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and of th,, individual claimsiz~ distribution. The  opt imizat ion probl~,m is to find th~ 

minimal  and the lnaxinlal ruin t)mbabilities giv~m a fixed initial SlllplllS, a pr(mlillUl 

ra te  and sonu'  mom~nt constraints  on th~ individual claimsiz~ distribution. Tim in- 

dividual  claimsizo dis t r ibut ion is ('Oll~.:(~ii|lat(~d Oll a clos(,d inWrval and its first two 

ItlOlll(?llls hav(' s!t)(?(:itJc valll0S. A lllllll~rii:a] approach is IlSC:(] tO N(I]VO tim problem. In 

this approat:}i, w,t, apply a g(m~ral opt imizat ion algori thm which ri?quiws a mtmeri- 

cal method  to al)t)roximat(, th,~ ultimat( '  ruin probal)ility. ()m~ ~f th~ lllaill praclical  

inter(~sts is to d~riw ' th(~ ~l'('al(~st and the ]owo~l bounds of tho ult imat( '  ruin probabil- 

ity giv(~n some [ix(~d c~mstrailltS o12 t|l(? lllOlll(~lllS of t|l(~ c|ainlsizo distri lmtion. Th(~s(~ 

bounds are obtain~,d wi thout  th~ (~stimation of th(~ claimsize distribution. N)r prac- 

tical valu(~s of initial surplus, the ditti~re~nce ])~t,x(~(~n t}lP |)ouIltts ( : ; , t i t  t)(! S() small that  

they  aw good ~n~mgh lo aptwoximat(, the ruin probabilily. Th(~ ~l)t imization problem 

call be ~,xt(,n(h~d to mor(~ ~(~n(wal risk models. The  nmn(~rical solution is &~rived with 

the  same method~flo~v which can also tm applied to otlmr ot)timizati~m problems in 

actuarial  sci(~nc(~ (stoi~loss prom|runs, tinit( '-time ruin 1)robabiliti(~s). 

136 



1 I n t r o d u c t i o n  

The objective of lhe t)aper is t() I)res('nt and to apply a numerical method in the cal- 

culation of the lninimal and maximal ultimate ruin probabilities in two risk models 

given some moment constraints on the individual claiinsize distribution. An applica, 

tion of this optimization l)robh~m is to lind the extremal lower and ut)t)er bOlll:lds of 

the ultimate ruin t)robabiliti('s given those constraints. W~' coilsider the classical risk 

models with c()Ilstallt an(t variabh~ prenliunl. 

In |)olh risk m~)(h',ls, the ultimate ruin probability del)(m(ls on the choice of the 

initial surplus, ~)f the l)remium rate and of the individual claimsize distribution. The 

optimization prol)l(qn is t~) find lhe minimal and the maximal ultimate ruin proba- 

bilities given a fix(',(l initial surplus, a fixed definition ,)f the premium rale and some 

moment constraints on the individual claiinsize distribution. These constraints spec- 

ify that ttw individual (:laimsize distribuli()n is (:oncc'ntrated on a closed intorval and 

its first two moments have specific vtthlos. A numerical appr(,ach is used to solve 

the ()ptitnizatit)n t)r()bletn which is based on the application of a gOlt(!r&[ optimiza- 

tion algorithm. The application of the optimization algorithm requires the mmlerical 

approximation ~,f tho ullimal,~ ruin probability. 

()flen, in t)ractic(~, we do not have a lot of information on the individual claimsize 

prol)al)ility distribution. This knowledg(~ may l)e the maximal ~llllOllllt, tilE' lll(~.~tIl 

and tim variance of th(~ individual claims. One of the main practical interest of 
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finding the minimal  and lhe maximal ul t imate ruin probabiliti(~s is Io derive tile 

greaWst and the lowest b~mn(ts of the izltiznate ruin probabil i ty wit bout l |w ost imation 

~Jf lhe claimsiz(' dislributi ,  m. N)r practical values of initial surI)hz~, tile difference 

tmtwecn lllo 1)omlds C}tll |7(? st) small that they ar~' good enollgh t¢) aplm)xintate the 

Ilhinlatc: ruin prol)abilily. The metluM(dogy used ill this t)at)(~r can also b~ applied 

to oth(,r opt imizat ion problems in actuarial  scienc~ (stop-loss t)rolniums, tinitc-t ime 

ruin probalfilily) (s~e D(~Vyhh'r (1996)). 

