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A b s t r a c t .  We discuss a (;lass of asymmetric distributions arising in a random summat ion 
scheme. We call members of the class asymmetric 1,aplace distributions ms the s tandard 
Laplace distributions, which are symmetric, coustitute a proper subclass. Among distribn- 
tions which are limits in random summation schemes asymmetric Laplace distributions play 
an analogous role to that  of normal distributions among distributional limits of non-random 
sums. Asymmetric Lat)lace laws are more "peaky" and have heavier tails than normal laws. 
They have stability properties and are convenie, lt in ai)plications, as their densities have 
explicit forms and estimation procedures are easily implemented. Anticipating increasing 
interest in this class of distributions we present statistical tools which can be utilized in 
practice, including algorithms for simulation and estimation. We also discuss more general 
classes of distributions, where asymmetric Laplace distributions appear as special cases. 
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1 I n t r o d u c t i o n  a n d  n o t a t i o n  

Probably the most widely known and used theorem of the probability theory is the Central 
Limit Theorem (('I.T). This theorem in ils most often used form gives necessary and sufficient 
conditions for ll~e convergence of sums of independent and identically distributed el.i.d.) 
random variables to lhe normal law. (7onsequently, lnany scientists and practitioners believe 
that,  provided the ntunber of sunllllallds is large, their sum can always be approximated by 
a normal distribution. This. however, mas' not be tim case. If the summands have infinite 
variance, therl the sum may cozlverge to a stable: law (see for example Samorodnitsky arid 
Taggu [20]). Moreover, even if the variables are indef)endent and normally distributed, the 
sum of their random llunlber nlay not be distributed according to the normal law. 

In Figure 1, we compare lwo his|ograms, each obtained for 5000 observations of the 
sums of i.i.d, random variables, l:or the one on tim left, the observations were generated 
aN [ lon=ra[ ldOll l  Slllll,'-; o f  lfJO0 in<.Iel)elldellL l lOlll lal  randoln variables with a n o n - z e r o  l l leal l ,  

On tim right hand side we generated sums of random variables having the same normal 
distribution but this time with at random immber of terms distributed according to the 
geometric distribution with parameter p = 1 / 1000 and independently of {he terms themselves. 
The data were ct'Iltol'ed Oll their iil(}ai/and scaled by their variation. We clearl see asymmetry 
and peakedness in the ca,~e or rail(lOll1 summation scheme. 

. . . . .  

, , 0 , 2 , 

" ...... dl|  llLb.._ 
Figure 1: l[istograms of non-random sums ([efl) and sums with geometrically distributed 
,mmber of terms (right). 

Apart  from its interestizlg theoretical properties, tile random summation scheme appears 
naturally in various fields, parlicularly in insurance mathematics. In risk theory, we are 
interested in the distribution of aggregate claims generated by tile portfolio of insurance 
polices. If the individual claims are denoted l)y Xi's (usually assumed to be i.i.d.) and the 
rall(lOlll wu'iable ,.,~, (li,ilt)t(}s {~le IIIAIII/)('I' Of claims in a given time period, than ehe aggregate 

114 



c|aim Sp is given by 
Sp = X 1 AV''" ~- X v  v. (1) 

We consider a class of distributions tha t  approximate geometric compounds, tha t  is 
compmu~d distributions (i)  with the geometric ntunber of terms: 

P(, ,~,  = ~.) = p ( 1  - p ) ~ - l ,  k = 1 , 2  . . . .  , ( 2 )  

when the parameter  p converges to zero (so tha t  the average number of terms in (2) converges 
to infinity). Geometric COml)ounds frequently appear in applied I)roblems from various fields, 
including actuarial science, a.~ discussed in Kalashnikov [5]. As shown in Mittnik and Rachev 
[16], the geometric compom~ds (1), appropriately normalized, converge (in distribution) to 
a geometric stable randoln variable, which is a location - scale mixture of stable random 
variables. 

In this paper we focus on an important  special case, where the random variables Xi's 
have a finite second moment (variance). Then, the limiting distribution of normalized Sv is 
a random variable with the following characteristic fimction: 

~,(t) = [ l  + ~ h  ~ - i~ t ]  -~ (3) 

(see for example Mittnik and Rachev [16]). By specifying # = 0, we obtain Laplace distribu- 
tions which are the only symmetric distributions within this class. Thus, it seems pert inent  
to name the distribution with ch.f. (3) an asymmetric Laplace distribution (AL). 

We introduce AL laws in Section 2, where we present their basic properties and pro- 
cedures for simulation and estimation. We show that  the probability distribution of every 
AL random variable is the same as tha t  of the difference of two independent exponentially 
distributed random variables. This crucial observation leads to explicit formulas for densities 
and distribution functions of AL distributions, facilitating their practical implementation.  
We also detine a time dependellt random process through an AL distribution, which plays 
an analogous role to [Irownian motion. In the symmetric case, this process was applied to 
model financial da ta  in b ladan and Seneta [14], where it was termed the Variance G a m m a  
process. 

We think that  AL laws should provide an alternative to normal distributions as distri- 
butional models in a variety of settings. This class is particularly well suited for modeling 
phenomena where the variable of interest results from of a large random number of inde- 
pendent innovations, while the empMcal distribution ai)pears to be asymmetric, "peaky", 
and has tails heavier than those allowed by normal distribution. One area of application 
where modeling with AL laws shoukt be explored is mathematical  finance, where tim empir- 
ical da ta  often have the above l>atures. The idea tha t  the price change <luring a period of 
time is produced by a random numl)er of "individual effects" first appeared in Mandelbrot  
and Taylor [1;5] a,M (:lark [3], and was further explored in bli t tnik and Rachev [16, 17] and 
Kozubowski and Rachev [8]. In Section 3, we apply the AL model to the interest rates da ta  
studied by Kldn [6], showing the consistency with our model. In the Appendix, we collect 
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main proper t ies  of  A L laws and conmlen t  on their  various fur ther  extens ions .  The  resul ts  are 
brief and presented  wi thout  proofs,  a.s the  more  detai led t.realillellt of AL laws will appear  
elsewhere.  

