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Bayesian Risk Aggregation:

Correlation Uncertainty and Expert Judgement

Klaus Böcker ∗ Alessandra Crimmi † Holger Fink ‡

1 Introduction

In this Chapter we present a novel way for estimating aggregated EC figures based on

Bayesian copula estimation. Contrary to the classic approach of using a single inter-risk-

correlation matrix we derive a probability distribution of possible correlation matrices

that enables us to tackle the important issue of parameter uncertainty.

One of the main concerns in connection with risk aggregation is of whether and to

which extent diversification benefits between different risk types can be identified. Apart

from the very simple approach of adding-up all EC estimates for each risk category or

business line one can distinguish between top-down or modular approaches on the one

hand and bottom-up or multi-factor simulation approaches on the other, cf. for instance

Saita [24] for further information and references about principles of risk aggregation.

Bottom-up approaches basically model all the bank’s real and financial variables in-

cluding assets, liabilities and interest sensitive off-balance sheet items simultaneously, see

for e.g. Kretzschmar, McNeil, and Kirchner [16]. This allows to capture gains and losses at

the level of individual instruments or positions without the need for creating artificial risk

silos. Such sophisticated approaches are particularly important for market and credit risk,

which are highly related and inextricably linked with each other, see e.g. the Research

Task Force of the Basel Committee on Banking Supervision [2] and Hartmann, Pritsker,

and Schuermann [14] for more details about the interaction of market and credit risk.

While financial institutions and supervisors are seeking for flexible bottom-up methods

for the aggregation of market and credit risk, conceptual difficulties remain with respect to
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other risk types such as operational risk and business risk. As a matter of fact, banks are

currently still favoring simpler top-down methods when computing their aggregated EC

as pointed out by the IFRI/CRO Forum [15]. According to this survey the most popular

method in practice is the aggregation-by-risk-type approach where stand-alone risk figures

of different risk types are combined in some way to obtain the desired aggregated EC.

In a similar, more recent survey of the Basel Committee [3] it is reported that “there is

no established set of best practices concerning risk aggregation in the industry.” From all

this, it can be expected that for quite some time hybrid approaches that at least partially

rely on an inter-risk-correlation matrix will heavily influence market practices.

The simplest form of risk aggregation expresses the dependence between different risk

types by an inter-risk-correlation matrix R, and its estimation and calibration is a core

problem for the calculation of total EC in practice. A standard approach is to model the

dependence structure between risk types by a distributional copula, see e.g. the references

in Böcker [5]. Estimates for inter-risk-correlations differ significantly within the industry.

The IFRI/CRO Forum [15] points out that“correlation estimates used vary widely, to

an extent that is unlikely to be solely attributable to differences in business mix.” More

bluntly, one could also say that banks often have only a vague opinion about inter-risk

correlations and that their estimation is afflicted with high uncertainties. One reason for

this is that very often reliable data are scarce and do not cover long historical time periods.

Therefore, inter-risk correlations are approximated by the co-movement of asset price

indices or similar proxies of which it is hoped are representative for these risk types. As a

consequence thereof, a reliable and robust statistical estimate of the inter-risk-correlation

matrix is often not possible and it is necessary to draw on expert opinions. This has

recently also been acknowledged by the Committee of European Banking Supervisors [8],

where they explicitly distinguish statistical techniques versus expert judgements.

Our work makes two novel contributions for estimating aggregated EC within an

aggregation-by-risk-type framework. First, we explicitly address the existence of param-

eter uncertainty associated with the inter-risk-correlation matrix. Second, we present a

sophisticated method for assessing inter-risk correlations (more precisely, the Gaussian

copula parameters) by means of expert judgement. To illustrate our approach, we calcu-

late aggregated EC for the same portfolio already used in Böcker [5], consisting of 10 %

market risk, 61 % credit risk, 14 % operational risk, and 15 % business risk in terms of

99.95 % EC. Here, however, we make an assumption which is key to what follows, namely

that as a consequence of all the uncertainties a bank’s inter-risk-correlation matrix cannot

be considered as a fixed parameter of the risk-aggregation model but should rather be treated

as a random parameter. Hence, in a Bayesian framework, the inter-risk-correlation matrix

R (or, more generally, the parameters of the copula) is described by a posterior distribu-
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tion, which comprises empirical information (e.g. time series of risk proxies representative

for each risk type) as well as expert judgement.

This Chapter is organised as follows. First we briefly recap the “classic” aggregation-

by-risk-type approach using a fixed Gaussian copula and also introduce the portfolio that

serves as an illustrative example. Then we describe the construction of the prior and

posterior distribution of the inter-risk-correlation matrix by considering the different pair

correlations separately. For specific models of the pair correlation priors (the beta model,

the triangular model, and the uniform model) we suggest a Markov-Chain-Monte-Carlo

(MCMC) algorithm that can easily be used to sample a set of correlation matrices from

the posterior. We then discuss a numerical example of risk aggregation and, finally, we

examine how inter-risk correlations may be estimated using expert knowledge.

2 Classic copula aggregation

A d-dimensional distributional copula C is a d-dimensional distribution function on [0, 1]d

with uniform marginals. Among all copulas discussed in the literature, maybe those most

frequently used for risk aggregation are the Gaussian copula and the t copula. The impor-

tance of copulas for financial risk management is essentially a result of Sklar’s theorem,

stating that every multivariate distribution function can be separated into their marginal

distribution functions and a copula. Therefore, copulas allow for a separate modelling

of the marginals of distinct risk types on the one hand and their dependence structure

(i.e. the copula) on the other. Distributional copulas have been frequently applied to risk

aggregation e.g. Dimakos & Aas [9], Rosenberg & Schuermann [23], Ward & Lee [26], or

Brockmann & Kalkbrener [6].

