, the annuities would take on the same value whether they were valued at age 20 
or at age 65. However, in practice, this was not the case. The price of an allnllity was 
considerably less expensive for a person aged 65 than for a t)erson aged 20. Gomp,'rtz 
fell that !his discrepancy was due to the erroneous assmnpt.ion that the mortality rate 
was constant. He conjectured 

"...that death inay be the consequence of two generally co-existing causes; 
tile one, chance, without previous disposition to death or deterioration; 
the other, a deterioration, or an increased inability to withstand destruc- 
tion." 

From this philosophy he proposed that 

If the average exhaustions of a man's  power to avoid death were such 
that at the end of equal infinitely small intervals of time, he lost equal 
portions of his remaining power to oppose destruction which he had at 
the commencement of those intervals, then at. age x his powc~r to avoid 
death, or the intensity of his mortality might be denoted by aq ~, a and q 
being constant quanti t ies; . . .  

Traditionally, in Actuarial literature, a is denoted by B and q is denoted by c, 
where the l)arameter B is att.ritmt(~t to chance, and the parameter c is at t r ibuted t.o 
"...an increased inability to withstand destruction." Now, the "intensity" of mortality 
may be denoted as h(t; B, c) = Bct where the parameter space is traditionally defined 
as ~t = {(B,c) : B > 0;c > 1} and the variable t E N +. 

With the parameter space Q defined, it can be seen that the Gompertz distiibu- 
tion possesses the property of increasing faihlre rate (IFR). If we would allow c to 
vary, we see that if c = 1, the rate of mortality will be constant, and for c < 0, the 
Gompertz distribution will possess the property of decreasing failure rate (DFR). This 
is consistent with Gompertz 's philosophy. As time progresses, it is a logical assmnp- 
tion that the rate of deterioration would increase. Similarly, holding the parameter 
B constant at a positive value will ensure that for each unit of time,, tlwre will b~' a 
positive "chance" of death, as opposed to an unanticipated situation (like an organ 
transplant)  where due t.o chance, an individual 's life will somehow t)e prolonged. 
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It follows that the probability density flmction (pdf) and the cumulative distri- 
bution function (CDF) may be stated as 

fa(t;B,c)=Bct exp [-l~c(C t - l ) ] ,  0 _ < t < e c  (1) 

[ -  /3 ( c ' - l ) ]  0_<t <oc .  Fa(t;B,c)= 1 - e x p  [ lnc " _ (2) 

Another form that is also encountered, and which will prove to be useful, is the 
generalized Gompertz, given by 

fq(t;B,c)=Bctexp \ lnc / ' - o c < t  < o o  (3) 

( Eq(t;B,c)=l-exp - l n c  ] ' - o c < t < o c  (4) 

where the integration is allowed over the entire real line. In this paper we will show 
that in the case of the generalized Gompertz, transformations between the Extreme 
~due distribution and tile 2-parameter Weibull distribution may be a('hieved from 
which some desirable consequences will follow. Namely the ability to calculate the 
best linear unbiased estimators(BLUE) and best linear im,ariant estimator(BLIE) 
based on tile previous work of Mann(1969) and Lloyd(1952). We will develop for 
the Gompertz and the generalized Gompertz equations for the MLE's, moments and 
nloment generating function. In contrast, the Gompertz will be shown, through 
appropriate, transformation, to be a 3-parameter \~,z(,ilmll. Therefore, due to the 
complexity involved, no further development will be pursued in this regard. 

Note that throughout this paper, the distribution described by equations (1) and 
(2) will be called the Gornpertz Distribution, while the distribution described by 
equations (3) and (4) will be called the 9eneralized Gomvrtz. To distinguish between 
the two, we denote the Gompertz by subscript G and the generalized Gompertz by 
the subscript g. 

