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and of the individual claimsize distribution. The optimization problem is to find the
minimal and the maximal ruin probabilities given a fixed initial surplus, a premimm
rate and some moment coustraints on the imdividual clannsize distribution. The in-
dividual claimsize distribution is concentrated on a closed interval and its first two
moments have specific values. A mimerical approach is used to solve the problem. In
this approach, we apply a general optimization algorithm which requires a muneri-
cal method to approximate the ultimate ruin probability. One of the main practical
interests is to derive the greatest and the lowest bounds of the ultimate ruin probabil-
ity given some fixed constraints on the moments of the claimsize distribution. These
bounds are obtained without the estimation of the claimsize distribution. For prac-
tical values of initial surplus, the difference between the bounds can be so small that
they are good enough to approximate the ruin probability. The optimization problem
can be extended to more general risk models. The numerical solution is derived with
the same methodology which can also be applied to other optimization problems in

actuarial science (stop-loss premiums, finite-time ruin probabilities).
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1 Introduction

The objective of the paper is to present and to apply a numerical method in the cal-
culation of the minimal and maximal ultimate ruin probabilities in two risk models
given some moment constraints on the individual claimsize distribution. An applica-
tion of this optimization problem is to find the extremal lower and upper bounds of
the ultimate ruin probabilities given those constraints. We consider the classical risk
models with constant and variable premiam.

In botl risk models, the nltimate ruin probability depends on the choice of the
initial surplus, of the premium rate and of the individual claimsize distribution. The
optimization problem is to find the minimal and the maximal ultimate ruin proba-
bilities given a fixed initial surplus, a fixed definition of the premium rate and some
moment constraints on the individual claimsize distribution. These constraints spec-
ify that the individual claimsize distribution is concentrated on a closed interval and
its first two mowents have specific values. A numerical approach is used to solve
the optimization problemn which is based on the application of a general optimiza-
tion algorithm. The application of the optimization algorithm requires the mumnerical
approximation of the ultimate ruin probability.

Often, in practice, we do not have a lot of information on the individual claimsijze
probability distribution. This knowledge may be the maximal amount, the mean

and the variance of the individual claims. One of the main practical interest of
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finding the minimal and the maximal ultinate ruin probabilities is to derive the
greatest and the lowest bounds of the ultimate rain probability without the estimation
of the claimsize distribution.  For practical values of initial surplus, the difference
between the hounds can be so small that they are good enough to approximate the
ultimate ruin probability. The methodology used in this paper can also be applied
to other optimization problems in actuarial science (stop-loss premiums. finjte-time
ruin probability) (see DeVylder (1996)).

The objective of this paper is to present the numerical approach to the optimiza-
tion of ultimate ruin probability in two risk models. We do not explicit the proofs of
the theorems and the propositions but give the references where they can be found in
order to keep this article to a reasonable length. The paper 1s constructed as follows.
We present the classical risk models with constant and variable premiums, We define
the optimization problem and present the numerical methodology used to solve this
problem. which involves a general optimization algorithm. Numerical examples are

presented and discussed.

2 Classical risk model - with constant premium

Ini the classical risk model, the surplus process {U{t), >0} is defined as follows

U(t) — w0 + et - S(t), t > 0,
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where

(1) u == U(0) = initial surplus
(2) ¢ = premium rate
(3) S{t) = total claim amount over the time interval {0,t].

The process {S(t), t=>0} is a Compound Poisson process with

N{t)

St) = % X, (1)
i=1
V\'}\(‘.l’(‘,
(1) {X,.Xy,...} 15 a sequence of i.4.d. random variables;
(2) {N(t),t>0} is a Poisson process with parameter X;

(3) {X1,X2,...} and {N(t),t>0} are independent.

The common probability distribution of the X; (1 = 1, 2, ..} is F(x), with F(0) =
(). The nth moment of F is g, with g, = g. The probability distribution of S(t) is
given by
h \ - (At)J *
Fouls) = P(S(t) <s) = Y frx[)(~)\t)—7— F*7(s), s > (),
3=0 I

where F*7 = jth-convolution of F.