In the sequel, we summarise some properties of the Gaussian copula, see Cherubini,

Luciano, and Vecchiato [7] for more details. Let Φ denote the standard univariate normal

distribution function, Φd
R the standard multivariate normal distribution function with

d× d correlation matrix R, which equals the covariance matrix, and (u1, . . . , ud) ∈ [0, 1]d.

Then, the distribution function of the d-dimensional Gaussian copula is given by

Cd
R(u1, . . . , ud) = Φd

R(Φ−1(u1), . . . ,Φ
−1(ud)) (2.1)

where Φ−1(·) denotes the inverse of the standard normal distribution function. The density

of the d-dimensional Gaussian copula can be written as

cdR(u1, . . . , ud) = det(R)−
1
2 exp

[
−1

2
ξ′(R−1 − Id)ξ

]
(2.2)

with ξ = (Φ−1(u1), . . . ,Φ
−1(ud))

′ and identity matrix Id.
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We now turn to the estimation of the Gaussian copula which is usually done by max-

imising the likelihood function. Suppose x1, . . . ,xn is an n-sample of d × 1 mutually

independent observations that are identically distributed. In the context of inter-risk ag-

gregation each marginal component of the vector xj, j = 1, . . . , n, represents a suitable

risk driver or loss proxy representative for a different risk type. Specifically, assuming a

Gaussian copula model means that all components of xj, j = 1, . . . , n, have a Gaussian

dependence structure.

After transforming the sample data xj into variates uj with uniform marginals (e.g.

using order statistics or parametric distribution functions), we obtain the likelihood of

the Gaussian copula as (sse Press [20])

l(R|ξ1, . . . , ξn) ∝ det(R)−
n
2 exp

[
−n

2
tr(R−1B)

]
, (2.3)

where the d×d symmetric, positive semidefinite matrix B denotes the sample covariance

matrix of the data after transformation to standard normal marginals, i.e.

B =
1

n

n∑
j=1

ξjξ
′
j with ξj = (Φ−1(u1j), . . . ,Φ

−1(udj))
′ . (2.4)

The matrix B is also the global maximum of the likelihood function (2.3) (see e.g. Press

[20], p. 183) from which the Gaussian copula parameter R̂ can be obtained.

After the matrix R̂ has been determined, one can start with the risk-type aggregation.

As mentioned in the introduction, we adopt the portfolio used in Böcker [5] consisting

of 10 % market risk, 61 % credit risk, 14 % operational risk, and 15 % business risk,

representing an industry average obtained from large banks reported in IFRI/CRO Forum

[15], Figure 16. Furthermore, we assume that EC for each risk type was calculated at

confidence level of 99.95 %, time horizon of one year, and that the marginal distribution

functions are as in Table 2.1. Now, observing that the inverses F−1i (·), i =, 1, . . . , d, of

all marginal risk type distribution functions Fi(·) exist, classic risk aggregation with a

Gaussian copula is straight-forward. In a first step, one simulates a large number N of

mutually independent d× 1 vectors u1, . . . ,uN from the Gaussian copula Cd
R̂

. Note that

by definition for all j = 1, . . . , N the marginal components {u1j, . . . , udj} of the vectors

uj are uniformly distributed with a Gaussian dependence structure. In a second step,

all marginal components are transformed by F−1i (uij), i = 1, . . . , d, j = 1, . . . , N . Since

copulas are invariant under strictly increasing transformations, the dependence structure

between {F−11 (u1j), . . . , F
−1
d (udj)}j=1,...,N is the same as between {u1j, . . . , udj}j=1,...,N , that

is a Gaussian one. Finally, a simulated N -sample of aggregated EC can be computed

through
{∑d

i F
−1
i (uij)

}
j=1,...,N

.
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Risk Distribution function Parameters

MR F (x) = Fν
(
x−µ
σ

)
, x ∈ R µ = 0, σ = 2.18, ν = 10

CR F (x) = X = 2338.64,

Φ
[

1√
%

(√
1− %Φ−1( x

X
)− Φ−1(p)

)]
, x > 0 p = 0.3%, % = 8%

OR F (x) = Φ
[
lnx−µ
σ

]
, x > 0 µ = −0.893, σ = 1.089

BR F (x) = Φ
[
x−µ
σ

]
, x ∈ R µ = 0, σ = 4.56

Table 2.1: Marginal distributions for market risk (MR), credit risk (CR), operational risk (OR), and

business risk (BR), where Fν is the Student-t distribution function with ν degrees of freedom and Φ

is the standard normal distribution function. MR follows a scaled Student-t and CR is described by a

Vasicek distribution with total exposure X, uniform asset correlation %, and average default probability

p. Operational risk (OR) is assumed to be lognormally distributed and business risk (BR) is modelled

by a normal distribution. The parameters for the distribution functions are chosen so that MR, CR, OR,

and BR absorb 10, 61, 14, and 15 units of EC at 99.95 % confidence level. Finally, only credit risk and

operational risk have non-zero expected losses of about 7.0 and 0.7, respectively.

3 Bayesian risk aggregation

3.1 Construction of the inter-risk-correlation prior

In the Bayesian approach for risk-type aggregation, one has to find a suitable prior for the

inter-risk-correlation matrix R of the Gaussian copula. This prior represents the available

expert knowledge regarding the inter-risk-correlation matrix in probabilistic form. In our

example the 4×4 correlation matricesR can be identified with a 6-dimensional real vector

by

R =


1 r1 r2 r3

· 1 r4 r5

· · 1 r6

· · · 1

←→ (r1, r2, r3, r4, r5, r6), ri ∈ [−1, 1], 1 ≤ i ≤ 6, (3.1)

where the matrix R must be positive semidefinite.