N o t a t i o n .  

• Zo exponent ia l  r andom variable with the  densi ty  

f~(:,,) = } exp(-:,,/o), • > 0, (4) 

• Z = Z1 s l a n d a r d  exponent ia l  r andom variable, 

• For a vector (o," mat r ix )  t ,  t '  deno tes  the  t r anspose  of t ,  

• s ' t  = ~ d = t  tlsi the  inne,' p roduc t  of s = (Sl . . . . .  sa) '  and t = ( t l , . . . ,  ta)', 

" Iltll = ( t ' t )  1/~ = ( ~ = l  t:) j/~ - the  Euclidean norm in 1~ d, 

• convergence  o[" d is t r ibut ions ,  

= equal i ty  of d i s t r ibu t ions ,  

, x ,  

• For u > 0, F(t:) = Jo :r"-le-~'d:r (Ihe g a m m a  ftmction),  

• sign(a:) equals  1 for :c > 0, - 1  for x < 0, and  0 for x = 0, 

• t z E l~, cr >_ 0 location and scale pa ra lne te r s  of AI, d is t r ibut ion ,  

• n = 2~r/(tl + ~ 4 -  t z2) scale invariant  pa rame te r .  

2 Asymmetric Laplace d i s t r i b u t i o n s  

In this  Section we deline imivariate  asylnnlel r ic  I.aplace d i s t r ibu t ions  and  derive their  basic 
proper t ies .  We (),,lit most  I)root~ and  re%r an in teres ted reader to l{ozubowski and  Podgdrski  

[11] for a more  detai led t r e a t m e n t .  

D e f i n i t i o n  2.1 A random variable is ~aid to have an asymmetric Laplace ( A L )  distribution 
i f  there arc pa,'amct(r.~ tl E t~ rind o > 0 .~lwh tlmt its characteristic function has the form 
(3). ll'e denote auch r.~,. aud it.~ distribution a.s };,,~, and A L ( a ,  tz), respectively, and write 

• *'~,~, ,'., AL(cr, It). 

Note the  following relat ions a m o n g  the paramete rs :  

1 it 1 1 ~2 
- - t o =  , - + ~ : =  4 +  , ~ 5 +  = 2 +  . 
/'{ 0 N 
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2.1  S p e c i a l  c a s e s  

While the dis t i i lmtion makes sense for every p E I t  and a _> 0, we have several special cases. 

1, If p = a = 0, then ¢l,(t) = l for every t E R, and tile distr ibution is degenera te  at  0. 

2, For rr = 0 and It > 0, we have an exponential  distr ibution with mean p, denoted  
th roughout  as Z~,. Similarly, if a = 0 and it < 0, we h~ve -Z_, , .  

3, If p = 0 and a ¢ 0, we have the Laplace distr ibution with location zero and scale a ,  
whose densi ty is 

f(x)  = ~ - I . / < ,  x c r~. (s) 

2 .2  M i x t u r e  r e p r e s e n t a t i o n s  

In this sect ion we present  various representat ions  of AL distr ibutions.  The  representa t ions  
lead to explicit formulas for AL densities and distr ibution functions, and facilitate compute r  
s inmlat ions of AL random variates. 

M i x t u r e  o f  n o r m a l  d i s t r i b u t i o n s .  Let N and Z be independent  and s t andard  normal  
and exponent ia l  distr ibutions,  respectively. Then,  the following relation takes place: 

Y.,~ ~ t~X + ~ .  N. (6) 

Thus,  conditionally on Z = z, the r.v. Y ~ AL(a,  tt ) is nor,nal with mean #z  and variance cr,p 

2o-2z. 

A n  e x p o n e n t i a l  m i x t u r e .  Let I~ be a discrete r.v. taking values - ~  and 1/~  with prob- 
abilities p = ~2/(1 + ~¢2) and q = 1/(1 + ~ ) ,  respectively. Let Z be s t andard  exponent ia l  
independent  of I , .  Then 

}.;,,,, d 
= o .  & .  z .  (7) 

In tile symmetr ic  case (p = 0 and t,; = 1), the random variable I ,  takes values 4-1 with 
probabil i t ies i / 2  each, and we obtain the well-known representat ion of symmetr ic  Laplace 
dis t r ibut ion.  

M i x t u r e  o f  e x p o n e n t i a l s .  The ch.f. of Yo,, can be factored as 

1 
~,(t) = (1 + i ta~)(1 - ita/*;)' (8) 

which shows that  every AL random variable ha.s the same dis tr ibut ion as the difference of 
two independent  exponential  random variables: 

}~,, a = a • Z l t , ~  - a • Z , ~ .  (9) 
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l* = O, ,~= t.O 

1" / 

t t =  10, nmO.1 

~5 

-10 -5 0 5 10 

Figure 2: Asymmetric Laplace densities, a = 1 and p =0 , 0.8, 1.5, 2, 3, 4, 6, 8, 10 which 
correspond to n ~ 1.0, 0.68, 0..50, 0.41, 0.30, 0.24, 0.16, 0.12, 0.1. 

2.3 D e n s i t i e s  

Let Pa.. and /~ , .  denote probability density function (p.d.f.) and cumulative distribution 
function (c.d.f.) of an AL(a, tO distribution, respectively. Tim representation (9) produces 
the following explicit formula.s: 

1 n { e x p ( - ~ x ~ ,  if x > _ 0 ( _ _ 1 ,  
p<;,(x) (10) 

a l - t - ~  2 e x p . ,  a' , i fx  < 0 ,  

and 

I~,,(x) 
~-gTrexp x , i fx  _<O. 

Figure 2 shows AL densities for variot, s values of the parameters.  It is clear tha t  the distri- 
bution is t, nimodal with the mode equal to zero. We see the characteristic peakedness of the 
density at  zero. Some basic properties of AL densities are collected in the Appendix. 