The premiwm rate ¢ is

c = EGS(1)(Ln) = pA (Tty) = pr 1,

where 7 1s the security loading which is assumed stricly positive.
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We detine by T the time of ruin

inf {t,U(t) < 0}, if U{t) falls below 0 at least onee
T = >0
>, if U(t) never goes below 0

The ultimate ruin probability is denoted by y{u.n, F), where

Wlu,n, F) = P(T < o),
and its complement, denoted ¢(u, 7, £}, is the ultimate non-ruin probability where
Glu,n, FYy - L lu, iy, F)
= P(U{t) > 0, for all t > 0).
The ultimate ruin probability yi(u, 7, F) is function of the choice of the initial

surplus u, the security loading » and the individual claimsize distribution £, The

analytic expression of d(u, n, F) is given in the following proposition.
Proposition 1 We define G(x) by

Gle) = Iy (1-Fiy) dy , = >0.
Then. we have
olun, F) = psy ¢ Gifu), u > 0,
where p = 1—%7, and q = I- p.
Proof: It is a known result. See Feller (1971), Gerber (1979), Grandell {1991) or

Panjer and Wilmot (1992).
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No explicit. expression of ¥(u, n, F') exists except for special cases of F such as
the exponential probability distributions or mixtures of exponential probability dis-
tributions (see, for instance, Dufresne and Gerber (1989) or DeVylder and Marceau
{1994)). Number of approximations have been proposed in the actuarial literature,
A review and numerical comparisons of some of these methods are made in Marceau

(1993).

3 Classical risk model with variable premium

A certain number of extensions to the classical risk model with constant premium
rate were proposed in the actuarial litterature. We consider here the classical risk
model with a variable premium rate. In this risk model, the surplus process {U(t),
t>0} defined as
wn:u+ﬁ%mwmysmmza

where ¢(r) is the premium rate which depends on the current reserve with p(r) > 0
forr > 0.

The process {S(t),t>0} is a Compound Poisson process as it is defined in (1). The

surplus process can also be defined by a stochastic differential equation

dU(t)=c(U(t))dt-dS(t),t>0.
‘We assume that the premium rate ¢(r) 15 function of the current surplus level U(t)

= r. The classical risk model with variable premiums could be applied in two special
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cases. In the first case, we consider the situation when interests are earned on the

surplus. The function ¢(r) has the following form

o{r) = ¢ + ér,
where & is the force of interest. If ¢ = (149)Ap, (2) becomes

efr) =c¢+ér

Il

() + ) Au
= ((14n) +prjin
= ((T+n(r) g

= y(r) Au.

(2)

In the second case, the premium rate function ¢(r) is defined in such way that the

premiunis rates are charged by lavers. In this case, the function ¢(r) has the following

form
¢, 0= <r <y
Gy <1 <y
c(r) = (4)
Cp, U 1 < T <1 =X
with ¢, > ¢y > ... > ¢ > Ap. The premium rate ¢(r) decreases as the surplus level

increases. This can occur when the company decides to reduce the premium rate

when the surplus becomes greater since the risk of ruin decreases with the surplus

level. Another interpretation of (4) is to consider the reduction of the premium rate
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as a form of dividend payment which increases as the surplus level grows up.
Another special case is obviously the classical risk model with constant premiun
rate where ¢(r) is equal to ¢ for r > 0.
For studies on the classical risk model with variable premium rate, see Asmussen
and Petersen (1988), Petersen (1990}, Dickson (1991), Sundt and Teugel (1995),
Michaud (1996), DeVylder (1996).

If T represents the first. time that the surplus goes below zero i.e.

inf {t,U(t) <0}, if U(t) falls below 0 at least once
>0
o<, if U(t) never goes below

then the ultimate ruin probability, denoted by ¥(u, n(r), F), is

Y(u,n(r), F) = P(T < co).