2. PROPERTIES 
One of the most generally accepted and well known methods of estimating t)arameters 
for a distribution is with the method of moments. In this section, we develop the 
moment's and moment generating funetion(mgf) for the Gompertz, and state without 
development the results for the generalized Gomt)ertz. In addition, we provide a 
transformation to the Extreme Value distribution as well as a transformation to the 
2-parameter \Veihull distribution. 
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2.1. M o m e n t s .  The f i r s t  m o m e n t  for the Gompertz  dis t r ibut ion is 

E c ( x )  : x .  Bc~exp - l ~ c "  (cx - 1 , i x  

and if we integrate by par ts  with u = x and dv = __,,,B~ exp [--ln~( *c -- 1)]dx, we have 

EG(2C, = el~7 ~aCexp (--l~lCe'rl'lC) dy 

which is of the form 

f0~  exp ( - a e  "~) d .  = - 1  E i ( - a ) . ,  

where a = 1 3 / I n  c a n d  n = In c. If we make these substi tut ions,  we then have 

where Ei is the exponential  integral defin(~t by E i ( - a )  = - a  f ~  e ~ In x d x .  Proceed- 
ing ill a similar fashion, the first, moment for the generaliz(xt Gomper tz  will be given 
by 

E~(.)  -- ( lnc)r  a + 

where F(c~) is the G a m m a  Nmetion defined by F(cQ = f0 ~ w(~-ae ~'dw. For more dis- 
cussion of the propert ies  of the exponential  integral, we refer the reader to Gradshteyn 
and Ryzhik(1980). 

The s e c o n d  m o m e n t  for the Gomper tz  dis tr ibut ion is 

and if we make the subst i tut ions,  w = 1~(7 xlnc, dlu : Be~ ' "~ 'dx  and x = In [w In (c~) ] / lnc ,  
we see tha t  the range on w becomes ~ < w < oc and the we may now state  the 
second moInent as 

E a ( u 3 )  - (lnc) 2 ~ c % t w .  (6) 

The intr icate computat ions  involved in (5) and (6) render the method of moments 
intraclable.  In fact, within actuarial  l i terature (see London, 1988), applymg a Taylor 
Serit~ expansion is generally utilized in conjunction with the method of moments  
so tha t  (5) and (6) become more tractable.  However, if we expand the rang~, of 
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integration from B < w < oc to [0, cx~), we see tha t  we will obtain an upper  bound 
for the true vahle. Fhrthermore,  if it is discovered tha t  the quantity, ( B / l n c )  is 
"close" to zero, the quant i ty  obtained from integration will be "close" to the real 
value. Wi th  this approximation,  we may now use the following equalities 

/: ] eUX(ln:r)2dx = 1 + (CE,,I~ + ln#)  2 

f0 °~ --1 e "~ In zdx = - - ( C E , a ~  + In #) 
# 

where C E ~  is Euler 's  constant,  and is defined as C E ~  = .5772 1566. Now we may 
bound the second moment from above and write 

elne 
Ea(z 2) < l~Jc 2 {Tr 2 + C g ~  + 21n( lneS)  - C E ~  + [ ln(lncS)]2}.  

The second moment will exist and converge by virtue of the Dominated Convergence 
Theorem. 

In the case of the generalized Gompertz,  we will be able to achieve an exact value 
for the second moment., and will be defined as 

E , ( z  2 ) = ( l n c ) 2 F  l + 2 \ l n c  / J "  

Now, we develop the moment generating function. The mgf is 

/: I ' - ( ,  lq x Ec(e TM) = M c : ~ ( t ) =  et~BcXexp[ lnc  

= e~-~ exp x ( l n c + t ) -  e ~h~ dx 

= B e~l.~ dw = Be*ln~dx aim x = ln[whl(c~)] / ln~  c, and with the subst i tut ions w ~ , 
the moment  generating fimction becomes 

Ma:~(t) = e~7~ (ln c½)rdT~ e-~w(~,-~+l)-'dw. (7) 
nc 

We may write an exact expression for (7) as 

)[ ( " ) 1  Mc:~(t) = e ~ - ~ ( l n c ~ ) ~ r  l~c  + 1 1 - F l~c '  t ln~c ÷ 1 

where F(- ; . )  is the incomplete G a m m a  fimction. Again, expanding the range of 
integration to [0, oo), the mgf may be bounded by 

Mc:~(t) _< e & ( l n c ~ ) ~  r ~ + 1 . 