The most commonly used prior model for a covariance matrix Σ is the inverse-Wishart

distribution, see e.g. Press [20]. Since every covariance matrix Σ is related to a correlation

matrix R by

Σ = S1/2RS1/2 , (3.2)

where S = diag(σ11, σ22, . . .) and σjj are the diagonal elements of Σ, the inverse-Wishart

prior can also be used to construct a prior for the correlation matrix. An example of this

method can be found in the Chapter of Dalla Valle in this volume.
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The inverse-Wishart-based prior for the inter-risk-correlation matrix allows only for

one single degrees of freedom parameter ν to express prior beliefs (and thus the level of

uncertainty) about R. In practice, however, the amount of available expert information

for different pair correlations ri, i = 1, . . . , 6, may significantly depend on the risk-type

combinations. Another drawback of the inverse-Wishart distribution is that the resulting

prior for R cannot easily be estimated by means of expert judgement. Note, that the

prior distribution for R is calculated from the inverse-Wishart prior for Σ through the

transformation (3.2), which rarely yields a prior distribution that can easily be specified

by expert elicitation. All this leads to the conclusion that the inverse-Wishart based prior

is inadequate for our purpose and that we have to construct a more flexible prior directly

for the correlation matrix R.

We therefore use a kind of “bottom-up” approach to build the prior distribution for

R. In a first step, prior information for each component ri, i = 1, . . . , 6, of R is separately

modelled by one-dimensional distributions with Lebesgue densities πi(ri), i = 1, . . . , 6.

By (3.1) this yields a distribution of symmetric, real-valued matrices with diagonal ele-

ments equal to one. In a second step we restrict to those matrices preserving the positive

semidefiniteness of the correlation matrix. Hence, denoting the space of all 4-dimensional

correlation matrices by R4, a possible density for the correlation matrix prior can be

written as

π(R) =
∏

1≤i≤6

πi(ri) 11{R∈R4}. (3.3)

The indicator function 11{·} ensures that the matrices are positive definite and also intro-

duces a dependence structure among the ri for i = 1, . . . , 6.

Pairwise correlation priors As described in more detail in a later section of this

Chapter, a well-established approach for the subjective determination of a prior density

is by matching a given functional form. The shape of the prior reflects the amount and

the quality of the available information and should match the experts’ beliefs as closely

as possible.

As risk managers are concerned about unreasonable and possibly incorrect diversifi-

cation benefits, it is normally assumed that correlations between different risk types are

non-negative. Such a boundary condition for the correlation matrix can easily and natu-

rally be modelled within the Bayesian framework by considering only pairwise priors πi

that have support in [0,1].

Example 3.1. [Uniform prior]

Assume that the experts are totally uninformed about the possible values of the single

pair correlations ri for i = 1, . . . , 6. Consequently, we may want to take all values of ri as
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equally likely and, in consideration of the general restriction ri ∈ [0, 1], a natural diffuse

prior is the uniform distribution

πi(ri) ∝ 11{0<ri<1} , i = 1, . . . , 6 .

Note, however, that owing to the positive definiteness constraint of R, the marginal pri-

ors for the individual correlations ri resulting from (3.3) are not uniformly distributed

anymore. See also Barnard, McCulloch, and Meng [1] for further discussion. �

Example 3.2. [Beta distributed prior]

Suppose the pairwise correlations ri follow a beta distribution,

ri ∼ Be(αi, βi) , i = 1, . . . , 6,

with hyperparameters αi, βi > 0. This approach was also suggested by Gokhale & Press [13]

to model the correlation coefficient in a bivariate normal distribution. The beta density

is given by

Be(ri|αi, βi) =
rαi−1
i (1− ri)βi−1

B(α, β)
, ri ∈ [0, 1] , (3.4)

where B(·, ·) denotes the Euler beta function. The mean value and variance are given by

µi =
αi

αi + βi
,

σ2
i =

αiβi
(αi + βi)2(1 + αi + βi)

, i = 1, . . . , 6 , (3.5)

which can be utilized to calculate the hyperparameters αi, βi by means of expert judgement

(see the last section in this Chapter). �

Example 3.3. [Triangular distributed prior]

An alternative family of useful prior distributions for a correlation parameter is the sym-

metric triangular distribution giving values between αi and βi with −1 ≤ αi < βi ≤ 1.

Then, the prior density for all ri, i = 1, . . . , 6, is of the form

T (ri|αi, βi) = 4
βi − ri

(βi − αi)2
11{(αi+βi)/2<ri≤βi} − 4

αi − ri
(βi − αi)2

11{αi≤ri≤(αi+βi)/2}, ri ∈ R.(3.6)

Similarly to the previous example, the mean and variance can be calculated as

µi =
αi + βi

2
,

σ2
i =

1

24
(αi − βi)2 , i = 1, . . . , 6 . (3.7)

In contrast to the beta distribution, the support of the triangular distribution is not

confined to the interval [0, 1]. So as to acknowledge the conservative assumption ri ∈ [0, 1],

one can use a truncated version of the triangular distribution instead and the subsequent

calculations can be done in a similar way. �
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Posterior for the correlation matrix To construct the posterior distribution for the

entire inter-risk-correlation matrix of a Gaussian copula, one has to combine the prior

distribution (3.3) with the likelihood function (2.3) of the data (after transformation to

standard normal marginals) according to Bayes theorem. One then obtains

p(R|ξ1, . . . , ξn) ∝ π(R) l(R|ξ1, . . . , ξn)

∝ det(R)−
n
2 exp

[
−n

2
tr(R−1B)

] 6∏
i=1

πi(ri) 11{R∈R4} , (3.8)

where πi(·) are the pairwise correlation priors which can, for instance, be chosen according

to the examples above (i.e. uniform, beta, or triangular distributed).