2.4 M o m e n t s  a n d  r e l a t e d  p a r a m e t e r s  

Since the density of a.n AL law is a simple exponential function, the values of moments and 
other related parameters  of AL laws follow. We summarize them in Table 1. 
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P a r a m e t e r  D e f i n i t i o n  V a l u e  

Absolute  m o m e n t  

n t h  mo men t s  

Mean  
Variance 

Mean devia t ion 

Coefficient of Variat ion 

Coefficient of Skewness 

Kur tos is  (adjus ted)  

EIYI ~ 

Ey,~ 

E Y  
E 0 " -  EY) ~ 

EIY - tCYl 

11~'Xl 

e ( x  - e x p  
~/1 = ( E ( X  -- E X ) 2 )  3/2 

E ( x -  E X )  3 
~ -  (lZ,.-(x)y 

( ~ )  a p ( a + l ) l + n 2 ( ¢ + l l l + n  ~ 

1 + g 2  

# 
/,2 + 2o.2 

2ae( ,d-1)  
~(1 + ~)  

q - l - -  1-7~7_ ~ 

2 (1/~ 2 + ~2)3/2 

12 
6 (1/a2 + ~2)2 

Table 1: M o m e n t s  a n d  r e l a t e d  p a r a m e t e r s  o f  Y ~  AL(a,#). 

R e m a r k  1. The  mean  deviat ion equals ¢r for p. = 0. Fur ther ,  we have 

mean  devia t ion 2e ~2-1 
(11) 

s t a n d ~ r d d e v i a t i o n  = ( 1 + ~ 2 ) l ~ - T ~ 4  

For the  symmet r i c  l ,aplace d is t r ibut ion  (it = 0, t¢ = 1), the  above rat io  is equal  to 1 / v ~ .  

R e m a r k  2. For a d i s t r ibu t ion  with finite third momen t  and s t anda rd  devia t ion gre~ter  t h a n  
zero, the coefficient of skewness is a measure  of symmet ry  (for symmet r ic  d i s t r ibu t ions  its 
value is zero), and  is independent  of scale. 

R e m a r k  3. For a d i s t r ibu t ion  with a finite 4 th  moment ,  kurtosis  (adjusted,  so t h a t  72 = 0 
for normal  d is t r ibut ion)  measures  peakedness,  and is independent  of scale. If 72 > 0, the  
d i s t r ibu t ion  is said to be leptokurtic, and if "72 < 0, the d is t r ibut ion  is said to platykurtic. 
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We seo t h a t  an AL(cr, p) d i s t r ibu t ion  is leptokurt ic  and "~ varies from 3 ( the least  value for 

the  symll le l r ic  l:aplace d is t r ibut ion ,  where ~¢ = 1) to 6 (the gi 'eatesl  value fi)r exponent ia l  
dis t r ibut iol l ,  where t; = 0). 

2 . 5  T h e  m e d i a n  a n d  s k e w n e s s  

T h e  ca lcula t ion  of the  median  ami o ther  i>ercentih,s is s t ra igh t fo rward .  \Ve have  the  following 
equa l ion  for the  median  m of an /tl,(cr, p) d is t r ibut ion 

m = p 1 - ~ ( 1 2 )  

Note if It = 0, equa t ion  (12) yields m = 0, which is the naedian or s y m m e l r i c  l ,aplace 
d i s t r ibu t ion .  Similarly, for cr = 0, we get  m = tt log2,  which is the  median  of an exponent ia l  
d i s t r ibu t ion  with mean  # (to which AI, law simplifies in this  case).  

Fur t lmr ,  the  followbJg inequalith~.s ho]d for tile th ree  commo1~ moa.sures of  the  center:  

If p > 0, then  glodc  < M e d i a n  < M e a n .  

If p < 0, then  Mode  >_ Medirm >_ M e a n .  

All three  me,mutes  are equal to zero if # = 0 (and the  d i s t r ibu t ion  is symmet r i c ) .  
Finally, wo note  *hat  ano the r  measm'e  of skewness  of a d i s t r ibu t ion  with c.d.f, f", pro- 

vided by the  limit 

lira 1 - t"(x) - l : ' ( - x )  
....... I - F(x) + F(-x)' 

itl ca.so of ;m /lL(cr,/z) d i s / r i bu t i o ,  is equal to s ign( t@ 

2 . 6  S i m u l a t i o n  

Since tile d i s t r ibu t ion  funct ion of all AL dis t r ibut ion ,  as well as its inverse, can  be wr i t t en  
in closed form, the  inversion me t hod  of ~imulation is s t r a igh t fo rward  to imp lemen t .  Alter-  

natively,  mix tu re  rel)resent~tions (6), (7), and (9) can be used for s imula t ion .  Below is a 
gene ra to r  of  a r andom variate from an AL dis t r ibut ion ,  based on lhe  represen ta t ion  (7) for 
cr > 0 and  on the  representa t ion  (6) for cr = 0. 

A l l  AL(ct, It) g e n e r a t o r .  

• Gene ra t e  a s tan<laM exponent ia l  variate Z.  

• 1F o r = 0  

T I IEN Y +- # • Z.  
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Se t  K ~ 2o 

(~enerate unifornl [0, i I variate [~, hMependent  of Z. 

1F U < t¢~/(1 + ~;~) 

T I l E N  Set 1 ~ - ~ .  

ELSE Set I +-- 1/~. 

Se t  Y + - - c r . l . Z .  } 

• R E T U R N  Y. 

Numerical  subrout ines  (wri t ten  in SP lus@)  for s imulat ing AL dis t r ibut ions  as well as for 
compu t ing  densities,  quanti les,  c.d.f. 's, and es t imators  are available from the  au tho r s  upon  
request.  

2.7 E s t i m a t i o n  

t tere  we derive momen t  and max imum likelihood es t imators  for AL pa rame te r s  ~ and tL. We 
assunle t h a t  Y l , . . . ,  )';~ is an i.i.d, r andom sample fronl an A L ( a ,  tt ) dis t r ibu t ion  given by 
eh.f. (3), and write our pa ramete r s  in vector no ta t ion  as 0 = fit, o-]'. 

