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Abstract  

Stochastic approximation is a powerful tool for sequential estimation of zero points 
of a function. This methodology is defined and is shown to be related to a broad 
class of credibility formula~ derived for the Exponential Dispersion Family. We further 
consider a Location Dispersion Family which is rich enough and for wtfich no simple 
credibility formul~ exists. For tiffs case, a Generalized Sequenti',d Credibility Formul~ 
is suggested and an optimal stepwise gain sequence is derived. 
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1 I n t r o d u c t i o n  

Stochastic approximationForiginally proposed by Robbins and Monroe (1951)Pis concerned 
with the problem of finding the root of a function which is nei ther  known nor directly 
observable. 

Let g(t) be a t rend of some stochastic process X ( t )  witil a unique root 7-, i.e.F 

g(t) = EX(O = [ xf(xl t)dx,  
$ 

g(T) = o, 

where f ( x  [ t) is a probabil i ty density function of X(t).  r and g(t), which cast also be regarded 
as a regression function of X( t )  conditioned on t r a r e  ~ s u m c d  unknown asadFfurtherFf(x It) 
need not  be known. 

Stochastic approximat ion theory examines the random sequence lb ,  T1, ..., in which I~) is 
an initial guess and T1, Tz, ... ['are evaluated in terms of successive observations X1 (t 1 ), X~ (t 2 ), ..., 
by 

where a ,  is a gain sequence of positive numbersPastd for i = 0, 1 , . . . ,n ,  Xi(Ti) is rasldom 
variablePwhose dis t r ibut ion under condition gb = to, Tt = t l , . . . ,  T,, = t~ is the same as the 
dis t r ibut ion of X(ll) (see Hall astd Heyde (1980)FSection 7.6.2). 
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Over tile yearsFstochastic approximation has been extensively studied and proved to be 
a powerful and useful tool. For a recent publication see Kushner and Yin (1997). 

The main goal of this paper is to identify the relationship between the credibility for- 
mula and stochastic approximation. This relationship is then explored for cases where the 
traditional credibility formula fails in tile sense that it does not provide the exact expres- 
sion for the predicted ineaal and where stochastic approximation gives rise to some kind of 
quasi-credibility. 

Let X denote the claim size and let 0 denote the risk paraaneter. Given 0, the distribution 
of X is given by' Fe, a member of a family of distribution{P0,0 E -(9 C R1}. It is further 
assumed that 0 has a prior distribution ~r (0), often referred to as the structure distribution. 
At the center of experience rating is the problem of estimating the fa ir  premium # = # (0) = 
E ( X  ] 0), given n years individual experience xlx2...a:,,,  and the collective fair premium 
m = fo P (0) rr(O)dO. This is traditionMly done by means of a credibility, formula 

~ = (1 - c~ )m + a~ ~,,, (12) 

where (~,, is the credibility factor which tends to 1 as n increases['thus giving less weight to 
the collective fair premium in favor of the individual experience. 

It is straight forward to establish that with fi0 = m, (2) can be written in a sequential 
form as follows: 

O/n,  ^ 
~,,, = s~-~ - - - ( ~ , , - ~  - *~), (3) 

n 

which is a stochastic recursion of the type defined in (1)Fwhere the gain sequence is the 
credibility, factor divided by ,z. While (3) is identical to (2)Pthe latter is particularly suited 
for the sequential evaluation of the fair premium. The strength of stochastic approximation 
lies beyond this technical issue. As we shall show belowPit offers means for the evaluation 
of credibility in cases where the traditional credibility formula fails, For a full version of the 
paper including proofs of theorems see baatdsman and Makov (1999b). 

2 T h e  E x p o n e n t i a l  D i s p e r s i o n  F a m i l y  

The exponentiM dispersion family (EDF) was considered in Nelder and Wedderburn 
(1972)FTweedie (1984)I'and aorgensen (1983F 1986F1987F 1992) and takes the following 
form: 

dP<,~ = f ( x  [ 0, A)dx = e'\(~:o-k(O))q~,(x)dx, O < 0 C R l , k  C A E R +, (4) 

O = {0 I Ak(0) = tnfe~e*q, \ (x)dx < oo}. 
The EDF has certain analogies with location and scale modelsPwhere location is expressed 

by the population meaal 

Ee,,\X = [ xdPe,,~ : k' (0) : # (0) = t~, 
J 
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and the role of the scale parameter is played by the dispersion parameter ¢r ~ = 1/)t. It follows 
from (4) that the population variance is given by 