3.2 Simulation of inter-risk-correlation matrices

The posterior distribution of the inter-risk-correlation matrix of a Gaussian copula as pre-

sented by (3.8) is not a standard distribution. Therefore, we apply MCMC methods to gen-

erate a sample of inter-risk-correlation matrices distributed according to p(R|ξ1, . . . , ξn).

MCMC methods entails repeated sampling from a Markov chain that converges to sam-

pling from the posterior distribution, in our case (3.8). A modern overview about compu-

tational tools for Bayesian statistics is given by Robert and Rousseau in Chapter 1 in this

book; established textbook references on MCMC are Gilks, Richardson, and Spiegelhalter

[12], and Robert and Casella [21].

Gibbs sampling One possibility is to simultaneously simulate a 6-dimensional Markov

chain of the vector of pair correlations (r1, . . . , r6), e.g. by using a Metropolis-Hastings

algorithm. This would necessitate a six-dimensional proposal distribution and our experi-

ence is that the convergence of the chain often becomes very slow, especially when more

than only four risk types are considered. An alternative and convenient method is Gibbs

sampling, which allows to circumvent high dimensionality by simulating componentwise

using the full conditionals of (3.8) with respect to all but one pair correlation ri. More

precisely, up to a constant, the full conditional posterior distributions for i = 1, . . . , 6 can

be written as

p(ri|rj, i 6= j) ∝ det
(
Ri(ri)

)−n
2 exp

[
−n

2
tr
(
Ri(ri)

−1B
)]
πi(ri) 11{Ri(ri)∈R4} , ri ∈ [0, 1](3.9)

where Ri(·) ≡ R(·|r1, . . . , ri−1, ri+1, . . . , r6) is the correlation matrix obtained from R

by fixing all but the i-th pair correlation. These one-dimensional distributions are still

complex and not at all standard. However, an independent Metropolis-Hastings algorithm
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where the proposal density is independent of the current chain value works quite well for

our set-up, see details below.

The Gibbs sampler generates an autocorrelated Markov chain of vectors (r
(t)
1 , . . . , r

(t)
6 )t=0,1,2,...

with stationary distribution p(R|ξ1, . . . , ξn) given by equation (3.8). The updating of the

t-th component of the chain to the (t+1)-th component works componentwise by sampling

from the one-dimensional full conditionals (3.9):

(1) r
(t+1)
1 ∼ p(r1|r(t)2 , r

(t)
3 , . . . , r

(t)
6 ),

(2) r
(t+1)
2 ∼ p(r2|r(t+1)

1 , r
(t)
3 , . . . , r

(t)
6 ),

...

(6) r
(t+1)
6 ∼ p(r6|r(t+1)

1 , r
(t+1)
2 , . . . , r

(t+1)
5 ).

The Gibbs sampler converges in our situation by construction, see Section 10.2 of

Robert and Casella [21]. Therefore, after a sufficiently long burn-in period of b iterations,

the matrices R
(t)
b<t≤T built from (r

(t)
1 , . . . , r

(t)
6 ) are approximately distributed according to

the posterior (3.8).

Metropolis-Hastings-within-Gibs sampling The Gibbs algorithm above involves

iterated sampling from the full conditional distributions, which in our case is done by an

independent Metropolis-Hastings algorithm. Hence, the entire procedure may be referred

to as a Metropolis-Hastings-within-Gibbs algorithm.

The Metropolis-Hastings algorithm requires an appropriate proposal density. In gen-

eral, the Metropolis-Hastings algorithm is more efficient when the proposal density is at

least approximately similar to the target density, i.e. the full conditionals (3.9). Assuming

that the length n of the empirical time series is relatively short, we may suppose that the

shape of the full conditional posteriors (3.9) are mainly impacted by the full conditionals

of the correlation matrix priors, i.e. by

π(ri|rj, i 6= j) ∝ πi(ri) 11{Ri(ri)∈R4}, i = 1, . . . , 6, ri ∈ [0, 1] . (3.10)

Therefore, when deploying the one-dimensional independent Metropolis-Hastings al-

gorithm to sample from (3.9), it may be justified to chose the full conditionals (3.10)

as proposal densities. An alternative proposal is the uniform distribution. It should be

mentioned that the question regarding which proposal distribution works best can only be

answered in the context of the concrete data at hand. In our exercise below, we found that

proposals of the form (3.10) are superior to a uniform distribution when beta distributed

priors are used (Exercise 3.2). However, in case of triangular shaped priors (Exercise 3.3)
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either a uniform distribution or the full conditional priors are suitable proposal densities

and lead to a good convergence of the MCMC simulation.

When sampling ri, i = 1, . . . , 6, from (3.9) one has to account for the fact that the

resulting matrix R must be positive semidefinite. In order to achieve a maximum com-

putational efficiency, it would be good to know what values of ri, given all the other

correlations rj, j 6= i, keep R positive semidefinite. Following Barnard et al. [1] we remark

that the indicator function 11{Ri(ri)∈R4} whose evaluation involves computations of deter-

minants can be rewritten as 11{ri∈[ai(rj ,j 6=i),bi(rj ,j 6=i)]} for all i = 1, . . . , 6. Here, ai(rj, j 6= i)

and bi(rj, j 6= i) are the roots of the two-grade polynomial det(Ri(ri)) = 0 with Ri(·) as

defined in (3.9). Therefore, sampling from the full conditionals (3.9) reduces to sampling

from the related truncated distributions with truncation intervals [ai(·), bi(·)] that can

easily be calculated in closed-form1.