Tilt" ot~j(,ctiv(' of this paper is to present the nmnerical approach I~) th~ optimiza- 

t ion of ul t imat~ ruin prot)ability in two risk m()tl(qs. We (h~ not ~xl)lici¿ tlw proofs of  

the t tworems and the im~positions but give the ref(~r(,nces wIwr(' th~ T can bc forum in 

~)t'd~r to kc~ t) this artich~ to a was(mabh~ length. Tile paper is constructe(l as follows. 

\V~, prosent t |w classical risk m(Mels with (;{)IISl :-tilt ~'lll(l variabl(~ tlremimns. \~,5, dciine 

the optimizati~m problom and present tiw numerical method~)logy used t(~ solw~ this 

tn'obhun, which involv~'s a ~(uwral opt imizat ion alg~)iithm. Nmn~,rical ,~xamples are 

t)res(mt~d all(| dis('uss(~d. 

2 C l a s s i c a l  r i s k  m o d e l  - w i t h  c o n s t a n t  p r e m i u m  

In tIw classical risk mode'l, ih(~ ,~url)lus procoss {IT(t), t>O} is d~fin~,,] ~,s follows 

U(t) . ~ cl - S(t), t > O, 
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WN[!I'(~ 

(1) , .... U(0) : initial surplus 

(2) c t)remimn rate 

(3) S(t) total claim amount over the lime interval (0 t]. 

The process {S(t), t>l)} is a Compound Poisson process with 

?,'(t) 
S(t) :: Z X, (1) 

i =  1 

(1) { Xx ,Xe,... } is a sequence of i.i.d, random variables; 

(2) {N(t),t_>_0} is a Poisson process with parameter A; 

(3) {XI,X2 .... }and {N(t),t>0} are independent. 

The common probability distribution of the X, (i - 1, 2, ..) is F(x), with F(0) 

0. The 7~th moment of F i s / ~  with lq /~. The probability distribution of S(t) is 

given by 

= ~ ~ F ( s ) , s>{) ,  Fs(,/ts) P(S(t) < s) exp(-,~t) "3 
j=O 

where F *j jth-convolution of F. 

The premimn rate (' is 

where 7 / is the security loadinpg which is a'~smned st,ricly positive. 
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Wo (t('fin('/)y T the lim(~ ()f ruin 

[ i , f  {t, U(t) < ()}, if U(t) falls below 0 at legist on(:(~ 

~ ,  if [J(t) newer goes t)elow 0 

The  ui t imaW ruin pr(dmbili ty is (t(~not(~d t)y ~',(u, 0, F) ,  where 

~,:,(., q, F )  = P ( T  < -x..), 

and its (:()mt)leln('nt, (h,n()t~'(I O(a, r/, F ) ,  is the u l t imate  nl)wruin t)rot)ability where 

0 ( . ,  q, F )  1 - ~',(., ~1, F )  

P(U( t )  > 0, for all t > 0). 

The  u l t imate  ruin probat)i l i ty ~',(u,7/, F )  is flmction of the (:hoice of the initial  

surplus u. the s . cur i ty  h~ading ,1 and the individual  (:laimsiz(' d is t r ibut ion  F .  The 

analyt ic  ext)ression ()f O(u, ~1, F)  is given in tim following I)rop()siti()n. 

P r o p o s i t i o n  1 Wc dc[i~.: G(x) by 

Thco, tv~ ~ have 

1 ,.t: C(:r) = ~ I .  ( l -F(!d)  d~,¢ , ~: >0. 

= (; ( . ) , .  

where  p = ~ a~ . l  q = I -  p. 