Method of moments. Let 

J,,l = E(Y~,, ,)  = i t and ,rz2 = E(}'~,,,) 2 = 2t '2 + 2o -2 (13) 

be the  first two momen t s  of an AL(~,  1 L) d i s t r ibu t ion  (see Table 1). When  we solve equa t ions  
(13) for t t and (7 and subs t i tu t e  the sample moments ,  

ffz,n 1 '=~ L 1.__~l = -  )'] and N2,, = }.]2, (14) 

for ml and  m2, we ob ta in  the method  of momen t s  es t imators :  

g,= [ ~" 
~77z2, , /2-  ffZl2,, ] ' (15) 

S t anda rd  a rgumen t s  of the  large sample  theory show t h a t  the method  of m o m e n t s  e s t ima to r s  
of It and a are consis tent  and asymptot ica l ly  normal .  Namely, if cr > 0, then &, given by (1_5) 
is s t rongly  consis tent  e s t ima to r  of 0 and V~((~  - 0) is asymptot ica l ly  normal  with  (vector)  
mean  ze ro  a n d  e o v a r i a n c e  m a t r i x  

~,4,,IE : G2 [ 2-}-1t2/o-2 llt/ff ] (16) 
½/,/. l, Vo- ~ + ¼/,"lo-" + ~ • 
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M a x i m u m  l i k e l i h o o d .  Maximun~ likelihood es t imators  (MIA:~'s) in this ('~L,+e are efficient 
( their  a.~3'mptolic covarialwe matr ix  is the im,evse of the Fisher ilfformation matr ix) .  The 
following s t anda rd  nola t ion allows ft, '  a compact  formula+s for es t imators .  [:or veal y, let 
y+ = inax(!/, O) a l . t  y= = max( - ! / ,  O) be the positive arid negative par ts  of ~/, respectively. 
Applying the above notat ion to the ,'aildom sample Yl . . . . .  Y,,, we write Y+ = ~ : a = l  ]"]+/7l, 

- - - -  ~TI 
and }" = ~ i : t  }]-/r~. Now, we ca~l expr~,ss the MI3,Ys for m, a, al~<l / t  a.~ follows: 

The  MLE t~,, = [fi,~, ~ , ] '  is consistent  and asymptot ical ly  normal.  The asympto t ic  dis t r ibut ion 
of vGT(O,, - 0) is bivariate normal with (vector) mean zero and covariance mat r ix  

c~ [ 8 ( 1 / ~ + / ;  z) ,1(1/ ,~-~)  ] (18) 
UMI,I': = ~-  ,1( l / t ; -  K) 1/~ ~ + r~ ~ + 6 " 

2 .8  G e n e r a l i z e d  L a p l a c e  l a w s  - L a p l a c e  m o t i o n  

We can define a L6vy process on [0, oc) with indepeI,dent increments,  Laplace motion {Y (t), t >_ 
0}, so that  Y(0) = 0, Y(1) is given by (3), and for 0 < v the distr ibution of Y(v) is given by 
the  ch.f. 

¢,(t ) = [1 + c~ 2 Itl ~ - i # t ) - " .  (19) 

One may call it a g~ lzcralizrd asgmmctric Laplace distribution, l )enote  the corresponding r.v. 

by 't;,~,.,. It is clear tha t  Y,,,m; ~ crYl,,~,v, where 5 = # / a ,  so we s tudy the la t ter  in the sequel. 
Note t ha t  factorizat ion (8) shows that  the ch.f. of Yl,S,v can be wri t ten as the product  of two 

g a m m a  ch.f. 's: 
] v 

1 v R~,call that  ( ~ )  is the ch.f. of the gamllla r.v. 1",,,~/,,, whose densi ty is given by 

t-/" 
- - : r " - - t  + '-'+~" , _> 0. (21) 'J"'~/~[:~') = r ( v )  x 

(For v = I it reduces to the exl)om'l,tial d is t r ibmion with mean l/~c). Thus,  we have the 
relation 

tha t  generalizes (9). Since these dis t r ibut ions will be considered in another  paper  we limit 
our discussion here to their densities.  \Ve can get the following expression for the  densi ty of 
}'t,&, via the  s t andard  t ranstbr lnat ion t.heorenl of random wtriables: 

f 0  '>'~' 
I,t,s,,,(±a) = [l ' (v)]-~e -~±'+ !/'-t(:r+g)"-J,,-"Ud.u, :r > 0, (23) 
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where q = x/4 + 52 . Note that in case u = I the above simplifies to (10), a~s it should. We 
can write the density (23) as 

1 (:l--] " it2 
Pl , , , , , (± : ' ) -  i , (u)v~ , , / /  ,+'~'1~I';,,_,12 ~ . 2  j x >  O, (24) 

where K~ is the modified Bessel function of the third kind: 

_ ( z / 2 ) " F ( 1 / 2 )  f < '  r(,,+ 1/2) _ ~-~' ( t  ~ -  1 ) , , - ' t~u t .  (25) K,,(z)  

if u = k is an integer, then the density (23) is a mixture of k densities on ( - e c ,  ~ )  and has 
an explicit form. For j = 0 . . . .  , k - 1, the j t h  density ha,s the form 

f<j(x)  = l&.i.qk_j,l/,~(x)l[o,<,)(x)+ q,:o9k_a, ,c(-z)l(o,_~)(-x) ,  (26) 

where g,,,~ stands for a gatl|ttla density as before, an([ 

p~: qa l.,O q ,~ 
pt:,.j -- pt:qj + lpq~.., qJ.o = 1 - PJ,o -- p,~qj + p jqk '  (27) 

w i t h p =  1/(1+,~2) and q = ~¢2/(1+a~). Note thatpt ,0  = p a n d q L 0  = q .  For h = 1 and 
j = 0 the density (26) coincides with (10). Under the above notation, the density of Y~,6,k 
takes the form 

k-i ( k - t - j -  1)! 
= j ! ( k  - 1)! (pkqj +l..iq*:)fa:,.j(x). 