Before we specify the simulation algorithms for different prior assumptions, we should

mention that our independent Metropolis-Hastings algorithm always converges due to

compact support of proposal and posterior densities, cf. Theorem 7.8 of Robert and

Casella [21].

Example 3.4. [Beta distributed prior (continued)]

We use the beta distributed pairwise priors introduced in Example 3.2 and thus the prior

for the correlation matrix follows from (3.3) to be

π(R) =
∏

1≤i≤6

Be(ri|αi, βi)11{R∈R4}. (3.11)

As already mentioned above, we take as proposal distributions for the independent Metropolis-

Hastings algorithm the full conditionals of (3.11), which can be written as

π(ri|rj, j 6= i) ∝ Be(ri|αi, βi) 11{ri∈[ai(rj ,j 6=i),bi(rj ,j 6=i)]} , i = 1, . . . , 6 , (3.12)

where ai(·) and bi(·) are the solutions to det(Ri(ri)) = 0. We now can specify the whole

simulation algorithm as follows:

(I) Choose a starting correlation matrix R(0) ←→ (r
(0)
1 , . . . , r

(0)
6 ) and set t = 0.

(II) Set (z1, . . . , z6) = (r
(t)
1 , . . . , r

(t)
6 ). For i = 1, . . . , 6 do:

(1) Set k = 0, x(k) = zi and define Ri[·] ≡ R
[
· |zj, j 6= i

]
.

(2) Generate a beta proposal y ∼ π(·|zj, j 6= i) according to (3.12).

1The brute force method would be to generate samples from the untruncated proposal distribution

until the matrix R is checked to be positive semidefinite.
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(3) Calculate the update probability δ as

δ = min

{
1, det

(
Ri[y]

Ri[x(k)]

)−n
2

exp
[
−n

2
tr
[(
Ri[y]−1 −Ri[x(k)]−1

)
B
]]}

.

(4) Take x(k+1) =

{
y, with probability δ,

x(k), else.

(5) If k = IMH − 1 then stop and set zi = x(k+1), else set k = k + 1 and go to (2).

(III) Set (r
(t+1)
1 , . . . , r

(t+1)
6 ) = (z1, . . . , z6).

If t = IGibbs − 1 then stop, else set t = t+ 1 and go to (II).

IGibbs and IMH determine the number of steps of the Gibbs sampler and the independent

Metropolis-Hastings algorithms, respectively. �

Example 3.5. [Triangular distributed prior (continued)]

In case of the triangular priors (3.6) of Example 3.3 we decided to use uniformly distributed

proposals. The simulation can be done using the following algorithm:

(I) Choose a starting correlation matrix R(0) ←→ (r
(0)
1 , . . . , r

(0)
6 ) and set t = 0.

(II) Set (z1, . . . , z6) = (r
(t)
1 , . . . , r

(t)
6 ). For i = 1, . . . , 6 do:

(1) Set k = 0, x(k) = zi and define Ri[·] ≡ R
[
· |zj, j 6= i

]
.

(2) Generate a uniform proposal y ∼ 11{Ri[·]∈R4} = 11{·∈[ai(zj ,j 6=i),bi(zj ,j 6=i)]}.

(3) Calculate the update probability δ as

δ = min

{
1, det

(
Ri[y]

Ri[x(k)]

)−n
2

exp
[
−n

2
tr
[(
Ri[y]−1 −Ri[x(k)]−1

)
B
]] T (y|αi, βi)
T (x(k)|αi, βi)

}
.

(4) Take x(k+1) =

{
y, with probability δ,

x(k), else.

(5) If k = IMH − 1 then stop and set zi = x(k+1), else set k = k + 1 and go to (2).

(III) Set (r
(t+1)
1 , . . . , r

(t+1)
6 ) = (z1, . . . , z6).

If t = IGibbs − 1 then stop, else set t = t+ 1 and go to (II).

�

Finally, we want to remark that a simulation for the weakly informative uniform prior

(see Example 3.1) can be done in a similar way as in the examples above and it is not

necessary to provide details about the algorithm.
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Correlations Moments Triangular priors Beta priors

i µi σi αi βi αi βi

1 MR-CR 0.58 0.067 0.416 0.744 30.894 22.372

2 MR-OR 0.35 0.06 0.203 0.497 21.768 40.426

3 MR-BR 0.65 0.065 0.491 0.809 34.350 18.496

4 CR-OR 0.25 0.06 0.103 0.379 12.771 38.313

5 CR-BR 0.6 0.067 0.436 0.764 31.478 20.986

6 OR-BR 0.68 0.067 0.516 0.844 32.282 15.192

Table 4.2: Mean values and standard deviations for the six pair correlations ri, i = 1, . . . , 6, as it could be

obtained by expert judgement. The associated hyperparameters (αi, βi) for the beta model of Example

3.2 and the triangular model of Example 3.3 are derived from (3.5) and (3.7), respectively.

4 A simulation study of aggregated EC

We now illustrate our new approach by means of a fictitious numerical example. We

assume that the empirical correlation matrix B of the Gaussian copula as defined in (2.4)

is given by

B =


MR CR OR BR

MR 1 0.66 0.30 0.58

CR 0.66 1 0.30 0.67

OR 0.30 0.30 1 0.60

BR 0.58 0.67 0.60 1

 , (4.1)

which are actually the benchmark inter-risk correlations reported in the IFRI/CRO survey

[15], Figure 10. This matrix was also used in the simulation study in Böcker [5]. Since this

matrix is not derived from actual risk proxy data, we have to assume a fictitious value for

the time series length n in the likelihood function (2.3). We set n = 12 and 72 to analyse

the impact of different data length on the final results.