Pro@" It i,~ a k~.,.,', result. S(:e Fdlcr (1971), Gerber (1979). Grandcll (1991) or 

Pat~jcr ay~d Wilmot (1992). 
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No explMt expression of g,(u, rl, F) exists except for special cases of F such as 

the exponential probability distributions or mixtures of exponential probability dis- 

tributions (see, for i:L~lance, Dufresne aud Gerber (1989) or DeVyMer and Marceau 

(1994)). Number of approxilnations have been proposed in the actuarial literature. 

A review and immerieal comparisons of some of these methods are made in Marceau 

(1993). 

3 Classical  risk mode l  wi th  variable premium 

A certain number of extensions to the classical risk model with constant l)remiunL 

rate were proposed in tile actuarial litterature. We consider here the classical risk 

model with a variable premimn rate. In this risk model, the surplus process {U(t), 

t>0} defined as 

U(t )  = u + e ( U ( s ) ) d s -  S(t)  t > 0, 

where e(r) is tile premium rate which depends on the current reserve with p(r) > 0 

for r > 0. 

The process {S(t),t>0} is a Compound Poisson process a.s it. is defined in (1). The 

sm'phLs process can also be defined by a stocha_stic differential equation 

dU(t)=c(U(t))dt-dS(t), t>0. 

We assume that the premium rate e(r) is flmction of the current surplus level U(t) 

= r. The classical risk model with variable premiums could he applied in two special 

141 



ca.sos. In the first case, we (:oi~sider the s i tuat ion when interests are earned on the 

surplus. Tile f imction c(r) ha t  tim following fi}rm 

. (r)  c + ~r, (2) 

where b is the foree of interest. If  c (1 +T/)A/z, (2) becomes 

c(r) - c + ~r 

((1 +,/) + ~.r),X~ 

= ((1 +ry) +pr )~#  (3) 

= (( l+, l ( r)))~# 

- 7 ( r )  ~#. 

In the  second ca.~e, the premium rate f lmction c(r) is defined in such way that  the 

p remiums  rates are charged by layers. In this c~kse, the flmetion c(r) has the following 

[¢1)I'111 

C1, 0 ~ 110 ~ r ~ I1 l 

e2~ 111 ,~ r ~ 112 
c(r)  - (4)  

Ck~ Ilk 1 <~ r ~ Ilk,- ~- OC: 

with ch > (:~ > ... > c.k > )~H. The premimn rate c(r) decreases tLs the surphLs level 

increases. This  can occur when the company decides to reduce the premium rate 

when the surt)lus t)ecollles greater  sinc, e the risk of ruin decreases wi th  the surplus 

level. Another  in terpre ta t ion of (4) is to consider the reduct ion of the p remium rate 
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a~s a fl~rm of dividend payment which increases as the surplus level grows up. 

Another special ease is obviously the classical risk model with constant premimn 

rate where c(r) is equal lo e for r > 0. 

For studies on the classical risk model with variable premium rate, see Asmussen 

and Petersen (1988), Petersen (1990), Dickson (1991), Sundt and Teugel (1995), 

Michaud (1996), DeVylder (1996). 

If T represents the first time that  the surplus goes below zero i.e. 

iT~f {t, U(t) < 0}, if U(t) falls below 0 at least once 

oc,, if U(t) never goes below 0 

then the ult imate r,fin probability, denoted by ~)(u, 7l(r), F) ,  is 

~,(u, 7j(r), F )  = P(T < oc). 

The ult imate non-ruin probability is denoted by ¢(u, Tl(r), F )  with ¢(u, 7l(r), F )  - 

1 - '¢,(~, rl(r), F) .  Again, v',('a, 7/(r), F )  depends on the choice of the initial surplus 

u, the parameters of the function 71(r ) and the individual claimsize distribution F .  

In the following propositi(m, we give the integral equation for the fim('tion ¢(u) - 

¢(u, e(r), F) with known rl(r) and F. 

P r o p o s i t i o n  2 We define G(x) as 

1 a(~.) = ;, ~ (1-~(y) )  d~ ,  • > O. (5) 
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T h F I I ,  I1!(' ]~l l l ! f  

~u 
c:. ,: ,( , ,)  : :  .I,, :, ( : , : )d¢( . ) ,  ~, > o. 

where q(J:) = I+  i)(a:) = 1 + i] + f-~. 