69 



TIlE GOMPIqR'rZ DISTRIBUTION-ESTIMATION OF PARAMFTERS 

With  the moment  generat ing flmction bounded,  the existence of the moment  gener- 
at ing funct ion is guaranteed.  

Proceeding in a similar manner  for the generalized Oomper tz ,  we arrive ai an 
exact expression for the mgf, namely 

2.2. Gompertz-Weibull Transformation. 

Fa(t; B, c) = 1 exp ( 

and compar ing  this to the 3-parameter  Weibull 

We may rewrite (2) as 

e t l 'c  - 1 xl 

Fl4,,:3par:m(w;0,~,~) = 1 exp[ (lv-')')~] 

we see that  with the subst i tut ions 0 = ( lnc ) /B , /5  = 7 = 1 and +1, = e t l 'c,  we achieve 
a t rmlsformation from the Gomper tz  to the 3-parameter  Weibull. 

\ \ 'e  now establish a t ransformat ion between the 2-parameter  Weitmll and the 
generalized Gomper tz .  The  CDF for the the Weibull is given by 

Fw(t;fl 0) = 1 - exp [ -  (~) ;¢  emn~ 1 

which when making the substit , t t ions t In [, 3 = In c and (~)"  ,~'., yields the 
C DF for the generalized Gomper tz .  

2.3. G o m p e r t z - E x t r e m e  V a l u e  T r a n s f o r m a t i o n .  Next, we estatfiish a trans- 
formalioll between tile Extreme Value distr ibution and the generalized Gompertz .  
Rewrit ing (4)wi t t l  ~',,~ = e x p  [In (1~<..)], the CDF becomes 

Fv(t;B,c)= 1 - exp I - c t t  .... , , , (~)] .  

I,,(~c) the C DF b{~'omes and t* = Making the following subst i tut ions cr = ~ 1 .... 

Fg(t; 13, c) = 1 - exp ( - c  - ) (8) 

and with Z = "r-,, equat ion (8) becomes Fv(z ) = 1 - cxp( -e~) ,  which is tilt, Extreme 
Vahle distr ibution,  described in Gumbel(1958) as the se('Oll([ double exponelllial dis- 
tr i |mtion.  
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3. ESTIMATORS 

In this section we will develop MLE's  and est imators based on order statistics,  tlow- 
ever, est imators based on the method of moments will not be presented due to the 
complexity of (5) and (6). 

3.1. C o m p l e t e  D a t a .  The l ikdihood flmction for the. Gomper tz  with n observa- 
tions is 

L a ( B , c ; z )  = I I ( B d ' ) e x p  - c *' - 1 , i = 1,2 . . . .  n. 
t = l  

Difforentiating tile natural  logari thm of the likelihood function with respect to B and 
c, we have 

O l n L c  _ n 1 n 

OB B lnc  K-',__z.~l(c~, 
l) 

0 In  L c  1 n B n B " 
-- - / _ _ ~ l X i + - -  _ ~ l ( C * ' - l )  Y'~xic x'. 

Oc c c(ln c) 2 C (hi c ) i= l  

Sett ing these par t ia l  derivatives equal to zero, and solving the syst, em of two equations 
for th(, two unknowns, yields the following solutions: 

~ l n c  
B -  

r t  a :  
Z i = l ( c  ' - 1) 

~ , \ l  xi cx' 1 
- -  Y + lnc  n x E , : I  (c  * - 1) 

where .?. is the ar i thmetic  mean. 
The MLE's  for the generalized Gomper tz  for complete da ta  may be shown to take 

the form 

n l n c  
B - - -  ( 9 )  Z,% c x '  