In addition to the empirical information above we assume subjective prior knowledge

in order to completely specify the posterior distribution (3.8). Let us suppose that expert

elicitation as explained in the next Section has been performed to estimate the mean

values µi and standard deviations σi of all pair correlations ri, i = 1, . . . , 6, which by

relationships (3.5) and (3.7) can be used to compute the hyperparameters αi and βi. The

assumed outcome of the expert judgement is shown in Table 4.2 for all six pair correlations.

Moreover, Figures 4-7 in the Appendix depict the prior densities parameterised according

to Table 4.2 together with the empirical estimates (4.1).

For the simulation of the posterior distribution of the inter-risk-correlation matrix we
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n=12 MR-CR MR-OR MR-BR CR-OR CR-BR OR-BR

Posterior Mean 0.502 0.264 0.435 0.257 0.527 0.484
Uniform

Posterior Std. 0.168 0.151 0.169 0.150 0.163 0.163

Posterior Mean 0.590 0.354 0.624 0.257 0.599 0.645
Beta

Posterior Std. 0.061 0.056 0.055 0.057 0.058 0.055

Posterior Mean 0.589 0.354 0.623 0.249 0.597 0.643
Triangular

Posterior Std. 0.063 0.057 0.054 0.054 0.059 0.053

n=72

Posterior Mean 0.626 0.267 0.543 0.266 0.640 0.570
Uniform

Posterior Std. 0.063 0.095 0.072 0.093 0.059 0.068

Posterior Mean 0.616 0.339 0.598 0.269 0.624 0.620
Beta

Posterior Std. 0.046 0.047 0.042 0.050 0.043 0.041

Posterior Mean 0.617 0.337 0.596 0.264 0.623 0.617
Triangular

Posterior Std. 0.047 0.048 0.041 0.047 0.044 0.039

Table 4.3: Mean values and standard deviations of the simulated marginal posterior distributions for the

six pair correlations ri, i = 1, . . . , 6, assuming three different prior distributions and two different lengths

for the empirical time series. One can see that, specifically for smaller n, the standard deviation of the

correlations is significantly reduced when prior knowledge is incorporated.

ran the MCMC algorithms described in the previous section for the uniform,the beta and

the triangular model. The starting value R(0) was chosen as the empirical matrix (4.1).

Furthermore, for all models we set IMH = 1 and IGibbs = 107. From this chain we took

only every one hundredth value in order to reduce autocorrelation; moreover, we dropped

the first 10,000 as a burn-in sample. Hence, in both models we finally came up with 90,000

inter-risk-correlation matrices sampled from the posterior distribution.

Table 4.3 shows the mean values and the standard deviations of the marginal posterior

distributions. The posterior means are different from the pure empirical estimates given in

(4.1) because of the additional consideration of expert prior knowledge. Moreover, we see

that the posterior statistics depend only very weakly on whether beta or triangular priors

are chosen. Figures 4-7 graphically compare for n = 12 and 72 the marginal posterior

distributions with the pairwise prior distributions for the beta and triangular model.

To aggregate EC we now use the Gaussian copula model, however, instead of applying

a fixed correlation matrix, we use different correlation matrices randomly selected from

the simulated Markov chain (after discarding the burn-in sample and adjustment for au-

tocorrelation). In doing so, we are able to take the uncertainty of the inter-risk-correlation

matrix correctly into account. Results for the beta and uniform prior models are given

13



Aggregated Economic Capital at 99.95 % CL

Sum Uniform prior Beta prior

100 76.68 [67.86, 83.30] 78.29 [75.94, 80.47]

Table 4.4: Aggregated EC at confidence level of 99.95 % together with the 95 % credible intervals for a

Bayesian Gaussian copula model using uniform and beta priors and time series of length n = 12. The

credible intervals correspond to relative uncertainties of about 20 % and 6 % for the uniform and beta

model, respectively. The portfolio consisting of market, credit, operational, and business risk is specified

in Table 2.1.

in Table 4.4. One observes that beta priors lead to slightly higher results than uniform

priors, which is in accordance with the posterior means shown in Table 4.3. The posterior

distribution of the inter-risk-correlation matrix implies also a posterior distribution for the

aggregated EC which can be used to analyse the uncertainty of a bank’s aggregated EC

figure and thus also the diversification benefit due to risk-type dependence. Particularly

useful are graphical methods that depict the posterior density of the aggregated EC at

confidence level κ, denoted by pEC(κ)(·), as shown in Figure 1 or “uncertainty” plots like in

Figure 2. The latter illustrates the density pEC(κ)(·) as a function of the confidence level κ

by means of a gray-level intensity plot. Other useful measures of uncertainty are credible

intervals, which are direct probability statements about model parameters or functions of

it given the observed data (see e.g. Berger [4]). We calculated the 95 % percent credible

interval for the EC distributions given in Figure 1. In case of the beta priors we obtain

[36.63, 39.24] and for the triangular shaped priors a calculation yields [36.59, 39.27]. Obvi-

ously, in our numerical example, one can see from Table 4.4 and Figure 1 that the impact

of differently shaped priors (with equal means and standard deviations, however) on the

aggregated EC can be neglected.

5 Expert judgement and

subjective prior assessment

This Section is devoted to the selection of appropriate prior distributions for the corre-

lation matrix R of the Gaussian copula. In typical risk-aggregation problems data are

scarce and therefore it is worthwhile to study how available subjective information or

prior beliefs about inter-risk correlations can be accounted for in a formal and sound way.