Proof." See Dc I',jld(~" (10~16). 

( 6 )  

The evaluation of ~(~z) by numerical methods are proposed in Petersen (1990), 

Dickson (19911 and DeVylder (1!1961. A simulation method is also tin)posed in 

Michaud (1996). 

4 The  Opt imiza t ion  Prob lem 

An excellent contribution to the study of optimization problenis in actuarial science 

is given in DeVylder (1996). The optimization of the ultiIllate ruin probabili ty in 

the classical risk mode] with ('.().ii5|itllt pl'C'lllil|Ill rate corresponds to the Sclunilter 's 

I:~robh'm (see Brock(~tI. (]oovaerls and Taylor (1991), Kmm (1991), DeVylder alld 

Marceau (1996b), DeVyhh'r. (;oovaerts and Marceau (1997a), I)eVylder. (loovaerts 

and Marceau (1.997b) ). In t }~(, prosen! secti~ m, the opt imizat iou i m ~|fl~m is formulat~d 

in th(, sett ing of th(' risk model with variable premium rate since the classical risk 

model with conslanI premium rat(, is (me of its special cases. Another applicatioll is in 

the calculation of sl(Jp-loss premimns (see Goovaerts and al. (1986, 199{)), DeVyhl(,r 

and Goowaerts {1982. 198a)). The reader is invited to consult D(,Vylder (19961 where 

he will lind a fine contribution on lhe subject. 
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4.1 T h e  p r o b l e m  

Consider that  0(~, 7~(r),/;') represents the ul t imate non-ruin  probabil i ty within the 

classical risk model with varial~le premium rats. The conditions of the optinfizat ion 

problem are: 

1, The initial risk reserve ** is a.ssumed fixed 

2. The parameters  l~ and b of the fllnction 71(r) are assumed fixed 

3. Tile col~straints on the individual c[aimsize dis tr ibut ion F are: 

• F is ~asumed to he concentrated on [a,h 1. 
(z) 

• The mean t~] and the second moment/~2 of F are assmned fixed. 

Addi t ional  contraints  can he added on F (ex: unimodality,  fixed third moment) .  

The s tudy of the optimizat ion problem with these additional constraints  and within 

the classical risk model with constant  premium rate is made in Marceau (1996). 

Tim o p t i m i z a t i o n  p r o b l e m  is, fi)r fixed 7~, & u, a, b, t l land  P2, to f i nd  /5mi n 

w h i c h  m i n i m i z e  ¢(u, 1l, F)  (or find F, .... which lnaxilnize ~(;,t, ~1, f ' ) )  with tim c(m- 

s traints  (7) on F . 

It is impor tant  to ment ion that  the functional O(~t, r/, F)  ¢?(F) is neither convex 

I l o r  COi l ( :k tve .  
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4.2 Application 

l~br the appl ica t ion  of tho opt imizat ion  prol)h~m, wo ~t~'fi1~(~ 

(i) 0(~1,~/, F,,,,,) - infF 0(,1,*/, F )  

(ii) 0(u, r l ,  F , , ~ × )  - supt. 0(u, ~/, F )  . 

Then,  we hav(~ 

for all F with the const ra ints  

- Sall l(!  l I l oa l l  ]11; 

- S~tIlIO S(~Ct)lld llll)lll(?IlI [12: (9) 

saIne sul)l)orl la,b]. 

The  ext remal  lower and upper  bounds fl~r 0(u, T/, F )  were flmnd without  es t imat ing  

F .  hi  the next s~('tion, we preseni the numerical approach tha t  we use to  find the 

solutions P~ni,, and F . ,~ .  ~\~" can (;xpre~ss (10) in terms of u l t imate  ruin probabi l i t ies  

~:'(", '/, F,,,~) < ~,(u, '1, F )  < ~,(~, ~/, t';m,,), (10) 

where 

a i l d  
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5 N u m e r i c a l  a p p r o a c h  t o  t h e  p r o b l e m  

A presentation of the mmmrical approach to tile problem of optimization of the ul- 

t imate  non-ruin probability is made in Marceau (1996). Ill tile present section, we 

give a summary of the b~sic elements of the numerical approach. An extetksive t)r~ 

sentation of this mmmrical approach and its application to a diversity of optimization 

problems is given in DeVylder (1996). 