3 Applications 

In this section we l)resent two apl)lications of AL distrihutions. The first one is in modeling 
interest rates on 30-year Treasury bonds. Klein [6] studied yiek[ rates on average daily 
30-year Treasury bonds from 1977 to 1990, finding that  the empirical distribution is too 
"peaky" and "fat-tailed" to have been from a normal distribution, lie rejected the traditional 
Iognorma[ hypothesis and proposed the stable Paretian hypothesis, which would "account for 
the observed peaked middle and fat tails". The paper was followed hy several discussions, 
where some researchers objected to the stahle hypothesis and offered alternative models, 
including a first-order moving average model of Huber. In our approach, we assume that the 
successive logarithmic changes in interest rates are i.i.d, observations from an AL distribution. 
Our model is simple, allows fur peakedness, fat-tails, skewness, and high kurtosis observed in 
the data. We were inspi,'ed by the ideas of Mittnik and Rachev [17], regarding the interest 
rate chang(.' as the random sum of a large number of small changes: 

Up 

interest rate change = ~ (small changes), 
i = l  
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Figure 3: Top-lcft: Empirical e.d.f, vs. normal c.d.f. "Ibp-right: Empirical e.d.f, vs. AL 
c.d.f. Hottom-ltft: Histogram of interest rates orl ;t0-year Trea.sury bonds, t]ottom-right: 
Non-parametric estimator of the density (thin solid line) vs. the theoretical ones (| |ormal 
dashed line, AI. - thick solid line). 

where the nmnber of tel'illS, up, that has a geometric distribution. Thus, provided the small 
changes have finite variance, the AL law (3) can approximate tile distribution of the interest 
rate change. We think of ~,p ~ks the moment when tile prob~fl)ilistic structure governing the 
interest rates breaks down. Such event could be a new ix|formation, political, economical or 
other event that  affoct the f~lndamentMs of the financiaJ market. 

Our goal is to present the idea oF modeling interest rates using AL laws. The data set 
consists of interest rates on 30-year Treasury bonds on the last working day of the lnonth and 
is published in lhlber 's discussion of l'21ein's paper [6], p. 156. The data covers the period 
of February 1997 through December 1993. We convert the data to the logarithmic changes 
accordi,)g to the fo|mula: }) = log(it~it_z), where ie is the is the interest rate on 30-year 
Treasury bonds on the last working day of the month ¢. There were the total of 202 values 
of the logarithmic changes }i. 

First, we have plotted the histogram of the data set (Figure 3 (bottom-left). W~ , can 
see the typical shape of at AL density: the distrib|aion has high peak near zero, and appears 
to bare tails thicker than that of the normal distribution. Comparisons of the c.d.f, of 
the normal distribution and the empirical e.d.f, seen on Figure 3 (top-left) and the density 
flmctions 1;igm'e 3 (bottom-right) confirn| these findings. We set, i~ disparity arolmd the center 

124 



Parameter Theoretical  value Empirical  value 
Mean -0.001018163 -0,001018163 
Variance 0.001733809 001372467 
Mean deviation 0.0294,t785 0.02945773 
Mean (lev./St(I dev. 0.7072175 I 0.7582487 
Coei[icient of Sl~.ewuess -0.07334177 -0.2274964 
I(urtosis (adjusted) [ 3.0{13586 3.599207 

Table 2: Theoretical  versus empirical  m o m e n t s  and  related parameters  o f  Y 
An(a, ~) 

of the distribution due to a high peak in the observed data. In order to fit an AL model, 
we need to esthnate the parameters p and ~r. We used the maximum likelihood esthnators 
finding fi = -0.001018163 and a = 0.029434439. Further, we calculated the parameter ,~ as 
well as the theoretical values of various parameters presented in Table 2. We also calculated 
the empirical counterparts of the parameters, where we used the tollowing statistics: 

• V;~ria,,~e: ~ G0",  - Y)~.  

• Mean deviation,: ¼ ~ ]}', - )~1. 

• Coemcie,,t of ~kew,,oss: ~, = ,~ E(~", - V):'t(¼ E O ;  - V)~) ~/~. 

• K.r tos i~  ( ; ,di . s ted):  % = ¼ G ( } i -  VPI(¼ GOi V)~) ~. 

We present the emlArical and theoretical values in Table 2. F, xcept for a slight dis- 
crepancy for the skewness, the match between emph'ical and theoretical values is striking. 
In addition, we show, in Figure 3 (top-right), the theoretical AL c.d.f, compared with tbe 
empirieM c.d.f, and, in Figure 3 (bottom-rlght), the density kernel estimator based on the 
data against the theoretical densities of normal and AL distributions with the estimated pa- 
rameters. \¥e see that at the mode agreement is better for the AL distribution than for the 
normal one. 

The second example illustrates how AL laws can account for asymmetry in the data. 
The data consists of'currency exchange rates: the German Deutschemark versus the US 
Dollar (DMUS). The observations are daily exchange rates from 1/1/80 to 12/7/90 (2853 
data point.s). As tlstla[, we consider the change in the log(rate) from (lay t to day t + 1. 
First, we plotted the histogl'am (Figure 4 (left)) We see the typical shape of a AL density. 
The distribution ha.s a high peak near zero, and appears to have non-symmetric tails thicker 
than that of the normal distribution. A normal QQ plot (see Figure .1 (middle)) confirms 
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these findings. We used maximum likelihood for estimating the AL parameters obtaining 
~/ = 0.0007558 and 8 = 0.00521968. The quantile plot of the data set and the theoretical 
AL distribution is presented in Figure 4 (right). It shows only very slight departures from 
the straight line. We conclude that AL distributions mode] this data set more correctly than 
norlnal distributions. 

# 7  , o° , °  , 
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Figure 4: Analysis of the currency data. 

4 A p p e n d i x  

4.1 P r o p e r t i e s  

We collect he,'e the main properties of AL laws. We omit most proofs and refe," an interested 
reader to 1,:ozubowski and Podg6rski [11] for a more detailed treatment. 