The ultimate non-ruin probability is denoted by é(u,n(r), F'} with ¢{u,n(r), F) =
L - Y(u,n(r), F). Again, ¢(u,n(r). F) depends on the choice of the initial surplus
u, the parameters of the function n(r) and the individual claimsize distribution F.
In the following proposition, we give the integral equation for the function ¢(u) =

@(u, ¢{r), F) with known 5(r) and F.
Proposition 2 We define G(z) as

Glz) =4 [y (1-F(y)) dy .« >0. (5)
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Then, we have
Gxo(u) = [ y(w)do(e), uw > 0, (6)
where y(x) = 1+ () = 1+ + 5.

Proof: See DeVylder (1996).

The evaluation of @(u) by numerical methods are proposed in Petersen (1990,
Dickson (1991) and DeVylder {1996). A simulation method is also proposed in

Michaud (1996).

4 The Optimization Problem

An excellent contribution to the study of optimization problems in actuarial science
is given in DeVylder (1996). The optimization of the ultimate ruin probability in
the classical risk model with constant premium rate corresponds to the Schmitter’s
problem (see Brockett. Goovaerts and Taylor (1991), Kaas (1991), DeVylder and
Marceau (1996b), DeVylder. Goovaerts and Marcean (1997a), DeVylder, Goovaerts
and Marceau (1997h)). In the present section, the optunization problem is formulated
in the setting of the risk model with variable premium rate since the classical risk
model with constant premium rate is one of its special cases. Another application is in
the calculation of stop-loss premiuns (see Goovaerts and al. (1986, 1990), DeVylder
and Goovaerts (1982, 1983)). The reader is invited to consult DeVylder (1996) where

he will find a fine contribution on the subject.
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4.1 The problem

Consider that ¢(u,n(r}, F') represents the ultinate non-ruin probability within the
classical risk model with variable premium rate. The conditions of the optimnization

problem are:

1. The initial risk rescrve w 1s assumed fixed

2. The parameters n and § of the function n(r) are assumed fixed

3. The constraints on the individual claimsize distribution £ are:

o Fis assumed to be concentrated on [a,b].
(7)

e The mean g, and the second moment g, of F are assumed fixed.

Additional contraints can be added on F' (ex: unimodality, fixed third moment).
The study of the optimization problem with these additional constraints and within
the classical risk model with constant premium rate is made in Marceau (1996).

The optimization problem is, for fixed 4, &, u, a, b, yr;and p,, to find Fip,
which minimize ¢{u,n, F) (or find Fp. which maximize ¢(u,n, F)) with the con-
straints (7) on F' .

It is important to mention that the functional ¢(u,n, F) = ¢(F) is neither convex

1101 concave,
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4.2 Application
For the application of the optimization problem, we define

(l) é(“» ", I“mm) = inf}" (b(“w 7, F)
(“) 1;9(11, R Enax) = supy Q’)('U, T F) .
Then, we have

D, Fin) < ¢l F) < ol 0, Fruax)

for all F with the constraints
- saune mean f;
- same second moment g;

- same support [a.bl.

(9)

The extremal lower and upper bounds for ¢(u, n, F) were found without estimating

F. In the next section, we present the numerical approach that we use to find the

solutions F i, and F, ... We can express (10) in terms of ultimate ruin probabilities

U'(“v 1, F‘m(\x) S d"(lh ), F) S U’(tl, T, P‘min)-

where

U'(UJI» Fmin) =1- @(U,T}. Fmin)

and

Wl Frax) = 1 — dlu, 1, Fnax)-
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5 Numerical approach to the problem

A presentation of the numerical approach to the problemn of optumization of the ul-
timate non-ruin probability is made in Marceau (1996). In the present scction, we
give a sumnmary of the basic clements of the numerical approach. An extensive pre-
sentation of this numerical approach and its application to a diversity of optitnization
problems is given in DeVylder (1996).
We define the following sets:
I=1[ab]
A, = {0,721, - 20},

where A, is a finite set of atoms such that A, C I. For example,

k=a+(ba)f k=01 ., 0.

n
We also need the following definitions.

Definition 3 Let Sp(lp,u,) be the set of all F with the same first two momenis

pyand pu, and concentrated on 1.

Definition 4 Let Sp(An,p.pty) be the set of all F with the same first two moments

prand j, and concentrated on A,,.

