ACTUARIAL RESEARCH CLEARING HOUSE

 1998 VOL. 2A RESERVE DIFFERENCE FORMULA

Changki Kim and Elias S.W. Shiu
Department of Statistics and Actuarial Science
The University of Iowa

This note is motivated by Section 7.4 of Actuarial Mathematics. Consider two different fully-discrete policies issued to (x), each for a unit of life insurance during the first h years. Here, h is less than or equal to the shorter of the two premium-payment periods. For each positive integer $m, m \leq h$, the retrospective formulas for the reserves are

$$
m \mathrm{~V}_{(1)}=\mathrm{P}_{(1)} \ddot{S}_{x: \bar{m} \mid}-{ }_{m} k_{x}
$$

and

$$
{ }_{m} \mathrm{~V}_{(2)}=\mathrm{P}_{(2)} \ddot{S}_{x: \bar{m} \mid}-{ }_{m} k_{x},
$$

where the subscripts (1) and (2) are used to denote the two policies. The difference of the two reserves is

$$
\begin{equation*}
{ }_{m} \mathrm{~V}_{(1)}-{ }_{\mathrm{m}} \mathrm{~V}_{(2)}=\left[\mathrm{P}_{(1)}-\mathrm{P}_{(2)}\right] \ddot{s}_{x: m} . \tag{1}
\end{equation*}
$$

In particular, with $m=h$,

$$
\begin{equation*}
{ }_{h} V_{(1)}-{ }_{h} V_{(2)}=\left[P_{(1)}-P_{(2)}\right] \ddot{S}_{x: \bar{h} \mid} . \tag{2}
\end{equation*}
$$

Dividing equation (1) by equation (2), we have

$$
\frac{{ }_{m} V_{(1)}-{ }_{m} V_{(2)}}{{ }_{h} V_{(1)}-{ }_{h} V_{(2)}}=\frac{\left[P_{(1)}-P_{(2)}\right] \ddot{s}_{x: \bar{m} \mid}}{\left[P_{(1)}-P_{(2)}\right] \ddot{\dddot{x}}_{x: \bar{h} \mid}}=\frac{\ddot{s}_{x: \bar{m} 1}}{\ddot{s}_{x: \bar{h} 1}}=\frac{{ }_{h} E_{x}}{\ddot{a}_{x: \bar{h} \mid}} \ddot{s}_{x: \bar{m} \mid}=P_{x: \bar{h} \mid} \ddot{s}_{x: \bar{m} 1}={ }_{m} V_{x: \frac{1}{n h}} .
$$

Therefore we have the reserve difference formula

$$
\begin{equation*}
m V_{(1)}-{ }_{m} V_{(2)}={ }_{m} V_{x: \frac{1}{h 1}}\left[{ }_{h} V_{(1)}-{ }_{h} V_{(2)}\right], \quad \mathrm{m} \leq h, \tag{3}
\end{equation*}
$$

which can perhaps be inserted after (7.4.10) on page 218 of Actuarial Mathemutics.

More generally, we consider two different policies issued to (x), with the same benefit structure (not necessarily a unit of insurance) during the first h years where h is less than or equal to the shorter of the two premium-payment periods. The premium payment methods of
the two policies are level and of the same frequency. Then formula (3) can obviously be extended to this setting.

Three Applications of the Reserve Difference Formula

Exercise 7.17.b of Actuarial Mathematics :

$$
\begin{aligned}
\bar{V}\left(\bar{A}_{x: \overline{m+n \mid}}\right)-\bar{V}\left(\bar{A}_{x: \bar{m} \mid}^{1}\right) & =\bar{V}_{\left.x \cdot \frac{1}{m \mid} \right\rvert\,}\left[{ }_{m} \bar{V}\left(\bar{A}_{x: \overline{m+n \mid}}\right)-{ }_{m} \bar{V}\left(\bar{A}_{x: \bar{m} \mid}^{\prime}\right)\right] \\
& =\bar{V}_{x \cdot \frac{1}{m \mid}{ }_{m}} \bar{V}^{\prime}\left(\bar{A}_{x \cdot \overline{m+n} \mid}\right), \quad 0 \leq \mathrm{t} \leq \mathrm{m} .
\end{aligned}
$$

Exercise 7.21 of Actuarial Mathematics:

$$
\begin{array}{rlr}
{ }_{k} V_{x: \overline{m+n}}-{ }_{k} V_{x: \overline{m \mid} \mid}^{1} & ={ }_{k} V_{x: \frac{1}{m 1}}\left({ }_{m} V_{x: m+n \mid}-{ }_{m} V_{x: \overline{m \mid}}^{1}\right) \\
& ={ }_{k} V_{x: \left.\frac{1}{m \mid} \right\rvert\,} V_{x: m+n \mid}, & 0 \leq \mathrm{k} \leq \mathrm{m} .
\end{array}
$$

Exercise 7.28.b of Actuarial Mathematics :

$$
\begin{aligned}
& { }_{k} V^{(m)}\left(\bar{A}_{x \cdot \bar{n} \mid}\right)-{ }_{k}^{n} V^{\{m \mid}\left(\bar{A}_{x}\right)={ }_{k} V^{|m|}{ }_{x: \frac{1}{n \mid}}\left[{ }_{n} V^{[m \mid}\left(\bar{A}_{x: \bar{n} \mid}\right)-{ }_{n}^{n} V^{\langle m|}\left(\bar{A}_{x}\right)\right]
\end{aligned}
$$

ACKNOWLEDGMENT

Elias Shiu acknowledges the support from the Principal Financial Group Foundation.

REFERENCE

Bowers, N.L., Jr., Gerber, H.U., Hickman, J.C., Jones, D.A., and Nesbitt, C.J. 1997. Actuarial Mathematics, 2nd ed. Schaumburg, Ill.: Society of Actuaries.