We define the following sets: 

I = [a ,b]  

An = { i 0 , i l  . . . . .  in} ,  

where An is a finite set of atoms such that  A,~ C I. For example, 

ik = a + ( t > a ) ~ ,  k = 0 ,  1,  . . . ,  n . 

We also need the following definiti{nLs. 

D e f i n i t i o n  3 Let Sp(1,p,tt2) be the set of all F with the same first two moments  

p~ and it2 and concentrated on I. 

D e f i n i t i o n  4 Let Sp(A , ,p ,#2)  be the set of all F with thee same first two moments  

#1 and t*2 and concvr~tratcd o~z A,~. 

The set Sp(I,p,p2) corresponds to the set of all F satisfying the constraints (9) of 

the optimization problem. All F in Sp(An,tl,#2) are finit~atomic. The probabili ty 

147 



masses of F belonging to Sp(A,~,II,/L, ) are denoted t)y f,0, L . . . . . .  f,,. I t  is clear t h a t  

St)(A,~,I~,p2 ) i,~ a ~ubset of Sp(l,t~,p~). "~\\~ use the followin~ nf~tations. 

D e f i n i t i o n  5 Let /].i~ (o'r b~,,~×) b~' the soh~tio,  to the opti,liz~tior~ l . v b h ' m  on thc 

.set ~;p( I, tJ ,ll~ ). 

D e f i n i t i o n  6 Let t'~.i ..... (or  F, ....... ) bc the soh~tion to the op t imi za t i on  problem o~1 

the set SI~(A,,.Iz.I~ ). 

The basic idea of tile mmmrical approach can be smmnariz~'d in th~ fi~llowing 

st~?ps: 

• F ind /";,.i ..... (or F; ........ ), 

• By increaMng ~l, the size of Sp(An,t~,/~) increases and it fidlows tha i  /~m ..... 

con~'rges to /'n,i,~ ([ ;  ....... converges to /'i.;~×). 

This  approach is possible since Sp(I,B,/12) is weakly compact. A space S is weakly 

compact if for each sequence F,~ C S, a subsequence F,~, and a probabil i ty d is t r ibut ion 

F exists such that  F,,, --~ F weakly, h)r i T ~ .  In the search of a s(flution, we apply a 

general optimizati{m alg~Mt hm which is presented in the next section. The apt)licalion 

of this algori lhm requires the use of a numerical approximation method in order to 

calculate O(~l, ~h F)  . 
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6 General  Opt imizat ion  a lgori thm 

We denote t)y 00(F1, b~) the directional derivative of O(~l,',)(r), F) at F1 ill direction 

of F2. Let F~.~t represent an extremal point of either Sp(A,,Iz,#.~) or Sp(I,p,/r~). A 

point Z of a ~iwn~ con~a~x space S is said e x t r e m a l  if Z cmmot be written a~ a convex 

coml)ination of two points of S. It can be shown that G~t is finite-atomic with at most 

three atoms (see Marcoau (1996)). The mmtber of extremal points in Sp(A,~,ll,p2) is 

finite. 

Def in i t i on  7 A point F. of Sp(A,,,p,#2) i.~" a local minimum if O0(Fo, F )  > 0 for all 

F C Sp(A,,,p,#2). 

In the following proposition, wo give an important property of the set Sp(A**,p,p2 ). 

P r o p o s i t i o n  8 E~cT;q point F of ,~p(An,tz,p2) can be uq'ittct~ as a convex combination 

of ea:tremal poiuts F~,~t of S~(A,,p4t2). 

Proof: See the De Vyldcr and Marceau (1996b). 

Then ~ also need this result. 

Propos i t ion  9 O0( Fj, b:2) is linear in F2. 