The set Sp(I,z,u,) corresponds to the set of all F satisfying the constraints (9) of

the optimization problem. All F in Sp(A,.u,u,) are finite-atomic. The probability
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masses of F belonging to Sp{A,,.z.41,) are denoted by f,. £, ... ;. 1t is clear that

o

Sp(Ay fi.pty) Is a subset of Sp(1e,). We use the following notations.

Definition 5 Let Fiy (or Flua) be the solution to the optimization problem on the

set Sp(Ly.p, ).

Definition 6 Lot Foun (07 Fuaxn ) be the solution to the optimization problem on

the set Sp(A,.jigiy).

The basic idea of the numerical approach can be summarized in the following

steps:

b4 Plll(l I‘llIULn (()r FVIII(\X,H)'

e Dy increasing n. the size of SplA,.p.ge) increases and it follows that £,

converges to Flun (Floax, vonverges ta Fi.

This approach is possible since Sp(I ) Is weakly compact. A space S is weakly
compact if for each sequence F,, € S, a subsequence F, and a probability distribution
F exists such that V,, — F weakly, for i 7 oc. In the search of a solution, we apply a
general optimization algorithm which is presented in the next section. The application
of this algorithn requires the use of a numerical approximation method in order to

calculate ou,n. F) .
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6 General Optimization algorithm

We denote by 0¢(F1, F2) the directional derivative of ¢(u,5(r), F} at £} in direction
of Fy. Let F. represent an extremal point of either Sp(A,,,p,65) or SplLj,). A
point Z of a given convex space S 1s said extremal if Z cannot be written as a convex
combination of two points of S. It can be shown that F,, is finite-atomic with at most
three atoms (sec Marcean (1996)). The number of extremal points in Sp{A,, z2.p,) is

finite.

Definition 7 A point Fy of Sp(A, p.u,) ts a local minimumn if O¢(Fo, F') > 0 for all

F € Sp (‘471 7/5'/1‘2)'

In the following proposition, we give an iinportant property of the set Sp(A,.u,i,).

Proposition 8 Fvery point F of Sp(A,, ji.15) can be uritten as a convexr combination
of extremal points F.., of Sp(An. 1.4,

Proof: See the DeVylder and Marceau (1996b).

Then we also need this result.

Proposition 9 Jd¢(F| F,) is linear in F,.

Proof: See in DeViylder and Marceaw (1996b) and De Viylder (1996).

Given the two previons propositions, we obtain this propostion.

149



Proposition 10 A point Fy of Sp(A, . ji.415) is @ local minimum iof O¢(Fy, Fegr) > 0
fOT' (l” Fe:rt Of SP(ATHN-U‘Z,)‘

Proof: See De Vylder and Marceau (1996b).

The application of the general optimization algorithm is based on the last proposi-
tion and the application is possible since the munber of extremal points in Sp(A, .0,
is finite. The general optimization has three steps.

General Optimization Algorithm:

e Stepl:

— Let Fy € Sp(A,,pu.pey) be a starting point. Let k =0.

e Step2:

— Calculate O@(Fi, Fory) for all Foyy of Sp(An.ppy)-

— Let F,,, producing the smallest 0d(Fi, Fop).

e Step3:

— I 3¢(Fy. Ferri) > 0, then Fy is a local minimum

— HO(Fe, Fozex) < 0, then we find a = ay such that ¢{(1 — ) Fe+ aF.p )

1s minimal
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— Let Fk+1 = (1 - (Ik)Fk +O‘kF”¢‘k and k = k+1.

— Repeat steps 2 and 3.

This algorithin is of steepest descent type. The values of ¢{u,n(r),F) and

O¢(Fy, Fy) are obtained with numerical approximation methods.