4.1.1 Stab i l i ty  

Paretian stable distributions, that include normal laws, have two fundamental properties. 
First, they are limiting laws for appropriately normalized sums of i.i.d, random variables. 
Thus, they work well a~s approxinLations to sums of i.i.d, random variables. Second, they 
are stable: the sum of i.i.d, normal (Paretian stable) r.v.'s has a normal (stable Paretian) 
distribution. These properties are shared by AL laws, if deterministic summalion is replaced 
by geome.tric summation. By definition, AL laws are limits of geometric compounds of i.i.d. 
components. The stability properties of e×l)onential and Laplace distributions are well known 
(see for example Arnold [2] for expo,mntial and Lin [12] for Laplace): 

l i p  

i = l  

where vp is geometric (2), }~.'s are i.i.d, copies of Y, and vp and (}~) are independent (the 
constants a(p) are equal to v/)3 for Laplace and p for exponential distributions). Although 
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general AL r.v.'s do not satisfy (29), they have the following characterization (see Kozubowski 
[7]): A r.v. Y with finite variance is AL if and only if 

t~p 

a, ~-~()~ + by) -~ Y, (30) 
i=1 

where up is geometric (2) , )~ ' s  are i.i.d, copies of Y, and up and (Y,) are independent. 
Moreover, if a > 0, the normalizing constants in (30) can be taken as 

.~  = c ' p l / L  ~, : (~' /~ - c ) # / c ' ,  c = ~/2/(2 + (#/o)~). 

In addition, all AL laws are geometric infinitely divisible, that is 
vp 

Y ~ ~-~ Y('), (31) 

where up is geometric (2), Y ~ AL(a,#) ,  )~(1)'s are i.i.d, with AL(~,V~,I~p) distribution for 

each p, and uv, ()~(;)) are independent. 
R e m a r k .  AL laws are infinitely divisible in the classical sense as welt. Please see Kozubowski 
and Podg6rski [1 l] for the exact form of their L6vy measure. 

4.1.2 Se l f -decomposab i l i t y  

Relations (7) and (9) are special cases with c = 0 of the more general representations: 

yo,~ d c.  ~,,~, + (51/~ -- 52a)Z d= c. )~,~, + glaZ]/,~ - g2aZ,,, 0 < c < 1, (32) 

where (61,62) has the following joint distribution: 

P ( 5 1 = 0 , 5 ~ = 0 )  = c 2, 

= 1 , 5 2 = 0 )  = ( 1 - c ) ( c +  
1 C 

P ( S l  

p ( & = 0 , 5 2 = l )  = (1 -c )  c+  ~+~2 j ,  

and the r.v.'s )'~,,~, (51,52), and Z (correspondingly, Y,,~, (61,52), Z1/,~, and Z~) are mutually 
independent. Written in terms of ch.f.'s, the relation (32) takes the form 

~/,(t) = ~(ct )~( t ) ,  0 < c < 1, (33) 

where ~ and t/¥ are ch.f.'s of Y~,~ and (St/n - 52~)Z, respectively. Recall that a ch.f, ~ that 
satisfy (33) is said to be self-decomposable, and the corresponding distribution (and r.v.) is 
said to be in class L. Thus, all AL laws are in class L, which implies that they are unimodal, 
as self-decomposability implies unimodality (Yamazato [21]). It is clear from the explicit 
formula for the density, that modes of all AL laws are actually equal to zero. 

R e m a r k .  We note that self-decomposability and unimodality of AL laws was established in 
Ramaehandran [19]. 
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4.1.3 Properties of the densities 

We discttss hcrc basic l)ropertics of ?-IL tlettsities. 

Values at zero. I%‘e IGIV(, t Iic folloning relations: 

which fOllO\Vs frottl (IO) illtd tltc rclatiott 

‘La Ji7q-/L 

&= JGqj7+p = 20 

Asymmetry of the density. ‘l’he clcttsity pn,,< of a AL distribution with /L > 0 satisfies the 
relation 

po,i,(.“) > /J,,,,( -.r). .r > 0. 

so that p “,‘, (-.r)/pO,,,(x) + 0 ass --t x 

Derivatives. lkcept for .C = 0, AL dfttbities lta~~ derivatives of any order n > 0: 

J’“‘(J) zz 
(-1)” (S)“” & e-s”./o, if .I‘ > 0 

n.0 t t.2 
jnh-i”Til+hl 

cr/(t.o) , if.p<O 

Further. wc hnvc 

The two limits are eqttal if eitltcr 11 = 0 (sltokvittg the contittuity of thr drttsity at zero) or 
K = 1 (and tltus ,I = 0), prodttcing tlte sytttmetric Laplace distribution. 

Complete monotonicity. A futtctiotr f defined on I C R is called cotttpletely tnonotonic 
(wspectively. absolutrly moltotonic) if it is infinitely differentiable on I arrd (-l)kf(“)(r) 2 0 

(respectively. f(‘)(x) 2 0) for atty .r E 1 attd any k = 0, 1,2,, ., The complete and absolute 
tttottototticity of AI. tlrttsitk follow directly frottt (3.1). Namely, if pn,,, is the density of an 
AL(cr, p) distribittiott. tlrwt tlte futtrtiutts ,I~,,, (31.r) are comple1ely tttottotonic on (0, cc) and 
absolttlely mottotottic ott (-w, 0). 
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4.2  F u r t h e r  e x t e n s i o n s  

The class of AL laws can be extended in various ways. First, the distributions may be shifted, 
allowing for arbitrary modes. Next, one can consider a more general class of distributions 
given by an AL ch.f. (3) raised to a positive power. These are marginal distributions of the 
L5vy process {Y(t), t _> 0} with independent increments, for which Y(1) ~ AL(cr, p) as it was 
described at the end of Section 2. Further, one obtains a richer class of limiting distributions, 
consisting of geometric stable laws, by allowing for infinite variance of the components ill 
the geometric compounds (1). More generally, if the random number of components  in the 
summation (1) is not geometrically distributed, a wider class of u-stable laws is obtained 
as the limiting distributions. Finally, if the components in (1) are multi-dimensional, the 
multivariate AL distritmtions are obtained. 