Proof See in De l.)lhh'r and Marceau (1996b) and De t.')]ldcr "1996). 

Given the two pwvious propositions, we obtain this propostion. 
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P r o p o s i t i o n  10 A poiTtt I'}~ of Sp(A,,,Iz,p.2) is a local rni*~imum if O0(Fo, F,~t) > 0 

fo'r all F,~xt of Sp(A,,,g,p~). 

Proof: Scc De V.qlder (rod Manteau (1996b). 

The  applicat ion of the general opt imizat ion algori thm is hased on the last. t)roposi- 

l ion and the  applicat ion is possible since the nmnber of ext remal  points in Sp(A~,~,#2) 

is finite. The  general opt imizat ion has three sleps. 

General Optimization Algorithm: 

• S tep l :  

- Ix't Fo ~ Sp(A~,,Iz,t@ be a s tar t ing point. Let k --0. 

• Step2: 

Calculate  O0(Fk, I~;~t) for all /';,~ of Sp(A,~,~,/~.2). 

- Let F~,~t,~. producing the smallest 0(9(Fk, F~t) .  

• Step3: 

- If O0(I~k., F,~t.~) > 0, then  Fk is a local min inmm 

- If 00(F~.,/~.zt,k) < 0, then we find (r = (~. such that  0((1 - ~)Fk + (~F,~t,k) 

is mininml 
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- Let Fk+, = (1 - ak)Fk + a'kF~t,k and k = k+ l .  

- Repeat steps 2 and 3. 

This algorithm is of steepest descent type. The values of ~(u, rl(r), F) and 

O~(F1, F2) are obtained with immerieal approximation methods. 

7 Numerical  approximation 

For tile calculation of the ultimate ruin probabilities, we use a different approximation 

method for each risk model. In the calculation of ¢(u, 7/, F)  within the classical risk 

model with constant premium rate, our numerical approximation method is based on 

the approximation of this risk model by the elementary risk model. The elementary 

model corresponds to the compound binomial model presented by Gerber (1988) 

and examined by Shiu (1989) and Wihnot(1993). The use of this risk model for 

numerical approximation of the (non-) ruin probabilities in the classical risk model 

with constant premium rate has been proposed and studied in DeVylder and Marceau 

(1996a) (see also Dickson (1994), DeVylder (1996), Marceau (1996), Dickson, Egidio 

Dos Reis and Waters (1995)). The ult imate non-ruin probability in tile elementary 

risk model has an explicit expression and it is easy to e.valuate. It is used as an 

approximation of ¢(U,~l, F) .  The quality of the approximat.ion is very good. The 

mmmrical at)proximation methods of ¢(u, rI, F )  proposed in Dufresne and Gerber 
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(1989), Panjcr  (l!JNi) ,)r Panjer  and \ \qhnot t  (1992) can also be applied. 

For the calculation ~)f ©(~/, 71, F)  within the classical risk m~d~,l with variable pre- 

mium rate, we use the tmmerical method proposed by DeVylder (1996). The method 

of DeVylder is [)~ed on the discn ' t izal ion of the t)robability dis t r ibut ion flmction 

(] defined in (5). The methods t)r~q)osed by Petersen (1990) are als~ appropriate.  

They  are b~Lsed on the' uti l ization of mmlerical methods for the solution of integral 

equat iotts. These melhods are (,xplained in Baker (1977). 

According to l)eVylder (1996), the directional derivatiw~ 60(F~, F1) is est imated 

| )y 

~,O(F,), F1) 
0(u,r/,F~) 0(u,~l,F0) 

where F,, : (1-- ~) Fi~ ~ --- F l and  ~ is a small positive real number  (ex: 0.00(}01). 

8 N u m e r i c a l  e x a m p l e s  

In the numerical  exainples, we a~ssunm fl)r both  risk models tha t  the t)robal)ility 

dis t r ibut ions  F are COll(:Ollirtttc'(] Olt t.ht" interval I [0,1]. The first two moments  are 

1' = 0.400 and II2 0.225, The paramet(~r )~ of the Poisson Process {N(t), t > 0} is 

equal to 1. In the classical risk model wit h constant  premium, the security loading 7 / 

is 25%. 