The necessity for expert judgement Clearly, if almost perfect empirical data were

available (e.g. complete, reliable, and representative risk-proxy time series for each risk

14



60 65 70 75 80 85 90

Aggregated EC

n = 12

Figure 1: Posterior distribution pEC(κ) of the aggregated EC at confidence level of κ = 99.95 % for the beta

model (solid line) and the uniform model (dashed line) in case of n = 12 smoothed with Epanechnikov

kernel density estimation. The posterior means and 95 % percent credible intervals are given in Table 4.4.

Figure 2: Uncertainty plots for the aggregated EC if the priors for the pair correlations are described

by triangular distributions (left figure) and [0, 1]-uniform distributions(right figure). In both cases it is

n = 12. Lighter (darker) shaded regions of the plot indicate a lower (higher) posterior density of the

aggregated EC.
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type) then it would be acceptable to rely only on statistical correlation estimates to

approximate inter-risk dependence. Unfortunately, in practice it is often extremely difficult

to identify and gather high-quality risk proxies for each risk type, making the estimation

of inter-risk correlations a tricky exercise.

There are several reasons for these difficulties. First, there is the question regarding

internal versus external data. The general opinion is that risk proxies should be derived

from bank-internal data because it is more related to the company’s specific business

strategy. However, internal time series may be hard to come by or difficult to re-build

after a merger or a re-organisation of its business structure, resulting in quite short risk-

proxy time series, which reduce the statistical significance of the correlation estimates. A

consequence thereof is that bank-internal proxies are often amended by external data, at

least for some risk types. Another problem is to find a common frequency that provides a

natural scale for all risk types. Usually, risk proxies for different risk types are measured at

unequal time intervals and therefore further assumptions and approximations have to be

accepted to make risk proxies comparable. For example, market risk data are available at

a daily basis whereas proxies for business risk are often based on accounting information

and therefore exist only at quarterly or even yearly level, creating a bottleneck for the

statistical correlation estimation.

These drawbacks of a purely statistical analysis based on risk proxies show that it

is necessary to include a new component of information, namely expert judgement. The

usage of some kind of judgemental approaches when assessing inter-risk correlations is

very popular in the banking industry, however, most of the employed approaches lack

a sound scientific basis. For instance, the widely used method of “ex-post adjustments”

of the statistical correlation estimates cannot be properly formalised, thereby nourishing

fears and doubts concerning the final figures.

In contrast to this, the Bayesian approach for risk aggregation we are proposing here

allows treating empirical data on the one hand and expert knowledge on the other as

two distinct sources of information, which are eventually amalgamated by means of Bayes

theorem. In this way it is possible to exploit both types of information without negative

feedback effects, namely experts that are biased (“anchored”) by the data and, vice versa,

data that is manipulated by the expert.

The Bayesian choice for risk aggregation means that the experts’ beliefs about the

association between different risk types have to be encoded in the pairwise correlation

priors πi(·) for i = 1, . . . , 6, introduced earlier in this Chapter. This process is referred

to as elicitation of the prior distributions. Elicitation is a difficult task and a number of

different competencies are required to perform it correctly, not only in statistics but also

in the field of psychology. A readable textbook on this intriguing subject is O’Hagan et
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al. [19]. Without going into detail, we want to mention that people are typically employing

only a few strategies or heuristics to quantify uncertainty or to make decisions under

uncertainty, see e.g. Tversky & Kahneman [25]. Consequently, the way questions are

asked and how answers are interpreted by the facilitator is crucial, in particular, it is

advisable to collect expert judgements stemming from different elicitation approaches to

be able to double check their internal consistency. Therefore, our suggestion here is to

elicit pairwise correlations by asking questions about the following three variables, which

then can be used to compute the related copula parameters.

(1) Kendall’s tau rank correlations between two distinct risk types,

(2) conditional loss probabilities between two distinct risk types,

(3) joint loss probabilities between two distinct risk types.

Since we elicit single pair correlations we do not account for positive semidefiniteness

of the entire correlation matrix, which therefore will be considered during the MCMC

simulation of the posterior distribution.

Correlation elicitation using Kendall’s tau Asking experts to quantify an inter-

risk correlation directly is not a trivial task. Direct assessment of a dependence measure

requires deep knowledge of the relative behaviour of each pair of variables or, in our

case, of two risk types. Moreover, direct correlation estimation should be supported by a

thorough explanation about which kind of correlation coefficient one is actually interested

in.

The most common correlation measure used in practice is Pearson’s linear correlation

coefficient. However, it is well-known that this measure is not consistent with Gaussian

copula risk aggregation unless the joint risk-type distribution is multivariate elliptical, see

e.g. Embrechts, McNeil & Straumann [11]. Furthermore, it is by far not clear whether

Pearson’s linear correlation is really the kind of association measure people are thinking

of when being asked about “correlations”. With this respect, our main concern is that the

liner correlation corr(X, Y ) between two risk types X and Y depends not only on their

dependence structure but also on the specific form of the marginal distribution functions

FX and FY . Therefore, experts will only interpret and estimate a linear correlation cor-

rectly if they also account for the specific marginal distribution functions assumed for X

and Y . Another problem is the counter-intuitive fact that for given risk-type marginals

FX and FY the attainable correlations lie, in general, in a subinterval of [−1, 1]. All these

problems have to be clarified before beginning the elicitation experiment since naive, am-

biguous questions about some kind of risk-type “correlation” may lead the expert to give

17



an answer biased by her cognitive notion of correlation that probably significantly differs

from the Gaussian copula parameter we are actually interested in.