7 Numerical approximation

For the calculation of the ultimate ruin probabilities. we use a different approximation
method for each risk model. In the calculation of ¢(u,n, F') within the classical risk
model with constant premium rate, our numerical approximation method is based on
the approximation of this risk model by the elementary risk model. The elementary
model corresponds to the compound binomial model presented by Gerber (1988)
and examined by Shiu (1989) and Wilmot(1993). The use of this risk model for
numerical approximation of the (non-) ruin probabilities in the classical risk model
with constant premium rate has been proposed and studied in DeVylder and Marceau
(1996a) (see also Dickson (1994), DeVylder (1996), Marceau (1996), Dickson, Egidio
Dos Reis and Waters (1995)). The ultimate non-ruin probability in the elementary
risk model has an explicit expression and it is easy to evaluate. It is used as an
approximation of ¢(u,n, F). The quality of the approximation is very good. The

numnerical approximation methods of ¢(u, 7, F) proposed in Dufresne and Gerber
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(1989), Panjer (1986) or Panjer and Wilmott {1992) can also be applied.

For the calenlation of ¢(u, . F) within the classical risk model with variable pre-
miuin rate, we use the numerical method proposed by DeVylder {1996). The method
of DeVylder is based on the discretization of the probability distribution function
G defined in (5). The methods proposed by Petersen (1990) are also appropriate.
They are based on the utilization of munerical methods for the solution of integral
equations. These methods are explained in Baker (1977).

According to DeVylder (1996), the directional derivative d¢(F,, Fy) is estimated

by

o(un,Foy — o(u,n,Fo)
2"(3(}““. Fl) = N

where F, = (1-2) Fy { # Fland ¢ is a small positive real number (ex: 0.00001).

8 Numerical examples

In the munerical examples, we assume for both risk models that the probability
distributions F are concentrated on the interval I = [0,1]. The first two moments are
p = 0.400 and g, = 0.225. The parameter A of the Poisson Process {N(t), t > 0} is
equal to 1. In the classical risk model with constant premium, the security loading 7
is 25%.

We also consider the classical risk model with interest on the surplus, which is a
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special case of the classical risk model with variable preminmm. The function 5(r) is
given by

n(r)y =+ %“1‘:0.25 } ﬁmri
For the application of the general optimization algorithm, the finite set of atoms A,
is {in i1, ..., } with

k=5 k=01_..n

and n — 50,

In order to accelerate the performance of the general optimization algorithm, we
choose as starting point Fy the extremal point F€! of the space Sp(An.u,u,) which
minimizes (maximizes) the functional ¢(u,n, F). The procedure needed to determine
in a systematic way the extremal points F°** is given in De Vylder, Goovaerts and
Marceau (1997a) or Marceau (1996).

For the classical risk model with constant premium rate, the values of ¢(u, 7, Fiun)
and ¢{u,n, Flax) for different initial surplus levels u are given in the tables 1 and 2
with the corresponding atoms and masses of Fu;n and Fo ... For the classical risk
model with variable premium rate, the values of @(u, n{r), Fi) and ¢lu, n(r), Fiuax)
for different initial surplus levels u are given in the tables 3 and 4. The solutions
Finin and Fia, in those tables are "amalgamated” . The solution obtained from the
optimization algorithm is Fiuin, (or Fuaxs). It is the solution to the optinization

problem on Sp(A,,,z2,1,). The solution Fuinn (0 Fipax.r) may have successive atoms
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and isolated atoms. Successive atoms ji, ..., ji (k >1) with wasses 5, ..., f,, are

amalgamated in the unique atom

1 fypdvt A
(OB ST S

The masses of the amalgamated solution F2. . (or F2, 3 are recalculated in order to

min,n max.n
achieve the constraints of the optimization problem. The solution F2, . (or Fg,. )
is an approximation of the solution F, (0r Fuax)-

In regards to the numerical results, we observe that £, and F,,, are always
extremal points of Sp(Lge,p2,). The solutions Fi,i, and F . have at most three atoms.
These solutions are not uniform in function of the initial surplus w. Also, in other
numerical tests, we observe that the solutions Fi, and F., are not uniform in 7.

For each risk model, it seems that there exists a ug for which the Fy,;, and F., are
the same for all u above uy. The existence of such g is proven in DeVylder, Goovaerts
and Marceau (1997b) within the classical risk model with constant premium rate. We
catl also obeserve that for a given small initial surplus u, the solution Fop, (or Fax)
is not the same from one risk model to the other.