"~'~i, also cot~sider !he classical risk model with interest on the surplus, which is a 
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special case of the classical risk model with variable premimn. The function r/(r) is 

given by 

002 

For the application of the general optimization algorithm, the finite set of at()ms A,, 

is {~0, i l  . . . . .  it~ } with 

ia. " ~, k 0, 1, ..., n 

and n - 50. 

In order to accelerale the performance of the general optinlization algorithm, we 

choose as start ing point F0 tile extremal point F ~t of tile space Sp(A,,p,p2 ) which 

minimizes (maximizes) tile flmctional ¢(u, 11, F) .  The procedure needed to determine 

in a systematic way the extremal points F ~*t is given in De Vylder, Goovaerts and 

Marceau (1997a) or Marceau (1996). 

For the classical risk model with constant premium rate, the values of O(**, 7~, From) 

and O(u, ~), Fro.,,,) for different initial surph> levels ,, are given in the tables 1 and 2 

with the corresponding atoms and masses of Fmin and F,,~,×. For tile classical risk 

model with variatlle t)remiunt rate, the values of O(u, 71(r),/:;ni,,) att(t 0(u, ~1(~'), Fm,~×) 

for different initial surphts levels tt are given in the tables 3 and 4. The solutions 

Fmin an(t F ..... in those tables are "amalgamated" . The solution obtained from the 

optimization algorithm is Fmi,,,~ (or F, ....... ). It is the solution to the optimization 

problem on Sp(A~,I,,#2). The solution Fmi .... (or Fm . . . .  ) may have successive atoms 
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and isolated atoms. Successive a t , , )nLs  j l . . . . . .  i~,- (k >1) with masses fa . . . . . .  fak are 

amalgamated  in the mdque atom 

I f~l'/t + ~-fJkJ~_ 

The illaSscs of the amalgamated solution F,,~i ..... (or F,~, ..... ) are recalculated in order to 

achieve tile constraints  . f  the .p t imiza t ion  probhml. "Fho solution F,,~,i ..... (or Fan ..... ) 

is an approximat ion of tile solution G,,i,, (or filli&X)* 

In regards to the mmmrical results, we obserw', that  b;,,i,, and F, .... are always 

extremal points of Sp(I,lz,l,., ). The solutiolm/~,,,i,, and F,n.~ have at I l lOSt  three atoms. 

These solutions are not uniform in flmetion r~f the initial surplus u. Also, in other 

numerical  tests, we observ,~ that  the solutions/~;,~i,, and Fro,,. are not unifornl in q. 

For each risk model, it SeelllS that  there exists a u0 for which the .r',,,i, , and Fm~x are 

the same for all u above u.. Tile existence of such u0 is proven in DeVylder, Goovaerts 

and  Marceau (19971)) within the classical risk model with constant  premium rate. We 

can also ob(~erve that for a given small initial surplus u, the solution F.m, (or F,,,~×) 

is not the sam,, from . h e  risk model to tile other. 

For practical wdues of tfitimate non-ruin  probabil i ty 0(m q, P'), the difference be~ 

tween O(u, q, ~nin) and 0(u, ~),/:]n,x) is small. This gives a good aplm)ximat ion of 

0(m */, F) .  Similarly, since the difference between ~b(u, rl(r), F,,,i~) and 0(u, rl(r), F,,~) 

is small for practical values of O(u,r]{r'), F), we obtain  a good approximat ion of 

~h(u, 0(r) ,  F )  without  having to est imate the probabili ty dis t r ibut ion F.  
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9 C o n c l u s i o n  

The optimization of the ultimate ruin probability in a more general risk model is 

examined. We use a numerical approach in order to find the solution of the opti- 

mization problem. The solutiol~s Fmi . and F, .... have at most three atoms when the 

constraints of the problem are a closed interval and fixed two first moments. \Ve ob- 

tain extremal lower and upper bounds t,o the ultimate non-ruin probabili ty without 

having to estimate the probability distributions of individual claimsize. The difference 

between these bounds is so small for practical wdues of ult imate ruin probabilities 