4.2.1 T r a n s l a t e d  AL laws 

If Y ~ A L ( a , # ) ,  then Y + (  is a r.v. with a three-paralneter density 

1 ~ e x p ( - y ( - ( ) ) ,  i f x _ > ~  (35) 
P~"m~'x)-- a l W a Y (  exp ( x - ~ ) ,  i f x < , ~ ,  

and distribution flmctlon 

{ l - y ~ e x p ( - ~ ( x - ~ C ) ) ,  i f x > ~  c 

Although these three-parameter distributions are no longer limiting laws for geometric com- 
pounds (1), nor do they have stability property (29), they do provide more flexibility in data  
modeling by allowing tot arbitrary modes. 

4 .2 .2  G e o m e t r i c  s tab le  laws  

If the random variables in (1) have infinite variance, than the geometric compound no longer 
converge to an AL law. Instead, the limiting distributions form a broader class of geometric 
stable ((IS) laws. It is a four-parameter family best described in terms of characteristic 
function: 

¢,(t) = [I + a ~ Itl ~ a ~ , z ( t )  - i p t ] - ' ,  (36) 

where 
1 - i/3sign(x) tan(~ra/2),  if a ¢ 1, 

~'.:,,Z(x) = t + i/3~sign(x)log Ixl, i f  ~ = J. 

The parameter  a E (0, 2] is the index tha t  determines the tail of the distribution: P (Y > 
y) ~ C y - "  (as y ~ oo) for 0 < c~ < 2. For c~ = 2 the tail is exponential and the distr ibution 
reduces to AL law, as ~2.~ = 1. The paranmter/3 ¢ [ -1 ,  1] is the skewness parameter,  while 
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# ¢ R and rr > 0 c(mt.rol the location and scale, respectively. We briefly comment  on some 
of the features o[' ( ;S laws, and reler an inlerested reader to Kozubowski and l{achev [10] for 
an u I) to da te  inforlnat ion and extensive references on C,S laws and their special ca.~es. 

R e m a r k  1. Special causes of GS laws inchale Limfik distr ibution,  for which :'~ = 0 and I* = 0 
(see Linnik [13J), and Mittag-Leffter taws, which are GS with /3 = I an([ ei ther a I and 
o = 0 (exponenlial  distributicm) or 0 < a < 1 and i t = 0. The lat ter  are the only non-negat ive  
GS r.v. 's  (see Pillai [1S]). 

R e m a r k  2. ( ;S laws share many, but no, all, propert ies  of t)ar(ti(m stabl~ (tistributions, 
which were discussed in the actuarial  context  in Klein [6]. In fact, stable and (',S laws are 
related through their characterist ic  fimctions, ~ and ¢,, a.s shown in Mittnik and Ra.chev [16]: 

~,(l) ~ ( -  l o g : ( / ) ) ,  (;17) 

where ? (x )  = 1/(1 + x) is the Laplace t ransform of the s t andard  exponential  d is t r ibut ion.  
Relation (37) produces  the representat ion (36), as well ~s the mixture  representa t ion of  a GS 
random variable }" in terms of independent  s t andard  stable and exl)onential r .v. 's  , X and 
Z: 

F (d ~ /LZ +Z~/~'aX,  ,~ # l, (3S) 
L /zZ ~- Z~r X + ~ r Z , ~ ( 2 / r r ) l o g ( Z a ) ,  (t = i .  

Note tha t  the al)ove representat ion reduces to (6) in case a = '2, as then X has the normal  
dis t r ibut ion with mean zero and variance 2. 

R e m a r k  3. The a.sylnmetrk" [,at)lace distr ibution,  which is GS with a = 2, l)lays the  same 
role among  GS laws, ,'ks normal  distr ibution does among stable laws. As normal  dis t r ibut ion 
is com,enient  in application,  so is AL law as its p.d.f., c.d.f, have explicit expressions.  

R e m a r k  4. Like s table  laws, GS laws lack explicit expressions for densities and dis t r ibut ion 
f lmetions which handicap their practical implementat ion.  Also, they are "fat- tai led",  have 
stabil i ty i)roperties (with respect to random summat ion) ,  and generalize the  central  limit 
theorem (as they are the only limiting laws for geometr ic  comi)otmds).  However they art 
different from stable (mzd rwrmal) latvs in that their deTzsities are more "peaked", while .still 
being heavy-tailed. Unlike stable densities, GS densities "blow-up" at zero if (~ < 1. Since 
many financial data. aro "peaked" and "fat-tai led",  lhey are often consis tent  with the GS 
model (see for" example Kozubowsld and l(achev [8]). 

4 . 2 . 3  L , - s t a b l e  l a w s  

Suppose tha t  the randonl ilUlllber of terms in the sunnnat ion  (1) is any integer-valued ran- 
dom variable, and, as 1: converges to zero, s~r, al)i)roaches infinity (in l)robability) while pup 
converges in dis t r i lmtion to a r.v. ~, with Laplace t ransform 2. Then,  the normalized com- 
pounds  (1) converge in distril)utioll to a i:-stabl~ distribution, whose characterist ic  flmction 
is (37) (see for exanlph, ]~o/,ul)owski and Palmrska [9]). Tire class of ~,-stable laws contains  
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GS and generalized AL laws as special cases: if up is geometric  (2), then  pup converges to  
the  s t a n d a r d  exponent ia l  and (37) I)ro(hlces (36); similarly, if u v is negat ive  binomial  with 
pa rame te r s  u and p, then pui, converges to a g a m m a  distri l)ution and (37) produces  (19). 
The  tail behavior  of v-s table  laws is esselllially the same as t h a t  of s table  and  (IS laws (see 
Kozubowski  and Panorska [9]). 