~ , x x  = k"/A = v ( .  (0))~L 

where V(/~) is called the variance function. The EDF is am extension of the Natural Ex- 
ponential family (NEF). IndeedFfor )~ = l I ' the  EDF is reduced to the NEF. The EDF is 
characterized by the nature of its variance function. Morris (1982F 1983) studied exponen- 
tim families with quadratic variance functions. Cubic variance functions were discussed by 
Morn (1986) and Letac and Morn (1990). Power variance functions were investigated by 
Bar-Lev and Enis (1986) and Jorgensen (1987). See also Letac (1991)FBar-Lev et al (1992)F 
Kokonendji (1992) and Kokonendji and Seshadri (1994). 

The stud), of the EDF in actuarial science is only now starting. It has been recently 
used for modelling compound Poisson claim data (see Jorgensen and Paes de Souza (1994)). 
Bayesian credibility formulae were derived in Landsman and Makov (1998). We now recall 
the main results of the latter paper and relate credibility to stochastic approximation. 

Let the distribution of claims be given by (4) and let the conjugate prior distribution of 
0 be given by 

rr(0) ¢( e ~°(~°°-k(°)), (5) 

where the choice of the hyperpaxarneters no, xo renders rr(0) the properties of a density 
function (see Diaconis and YlvisakerF1979). Then for a given )t C A E R +, the B~vesian 
credibility formula is as follows (see Landsman and Makov (1998)) 

E(x.+~ [ xl,x~ .... x,,,A) = E(,u [ x~,xz .... x,.,A) (6) 
n o ;~ 

- no+n~ m+no+n~ £~' 

Following (3)Pwe can write (6) in a stochastic approximation fashion:. 

A 
~" = ~"-~ no + ,~X (~-L - x.) .  (7) 

We shall now take this sequential credibility formula and discuss its role as a functional 
root finder of the trend of some process X(t).  

bet us reparaxnetrize the EDFFpassing from its canonical parameter 0 to the parameter- 
expectation #, usually called the natural paxaxneter. We denote the family of densities (4) 
in the new paraxnetrization by f ( x  I #, A) and the score functions of EDF with respect to #, 

0 
J(x l . ,  ~) = ~ In ](xl~,  A). 

T h e o r e m  1 The stochastic approximation recursion (7) corresponds to the process 

X( t )  = -V ( t ) J (X l t ,  X) (8) 

and converges with probability I to #, the root of function 

g(t) = -V(t)E, ,~3(Xl t ,  X). (9) 
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So far we have considered credibility' evaluation when )~ is assumed known. When this is 
not the ca.sel'several alternatives axe available ( for details set- Landsman and Makov (1998F 
1999a)). 

3 Location Dispersion Family 

We now extend our discussion to Location Dispersion Family (LDF) (see Jorgensen (1983[' 
i987F1992) ) 

dl~,~ = f(xlO, A)dx = a(A)exp(Xu(x - O))dx, x E R, (10) 

0 E R, A E R+. 
The linear credibility formulaPgiven in the right side of (6)Fis totally justified in the 

case of EDF since it provides the exact expression for E(x,,+z ] x> x~ .... x~, ~\)Pthe predicted 
mean of a future claim. Although in the case of LDFFwhose menabersFwith the exception 
of the of normM distributionsFaxe not EDFPthe  predicted mean is no longer linear with 
respect to the data (see Diaconis and Ylvisaker (1979)) and the equality between predicted 
me0.n and linear credibility formula now failsPthe process (8) can still be considered and 
stochastic approximation recursionFcorresponding to this processFcan be constructed. We 
consider such u recursion as a naturM extension of the linear sequential credibility formula 
(7). CertaiulyPother alternativesl~sing some numerical methods can be suggested (see Young 
(1997P1998)). It should be emphasized that on the one h~nd tile our approach preserves 
the optim',d property of the predicted mean at any step n (stepwise optimal propertyFsee 
Section 4Won the other hand it preserves a lineal-fractional structure of the contribution of 
r/ in tile prediction of a future claiml'which is typical for linear credibilityl'and it provides 
an improved m.s.e. (see Remaxk 2). 