(i.e. less that 10%) that they represent good approxinlations to the. ul t imate non-ruin 

probability. 
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T a b l e  1 - M i n i m a l  n o n - r u i n  p r o b a b i l i t i e s  

Varia t ion  of the  sohl t ion  wi th  +I 

u a.,,~i,, }:',.i,, c,,,i,-, +(++,?l,F,,+i,,) 

1.0 0.0000 (/.1400 0.6400 0.5975 

1.5 0.2742 0 .9 t67  0.7237 

2.0 0.2917 1.0000 0.8081 

2.5 0.2917 1.0000 0.8666 

3.0 0 .291 ,  1.0000 0.9073 

3.5 0.2917 1.O000 0.9355 

4.0 0.2917 1.0000 0.9552 

1.5 0.2917 1.0000 0.96~8 

5.0 0.2917 I 1.0000 0.9783 

I [0, l] Pt  - 0 . 4  t1~ = 0 . 2 2 5  '/ : 0.25 

Note: a,,,i,,, b.,i,, an(t c,,,i,, are the  a toms  of F,,m, 
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T a b l e  2 - M a x i m a l  n o n - r u i n  p r o b a b i l i t i e s  

Variation of the solution with u 

u a . . . . .  t)  . . . .  c . . . . .  0 ( z l , T 1 , F  . . . . .  ) 

1.0 0.2700 0.7900 1.0000 0.6030 

1.5 0.0000 0.5625 0.7258 

2.0 0.0000 0.5625 0.8130 

2.5 0.0000 0.5625 0.8726 

3.0 0.0000 0.5625 0.9131 

3.5 0.0000 0.5625] 0.9408 

4.0 0.0000 0.5625 0.9596 
I 

4.5 0.0000 0.5625 0.9725 

5.0,  0.0000 0.5625] 0.9812 

I [0,1] tg - 0.4 #2 - 0.225 71 0.25 

Note: a,,,ax, b,nax and c,~,~× are the atoms of Fmax 
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Table  3 M i n i m a l  non-ru in  probabi l i t i e s  

Varia t ion  of t,|l(~ solut ion wi th  ti 

u a,~,i,~ b,,,i,~ (:n~i. O(u 3/,F.~i.) 
I I 

1.0 0.1200 0.6321 0.7280 

1.5 0.2750 (}.921X) 0.8525 

2.0 0.2917 1.0000 0.9218 

2.5 0.2917 1.0000 0.9601 

3.0 0 .29 t7  1.0000 0.9804 

3.5 0.2917 1.0000 0.9907 

4.0 0.2917 1.0000 0.9957 

1.5 0.2917 1.0000 0 . 9 9 8 1  

5.0 0.2917 1.0000 0.9992 

I =[0,1] t~1 =~ 0.4 l~2 0.225 7/ = 0.25 ~ = 0.04 

Note: a,~.. b.,i,, and c,.i. are t,he atonls of ~,~i~, 
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T a b l e  4 - M a x i m a l  n o n - r u i n  p r o b a b i l i t i e s  

Varia t ion  of tile solut ion wi th  u 

11 amax b . . . .  c ..... 4)(tI,ILF ..... ) 

1.0 0.2614 0.7800 1.0000 0.7333 

1.5,  0.0000 

2.0 0.0000 

I 
2.5 0.0000 

3 . 0 1 0 . 0 0 0 0  i 

I 
3.5 0 . 0 0 0 0  

4.0 0.0000 

4.5 0.0000 

5.0 0.0000 

0 . 5 6 2 5  0.8558 

0.5625 0.9269 

0.5625 0.9646 

0 .5625 '  0.9837 

! 
0.5625 0.9928 

0.5625 0.9970 

0.5625 0.9988 

0.5625 0.9995 

I--[O,11 #1 = 0.4 #2 = 0.225 7) = 0 . 2 5  6 = 0 . 0 4  

Note: a . . . . .  bm~ and  c ..... are the  a toms  of Fm~× 
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