E - i = 1  Xi cx' 1 
- Y + - -  (10) 

~ i n = l  C x* In c" 

In the cease of the generalized Gompertz,  we can show tha t  these es t imators  are 
unique and do indeed achieve a maximum. However, with respect to the Gompertz ,  
these es t imates  will be unique and maximized only if 

£ - - i =  1 i 
,g-T- : - - - -  < + ~ i = l ( c  ~, - 1) - ]n~ 

n X i C ' 

~ "  r c  ~ - 1 )"  
= 1  I, - 
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3.2. C e n s o r e d  D a t a .  We develop NILE's for Typ( '  II ('('nsor(,d data, whore n 
denotes the total number of lives under investigation anti r denotes t]m numl)(,r of 
obs(,rv(,d deaths. For Type  II censoring, the likelihood function is 

L(;(B'c;x)-(n-r): L Inc " - I  - f i B c  x ' e x p l  I n B c ( ( " ' - I ) ]  
j=l 

and d i f f e r e n t i a t i n g  the natural  logarithm with respect t.o B and c, we have 

O l n L c  _ r 1 (c*J - 1 )  + (r, - r ) ( c  ~ = - 1 )  
O B  B In c kJ:: 

De - -c j= tx2 + c ~  LJ =1(e ~' - I )  4- (~, - r ) ( c  .... I )  

Se t t ing  these partial  derivatives equal to zero, and solving the system of ~luations 
yMds the following solutions: 

B = r ln(c) 
E ~ = l ( c ~  - 1) + ( ~ -  r ) ( c  ~> - 1) 

1 Ey=: "vj e*~ + ( n -  t')x~c ~ 
~ + 

l n c  E~=t(cX3 - 1) + ( n -  r)((: ~ - 1) 

where ~ = ~:=:: ~ .  The MLE's  for the generaliz~t Gomper tz  for complete da ta  may 
r 

be shown to take the form 

B = r In(c) 
(11) 

1 E~=I x j  c~J + ( " -  r):r ,  c~" 
: ~ +  - ( 1 2 )  

lnc ~ = 1  (~  + ( r ~ -  r ) ~  

As in the previous section, estimators for the generalized Gomper tz  are mdque 
and achieve a maximum. Again, trhe est.imates for the Gomt~ert.z will also have this 
properly when 

wheI'e t* ~- vr {t "x' -- i) + (,l- /')(C xr I) and t'" ~ j = : ~  - = ~ j = :  x j c  ~, + x~(:~-  r ) c  ~' . 
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3.3. E s t i m a t o r s  B a s e d  on  O r d e r  S t a t i s t i c s .  Using the work of Lloyd(1952) 
and Mann(1969), we develop est imators based on order stat ist ics for the generalized 
Gompt ' r tz  utilizing the t ransformation from the Extreme Value distr ibution.  

B e s t  L i n e a r  U n b i a s e d  E s t i m a t o r s ( B L U E ) .  We define XI: , ,  . . . ,  X,,:,, a.s t i m  

n order stat ist ics from a sample of size n and let p and cr denote the location and 
scale parameters  from the distr ibution.  Now, let 

where, H(.)  is a parameter-free distr ibution.  Defining the following: 

X i :  n - 
Z i - -  

O" 

E(X,:~) : . +.E(Z,) 

Cov(X,:.. xj:~) : ~2Co~,(z,, z j  

where 

X h l  

X = 

Xn:t~ 

= e 

= V 

= [1 e] 

= c 3 + 6  
= 0 

= 0"2 v 

O" 

E(Z) 
Coy(Z) 

C 

X 

E(6) 

Cov(6) 

Lloyd(1952) developed the BLUE's  for # and a and these est imators  are given a~s 

fil = - e T F X  

o'1 = 1 " r F x  

(13) 