T h e o r e m  2 Let fuliction u(x) in (10) be concave (or convex), twice differentiable and u'(x) 2 
be integrable u,ith respecl to density {10). Let/*o(A) be the expected value of  (10) for  0 = 0, 
then the stochastic approzimation reeursion (I) with 

X(t)  = ~,;  (.": - t + #o(~')) (11) 

(or X(t )  = - . \ u ' ( X  - t + tL0(A)) for a convex u) a~d a gain sequeT~ce meeting regularity 
conditions converges a.s. to the fair premium/l .  

The recursion established in Theorem 2 takes the form 

(or ~ = fi~-z + a,,Au'(.r,~ -fi,~-z + #0(A)) for a convex u(x)) ,  which we shall call generalized 
Sequential Credibility formula. 
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3.1 Examples 
Let us show that for all the examples of LDF discussed in Jorgensen (1983)Pcondition C3 
holds (in particularFwe establish the concavity (or convexity) of u(x)) and therefore Theorem 
2 applies. 

o Log gamma is LDF with u(z) = x - exp(x) ,x  C R, u"(x) = - exp(x) < 0. 

o The Baxndorff-Nielesen (1977) hyperbolic distribution 

1 
f(xlO' ~) - 2aKI(A) e x p ( - A { a 0  + (* - 0)~)l/a - 'z~(~ - 0)}),x C R, 

where a 2 =1+/32, 3 E RPand Kl  is a Bessel functionlSs a LDF with u(x) = - a  ( ~ / ~  xa)+ 
3x. Then 

u"(x) = - a  (1 + xa) -a/2 { < 0, i f a  > 0 
> 0 ,  i r a < 0  " 

o Log generalized inverse Gaussian distribution 

1 
f (x l0 'A)  - 2K~a(),) exp ( -A{a (x  - 0) - 3cosh(x - 0)}), x C R, 

a,  fl E R, is a LDF with u(x) = o~x -/~coshx.  It is clear that 

_< O, if 3_> 0 
u" (x )=- / 3c oshx  > 0 ,  i f 3 < O  ' 

3.2 Symmetric Location Dispersion Family (SLDF) 
The SLDF is defined by 

f(xlO, A) = a(A)¢ ~(l~-°l), x,O c R. (13) 

As a special caseFwhen u(x) = -[x[  6, 6 > 0 we have exponential power fanfily 

6)d/~ 
f(x[O, A) - 2P(1/6) exp( -Alx  - 015)' (14) 

which offers a natural generalization of the Normal distributionFfor which 6 = 2 ( Jorgensen 
(1983)FBox and Tiao (1973)). We show below that in the case of SLDF the conditions of 
Theorem 2 can be relaxed. 

T h e o r e m  3 Let u(x) be differentiable monotone on [0, oo) whose integral of the square of 
the derivative with respect to density (i2) exits. Then the stochastic approximation recursion 
(1) with 

x ( t )  = ~ S i g n ( x  - t ) ~ ' ( x  - t) (i5) 

and a gain sequence meeting regularity conditions converges a.s. to the fair premium #. 
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CleartyFexponential power family (14) satisfies conditions of the Theorem 3 for ~ >_ 1. 
The Generalized Sequential Credibility formula for SLDF takes the form 

~,, = /~_~  - a~)~Sign(x. - P~-l)u'(Ix,, - f~,~-~ I) (16) 

R e m a r k  1 For the truncated procedure the limits of the integrals in the Theorems 2 and 3 are 
bounded by the inter-t, als [rt, rz], and so the integrals exist automatically if  the corresponding 
functions are, for  example, continuous. 

4 O p t i m a l  s t e p w i s e  g a i n  s e q u e n c e  

In this section we discuss the choice of a gain sequence {a~} in the Generalized Sequential 
Credibility formulae (12)F(16). 

RecM1 that E,.,~(-) is expectation for given pax0aneters it, A; E,\(.) is the expectation with 
respect to measure r(tt)dP,,,xd # with prior density r o t  ) of parameter it, given )~. (Instead of 
# one can consider parameter 0 and it's prior density r(0)).  

We consider first the case of EDF. From (1) and (S) we can calculate R,, = _b.7~(fi~ - #)~P 
the Bayesian risk of fi,,I'as a function of a~ and further minimize such a function at fixed 
stage n. 