A possible loophole is an alternative concept of association, namely that of Kendall’s

tau rank correlation τ , which is particularly useful when—as in our case—a multivariate

elliptical problem is assumed, cf. for instance Embrechts, Lindskog & McNeil [10], and

with an application to risk-type aggregation and elicitation Böcker [5]. The benefit for

expert elicitation is due to the relationship between Kendall’s tau τi and the associated

Gaussian copula parameter ri, which holds true for essentially all elliptical distributions,

namely

ri = sin(π τi/2) , i = 1, . . . , 6 . (5.1)

Recall that τi ∈ [−1, 1], with τi = 1, (τi = −1) for complete positive (negative) depen-

dence, and τi = 0 for independent risk types. Our suggestion is now to ask experts about

their correlation estimates within an interval [−1, 1] where τi = {−1, 0, 1} can be used as

anchors helping experts to calibrate their answers. Finally, the elicited value for τi can be

transformed to the copula parameter ri by means of (5.1).

Correlation elicitation using conditional and joint probabilities The correlation

assessment described above requires the expert to think about two random variables si-

multaneously and is an example for a bivariate elicitation task. A natural way to lower the

complexity of the elicitation procedure is to reduce it to a univariate problem. Specifically,

it has been argued in Gokhale & Press [13] or O’Hagan et al. [19] that one-dimensional

problems are more feasible for expert judgement as experts elicit univariate variables with

a higher degree of accuracy.

Correlation elicitation by means of indirect questions about conditional and joint prob-

abilities was already described in Böcker [5] so that here we only briefly summarise the

main results. First note that if d risk types are jointly distributed with a Gaussian copula

with correlation matrix (Rij)ij, i, j = 1, . . . , d, any two risk types l and m (m 6= l) are

coupled by a Gaussian copula with correlation parameter Rlm. Hence it is sufficient to

consider the bivariate estimation problem.

For two risk-type variables X and Y (and the definition that losses are positive) we

can express their joint survival probability as

P (X > x, Y > y) = 1− P (X ≤ x)− P (Y ≤ y) + P (X ≤ x, Y ≤ y)

= 1− FX(x)− FY (y) + CR(FX(x), FY (y)) , x, y > 0 , (5.2)

where FX and FY are the marginal distribution functions of X and Y , respectively, and

CR(·, ·) is the bivariate Gaussian copula with unknown parameter R. Similarly, one may
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Figure 3: Beta prior and triangular prior obtained by moment matching. It is assumed that the experts’

estimates of some pair correlation are r∗i = {0.1, 0.2, 0.3, 0.35, 0.4}, yielding r∗i = 0.27 and var(r∗i ) =

0.0145.

consider conditional loss probabilities of the form

P (X > x|Y > y) =
P (Y > y,X > x)

P (Y > y)
, x, y > 0 , (5.3)

which depend on the copula correlation R via (5.2). Now, our strategy is to elicit such joint

and conditional probabilities for different threshold values of x and y. Since we assume

that the marginal distribution functions FX and FY are known and already completely pa-

rameterised, one can use relationships (5.2) and (5.3) to determine the copula correlation

R, usually by numerical of graphical methods.

The result of the entire expert elicitation program is that for each pairwise correlation

ri, i = 1, . . . , 6, one obtains a sample r∗i := {r∗i1, . . . , r∗iNi
} of Ni expert estimates. The

elicited values r∗i may arise from one expert who answered to all of the three approaches

suggested above, or may reflect different opinions about risk-type dependence stemming

from several different experts. Now, the experts’ point estimates r∗i , i = 1, . . . , 6, can be

used to determine the hyperparameters of the pairwise correlation priors πi(·), i = 1, . . . , 6.

For the beta and triangular models these are only two parameters αi and βi for each

pair correlation. Therefore, a viable approach is moment matching because, as shown in

Examples 3.2 and 3.3, we only need to decide about the prior means and variances to

fully determine all πi(·), i = 1, . . . , 6. This approach is illustrated in Figure 3.
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Figure 4: Plots of the simulated marginal posterior distributions (kernel density estimation with an

Epanechnikov kernel) and the beta distributed priors for the six pair correlations ri, i = 1, . . . , 6 for

n = 12. The grey filled curves are the marginal posteriors obtained from the beta priors (solid curves),

the dashed curves result from using [0, 1]-uniformly distributed priors. The dotted-dashed lines indicate

the empirical correlations in (4.1). 22
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Figure 5: Plots of the simulated marginal posterior distributions (kernel density estimation with an

Epanechnikov kernel) and the triangular distributed priors for the six pair correlations ri, i = 1, . . . , 6

for n = 12. The grey filled curves are the marginal posteriors obtained from the triangular priors (solid

curves), the dashed curves result from using [0, 1]-uniformly distributed priors. The dotted-dashed lines

indicate the empirical correlations in (4.1). 23
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Figure 6: Plots of the simulated marginal posterior distributions (kernel density estimation with an

Epanechnikov kernel) and the beta distributed priors for the six pair correlations ri, i = 1, . . . , 6 for

n = 72. The grey filled curves are the marginal posteriors obtained from the beta priors (solid curves),

the dashed curves result from using [0, 1]-uniformly distributed priors. The dotted-dashed lines indicate

the empirical correlations in (4.1). 24
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Figure 7: Plots of the simulated marginal posterior distributions (kernel density estimation with an

Epanechnikov kernel) and the triangular distributed priors for the six pair correlations ri, i = 1, . . . , 6

for n = 72. The grey filled curves are the marginal posteriors obtained from the triangular priors (solid

curves), the dashed curves result from using [0, 1]-uniformly distributed priors. The dotted-dashed lines

indicate the empirical correlations in (4.1). 25
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