(14) 
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where F = v ~t14r-~lV)v -~ and A = ICTV-1CI.  The vectors Z, e and 1 are ~ × 1 & 

cohmm vectors, V is the variance-covariance matrix for Z and C is the desigm matrix. 
Through the appropriate, transformation, we find that 1he BLUE's for tho generalized 
Goinpvrtz are 

(1) 
ct = exp (15) 

1 (.:) B1 = - - e x p  - . (16) 
(r 1 

The estimators for the generalized Gompertz Distribution , ~?l and /~1, which are 
ba.~ed on the BLUE's and BLIE's for the Extreme-Value distribution may now be 
calculated by subst i tut ing equations (13) and (14) inlo equations (15) and (16). 

Bes t  L i n e a r  I n v a r i a n t  E s t i m a t o r ( B L I E ) .  Mann(1969) developed equations 
for th(' best linear invariant estimators for the Extreme Value distribution ba.s('d on 
the BLUE's, which are given by 

gr2 = / )a l  (17) 

P2 = Pl  - 881 (18)  

'~ a n d  g = 1TV-te  where D = ~ ~ .  We may use equations 13), (14), (17) and 
(18) to write c2 and B2 in ternls of cL and B1, which is 

4. EXAMPLES 

To demonstrate the results in this paper, we will use two data sets from a United 
St.at.~,s Air Force study that was conducted from 1964-1969 (see Yochmowitz, "~,i)o(t 
and Salmon, 1985). In brief, the study dealt, with effects of ionizing radiation on 
primates. 

4.1. C o m p l e t e  D a t a .  Prom the USAF study, of the 5 groups of rehsus monkeys 
that had expired as of 1989 was the group which received the highest level of radiat ion. 
This cohort size consisted of 9 rhesus monkeys and their survival times are x1:9 = 
1.9167, x2:.~ = 2.4167, Xa:9 = 2.9167, x4:9 = 2.9167, :r~;9 = 3.4167, a:6:~ = 4.1667, 
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x7:9 = 4.4167, Xs:9 = 4.8333, and  x9:.9 = 6.25. From (9) and  (10), we s(~ tha t  the 
MLE's  will be  

~ = 2.1133o9 and  /)g = .028611. 

Using the tables provided by White(1964) for the  expc~'t.ed values and  vari- 
ance/covar iance  mat r ix  for the Ext reme Value dis t r ibut ion,  we find tha t  the BLUE' s  
are 

dl = 1.984435 and  /)1 = .033093 

and  the BLIE's  are 

c2 = 2.097531 and  /)2 = .027333. 

4 .2.  C e n s o r e d  D a t a .  The  control group from the USAF s tudy  consisted of 33 
lives, of which 14 were censored. The  observed survival tiums, as of 1989, were 
xl:3z = 5.{)833, x2:33 = 6.6667, x3:33 = 6.8333, x4:33 = 7.0833, x~:33 = 13, x6:33 -- 15, 
• z'~:3:~ = 15.5, Xs:33 = 18.3333, x9:33 = 18.75, x10:33 = 19, x11:33 = 20.1667, :c~2:33 = 
20.3333, :c1:~:33 -= 21, Xla:a3 = 21.4167, x15:33 = 21.5833, x16:33 = 21.9167, x17:3.~ = 
22.8333, .r~s:33 = 22.9167, x19:33 = 22.9167 and the  remain ing  x20:33 th rough  x:,:,:3:, are 
censored values and  set to 25. 

The MLE's  for the  generalized Gomper tz  were detcrmin(~l after tak ing  the  na tu ra l  
logar i thnl  of the original observations,  and from (11) and  (12) were found to be 

[~ = 11.918494 and /3g  = 7.086 x l 0  -4  

White(1964)  only provides tables for sample sizes of 20 or less, so no values for 
the BLUE' s  and  BLIE 's  are presented.  
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