T h e o r e m  4 Gain sequence a~ that minimizes Bayesian risk t ~  at stage n is of the form 

an = Alk_~ + A V ( X )  (17) 

and a corresponding risk sequence is of the form 

n,~- I~_~V(.¥) 
P~_, + v(.¥) (is) 

Starting from Ro = E,\(# - m )  2, the variance of p with respect to 7r(#)d#, and continuing 
the process of substi tuting we get 

Ro 
a,, - nAP~ + A V ( X )  (19) 

For the EDF family and conjugate prior (5)Fx0 and no have the following interpretation 

),v(x) 
xo = m, no - - -  (20) 

Comparing (19)F (20) with (7) we conclude that {a~ = 1/(n0 + n$)} in the sequential 
credibility formula (7) is an optimal stepwise gain sequence. 

We now adopt this approach for evaluating gain sequences for the LDF 

Def in i t i on  1 A gain sequence {am} is called the first order optimal stepwise gain sequence 
i f  it minimizes (Bayes) risk R,~ = E~(~,~ - p)2 of sequential procedure (12) at step n up to 
the term O( R~_I ). 
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Let 

Ix = )Ja(A) u '(x)2exp(Au(x))dx (21) 
o o  

be a Fisher Information about parameter # for the LDFrand  define 

/5 Bx = A~a(~) u"(x? e x p ( a ~ ( ~ ) ) d ~  (22)  
o o  

T h e o r e m  5 Let in addition to the conditions of  Theorem 2 u"(x) ~ be integrable with respect 
to density (10) .  Then the first order optimal stepurise gain sequence takes the form 

lxP~-i 
a,, = Ix + B:0L,-a (23) 

and the corresponding Bayes risk 

R . -  + o(RL1) .  (24) 
14 + BxP~-I  

Let us notice that LDF is EDF if X is Gaussian Af(p,a~).  Then A = cP, u(x) = 
! 2 ~2 - ~ x  , Ix = A, B~ = . For this distribution we have 

P~-i ~ - i o  "2 

which conforms with (17). 
We now offer a modification for the risk and gain sequences ((23) - (24)) by dropping the 

last term on the right hand side of (24). 

T h e o r e m  6 Under conditions of Theorem 5 the modified first order optimal stepwise risk 
and gain sequences given by 

Ro 
• " -  ~ = 1 , 2  . . . .  , (25)  a,, = R,~ nxRo + 1' 

where t¢ = B,\/ I,\. Then the generalized Sequential Credibility formula is of the form 

A 
[t~ = [~,~-t nx + I /Ro u'(x" - [~.-i +/to(A)) (26) 

~---L---u'( x (or  ~ = ~,_~ + .~+~/~o , .  - ~ - - ,  + ~0 (~ ) )  for a con~e~ u(x)). 

It should be emphasized that on the one hand the our approach preserves the optimal 
property of the predicted mean at any step n (up to the term O(R~_ i ) ) ron the other hand 
it preserves a linear-fractional structure of the contribution of n in the prediction of a future 
claimrwhich is typical for linear credibility. 

The attention should be paid to the relevance of coefficient x, which monitors the de- 
creasing rate of a ,  to 0, that in some sense defines the score of the next observation in the 
estimation of the fair premium. The next theorem provides a lower bound for ~, 

95 



Theorem 7 Under conditions of Theorem 2 

> l,x > ! / 5 ~ , u ( X ) - '  (27) 

and ~ = I~ = t ~ k , u ( X ) - :  = cA (e > 0 - some constant) iff X is Gaussian. 

R e m a r k  2 Theorem 7 is important for comparing the m.s.e, of stepwise optimal generalized 
sequential credibility procedure and linear sequential procedure (7) (which is the simple linear 
credibility formula). In fact, let P~ be the Bayes risk for the sequential linear credibility 
formula (7) and R~ be the modified optimal stepwise Bayes risk for' generalized sequential 
credibility procedure (26). From Theorem 7 and (18) it follows that 

i 
" - - - < R , , .  

and the equality holds iff t¢ = I~ = t~.u(X)-t,i.e, iff X is Gaussian, 

Let us notice that in the Gaussi~n case (LDF is EDP (4) with c = 1)P~ = A and therefore 
(25) coincides with (19). 
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