4 . 2 . 4  M u l t i v a r i a t e  e x t e n s i o n  

The  theory  of AL laws can be extended to randonl  vectors. Namely, a mul t ivar ia te  AL law 
can be defined as the limit (in dis t r ibut ion)  as p --+ 0 of appropr ia te ly  normal ized r andom 
S / I l H S  

S~ = X O) + . - . +  X ("~). (39) 

Here, (X (I)) is a sequence i.i.d, r andom vectors  with f in i te  second momen t s  amd v,  has  a 
geometr ic  dis ir ibul io, l  (2), i , ldependem of X(i) 's .  It follows t l la t  the  li iuiting d i s t r ibu t ions  
for normal ized geometric  compounds  (39) are laws with the  fol|owing eh.f.: 

* { t ) =  l + ~ - t H t - i t ' m  , (40) 

where m is an a rb i t r a ry  vector  in R d and H is a d x d non-negat ive  symmet r i c  ma t r ix  (see for 
example  Mi t tn ik  and Rachev [t6]). We shall call a d is t r ibut ion  given by (40) a mult ivariate  
asymmetr i c  Laplace law and denote  it by AL(H,  in).  The  symmetr ic  case with m = 0 was 
discussed in the  l i tera ture  before (see Johnson  and Kotz [4], M a d a n  and  Sene ta  [14]). If 

is posit ive-detinite,  the d is t r ibu t ion  is truly d-dimensional  and has a probabi l i ty  dens i ty  
funct ion 

2(y ,X- lm ( y , E _ l y  ~ ,d2 
O ( Y ) -  (41) 

where v = (2 - d) /2  and Iq~, is tile modilied Bessel funct ion (25). In the  symmet r i c  case 
( m  = 0) this  densi ty  was derived in Anderson  [1]. In the one-dimensional  case, where E = 
a l l ,  we have v = ( 2 - 1 ) / 2  = 1/2 and the  Bessel funct ion simplifies to K l / 2 ( u  ) = ~ e - " .  
Consequent ly ,  the  deusi ty (41) simplifies to the  densi ty  (10) of a univar ia te  AL law wi th  
pa rame te r s  cs = x /a l l~2  and It = m.  For d > 1 the densi ty  (41) blows up at  zero. Fur ther ,  
if t he  dimensionai l ty  d is odd,  d = 2r + 3, tile densi ty h,us a closed form: 

(,,.ey'lO-I .... 6'NyN -i ~ ( r + k )  

<u(y) = ~ 1 ~ 2  k=0 ( 7"---fiygf(2c'llyll~-')-k' y # 0, (4~) 

where v : (2 - d)12, C : ~/2 + n l ' ~ - I I ,  and I ly l l~- ,  = ~ y  is ~ norm in n ~. In the 

th ree  dimensional  space, we have r = 0 and tile densi ty  is par t icular ly  simple: 

ey ':c-~ m-CllYll -I  

<U(Y) = .X~l lYlt~_, lHl i t  2 , Y ¢  O. (43) 
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Multivariate  AL laws share many, but  not all, propert ies  of univariate AL laws. Since a 
more  extensive s tmly  of" t}le multivariate ca.se will appear  elsewhere, we or~ly give few general 
remarks.  

S t a b i l i t y .  Mult ivariate  AL laws are geometrically intinitely divisible as well as infinitely 
divisible in the  cla.ssical sense, and satisfy the stabil i ty proper ty  (29) whenever ei ther  m or 

equals zero. llowever, relation (30) does not generally hold for d > 1. 

M i x t u r e  r e p r e s e n t a t i o n .  Mixture  rel)resentation (6) extends to the mult ivariate  case as 
follows. Let Y ~ A L ( E ,  m) altd let X ~ N(0 ,  E) (multiwtriate normal  with mean zero and 
variance-covariance ~ ) ,  Let Z be an expoJmntially dis t r ibuted r.v, with mean 1, independent  
of X.  Then the  following representat ion he \ I s  

Y ~ m Z  + ZI/2X. (44) 

T h e  m e a n  a n d  v a r i a n e e - c o v a r i a n e e  n m t r i x .  Representat ion (4,l) leads to tile following 
formulas for the mean and variance-covariance of Y ~ A L(~], m):  

L'Y = m,  E ( Y -  E Y ) ( Y -  E Y ) ' -  ~ 3 + m m ' .  (4.5) 

L i n e a r  t r a n s f o r m a t i o n s .  Any l i ,ear  transtbrmatiozt of a~ AL r.v. leads to ano ther  AL 
random variable, f,et Y = (YL . . . .  ,}~l)' ~ A L ( P , , m )  and let A be an 1 × d real matr ix .  
Then,  tile random vector YA = A Y  is A L ( E A ,  m a ) ,  where mA = A m  and EA = A E A ' .  
In part icular ,  mult ivariate and univariate marginals of an A1, random vector are AL, as are 
all lir~ear combinat ions  of its c o l , p o n e , t s .  

5 S u m m a r y  

The class of A1, laws plays an analogous role among geoinetric stable laws to tha t  played by 
the class of normal  dis t r ibut ions  among stable laws. AL laws arise as limiting dis t r ibut ions  for 
geometr ic  COlllpOlllldS, as ilorlllaI laws do for determinis t ic  sums, of i.i.d, random variables 
with finite second momeJJt.s. AL laws have a stabili ty proper ty  with respecl  to geometr ic  
summat ion ,  as normal  laws do with respect to classical summat ion .  Both,  AL and normal  
laws are convenient  in applications,  as their densities have explicit forms and es t imat ion 
procedures  are easily implemellted, ltowever, there are impor tan t  differences between the 
two families of dis tr ibut ions:  AL laws are more "peaky" and have tails heavier them normal  
laws and allow for asymmetry ,  where~m all normal dis t r ibut ions are symmetr ic .  We hope tha t  
our survey of results and methods  for AI, laws will lead to more frequent  applicat ions of AL 
laws in actuarial  scMwe and olber  are~m of applied research. 
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