For practical values of ultimate non-ruin probability ¢(wu, 7, F'), the difference be-
tween ¢o(u, 7, Foin) and @(u, 1, Fuax) is small. This gives a good approximation of
¢(u,n, F). Similarly, since the difference between ¢(u, n(r), Finin) and ¢{u, (), Frax)
is small for practical values of ¢(u,n{r), F), we obtain a good approximation of

Plu,n(r). F) without having to estimate the probability distribution F.
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9 Conclusion

The optimization of the ultimate ruin probability in a more general risk model is
examined. We use a numerical approach in order to find the solution of the opti-
mization problem. The solutions F;, and F., have at most three atoms when the
constraints of the problem are a closed interval and fixed two first moments. We ob-
tain extremal lower and upper bounds to the ultimate non-ruin probability without
having to estimate the probability distributions of individual claimsize. The difference
between these bounds is so small for practical values of ultimate ruin probabilities
(i.e. less that 10%) that they represent good approximations to the ultimate non-ruin

probability.
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Table 1 — Minimal non-ruin probabilities

Variation of the solution with u

U | i bmiu Conin d{u Foin)
1.0 | 0.0000 | 0.1400 | 0.6400 | 0.5975
1.5 ] 0.2742 0.9167 | 0.7237
2.0 | 0.2917 1.0000 | 0.8081
2.5 1 0.2917 1.0000 | 0.8666
3.0 1 0.2017 1.0000 | 0.9073
3.5 1 0.2917 1.0000 | 0.9355
4.0 1 0.2917 1.0000 | 0.9552
4.5 | 0.20917 1.0000 | 0.9688
5.0 ] 0.2917 1.0000 | 0.9783

[=]01] gy =~ 04 py = 0225 5 =025

Note: amin, bmin and ¢y, are the atoms of Fp,
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Table 2 — Maximal non-ruin probabilities

Variation of the solution with u

W Aax | Do | Cmax | @(w7,Finax)
1.0 1 0.2700 | 0.7900 | 1.0000 | 0.6030
1.5 ] 0.0000 0.5625 | 0.7258
2.0 | 0.0000 0.5625 | 0.8130
2.5 | 0.0000 0.5625 | 0.8726
3.0 { 0.0000 0.5625 | 0.9131
3.9 { 0.0000 0.5625 | 0.9408
4.0 ] 0.0000 0.5625 | 0.9596
4.5 | 0.0000 0.5625 | 0.9725
5.0} 0.0000 | - 0.5625 | 0.9812

I=]01] g, =04 p,=0225 7=025

Note: agay, buax and cpax are the atoms of £ .,
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Table 3 — Minimal non-ruin probabilities

Variation of the solution with u

0| A Bunin | Crun o(u Fin)
1.0 | 0.1200 0.6321 | 0.7280

1.5 1 0.2750 0.9200 | 0.8525

2.0} 0.2917 1.0000 | 0.9218
2.510.2917 1.0000 | 0.9601

3.0 1 0.2917 1.0000 | 0.9804

3.5 1 0.2917 1.0000 | 0.9907

4.0 | 0.2017 1.0000 | 0.9957

4.5 ] 0.2917 1.0000 | 0.9981

5.0 0.2917 - 1.0000 { 0.9992 J

[=[01] p, =04 p, - 0225 7 =025 8&=0.04

NOte: Amins Drain ald Cin are the atoms of Fiup,
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Table 4 — Maximal non-ruin probabilities

Variation of the solution with u

U | x| bmax | Cmax | (2,7 Fmax)
1.0 ] 0.2614 | 0.7800 | 1.0000 | 0.7333
1.5 | 0.0000 0.5625 | 0.8558
2.0 | 0.0000 0.5625 | 0.9269
2.5 | 0.0000 | - 0.5625 | 0.9646
3.0 | 0.0000 | -- 0.5625 | 0.9837
3.5 | 0.0000 | — 0.5625 | 0.9928
4.0 | 0.0000 | - 0.5625 | 0.9970
4.5 | 0.0000 | - 0.5625 | 0.9988
5.0 | 0.0000 | - 0.5625 | 0.9995

1=(0,1] p, =04 p, =0225 7 =025 6=004

Note: agax, bmax and Cax are the atoms of F, ..
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