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1 Introduction

Equity-indexed annuities (ETA's) are the fastest growing annuity products. An appealing
feature of an EIA to its holder is that it contains path-dependent options which allow
the policyholder to participate in favorable investment performance while maintaining a
minimum guarantee on the benefit level. Studying the valuation problem of path-dependent
options enables us to provide needed information to insurance companies on the costs of
these options as well as investment strategy for their portfolios. For details, see Bacinello
and Ortu (1993, 1994), and Bensman (1996).

Valuation of such options usnally involves analysis of Brownian motion, which requires
a good knowledge of stochastic processes theory and stochastic caleulus. The martingale
approach by Gerber and Shiu (1994, 1996) enables us to solve some valuation problems in
option pricing without knowing deep results in stochastic calculus such as the Reflection
Principle and Girsanov Theorem. What is needed is the Laplace transform of certain
distributions known by actuaries.

In this paper, we show how to use Gerber and Shiu's approach to compute two defective
density functions related to double barrier hitting probabilities of a geometric Brownian
motion. The approach used here is simple and straightforward, and purely analytical.

We then apply the formulas to value some exotic options whose payoffs are contingent on
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barrier hitting time.

We begin with the basic properties of the Inverse Gaussian and the one-sided stable
distribution. We then compute two double barrier hitting time distributions for a Brownian
motion using the Gerber and Shiu method. The corresponding double barrier hitting time
distributions are then derived for a geometric Brownian motion with drift. In the remaining

sections we apply our results to various exotic options.

2 Inverse Gaussian distributions

Central to our discussion are two distributions: Inverse Gaussian distribution and one-sided
stable distribution of index % The first distribution has been used widely by actuaries to
model claim distributions. The second distribution, although less familiar, is a limiting
distribution of Inverse Gaussian distributions and well known as the first passage time
of a standard Brownian motion. As we will see in later sections, certain barrier hitting
time distributions can be decomposed into a series of Inverse Gaussian distributions and

the price of certain path-dependent options can be expressed as a linear combination of

one-sided stable distribution functions of index %

The density function of an Inverse Gaussian distribution with shape parameter « > 0

and scale parameter 3 > 0 is given by
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Let Fro{t) = ][f fra:(y)dy be its distribution function (see Bower, et al. 1997, p. 39, and
Panjer and Willmot, 1992, p. 114). Then
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where N{z) is the standard normal distribution function. The Laplace transform of the

Fig{t) =
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[uverse Gaussian distribution is
oo
[ e oty = el VEEA, 2 50 (3)
0

The density function of a one-sided stable distribution of index 1 is

a 2 ,
flt; a) = mc’ T, t>0, (4)

where parameter a > 0 (see Feller, 1971, p. 52). A comparison with (1) indicates that

F

this distribution is the limit of certain Inverse Gaussian distributions, if @ = a/3 and
# — 0. Taking this limit in (3) we obtain the Laplace transform of the one-sided stable

distribution of index %

o0
/ et a)dt = eV 2> 0. (5)
0

For valuation purposes, we are also interested in
v
/ e 2 f(t; a)dt, for some T > 0.
0

To calculate this integral, we write the integrand as

fm a 2:t—av/22)2
e e 72«——9_%’# .

Vorts

~av2: times the Inverse Gaussian density with parameters a =

That is, the integrand is e

2z, 83 = 2z. From this and (2) it follows that

T 3y QZT - G 2z
/ (”ﬁz'f(ti U‘)df = Qﬂt\/hfv(\/- a) 4 ea\/ﬁjv( _ \/—T + (1). (6)
u T T
Finally, we extend the function (4) to negative a. For a < 0, we define f,(t) = — fig(t).
Thus, for a < 0,
. ‘
—ztriy. . av7: V2:T +a oV V2:T - a -
/0 et a)dt = —e ’V(———\/T )-e a4 1V(-——\7_T~-), 7
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3 Double Barrier Hitting Time Distributions

[n this section we begin with three barrier hitting times of a Brownian motion. We assume
that there is an upper barrier and a lower barrier. The first hitting time is defined as the
tirst time the Brownian motion hits one of the two barrers, the second one is the Arst time
the Brownian motion hits the lower barrier without hitting the upper barrier earlier. and
the third one is the first time the Brownian motion hits the upper barrier without hitting
the lower barrier earlier.

Let {1W7(#).¢ > 0} be a standard Brownian motion and X(#) be a Brownian motion
with drift parameter j; and diffusion parameter o, i.c., X(¢) = pt + oW (£). the parameters
pand g are assumed to be arbitrary nonnegative constants. Let o < 0 < b. Define

. inf{t; N(0 =a, or X(¢) =b}, if such at exists
Loy = {8)
X, if X{#) never hits the harriers.
Here 1, p is the first time the Brownian motion { X (¢)} hits one of two barriers @ = a and

= b Further, define
To= Ty i XN(Top) # by Ty = T, if X(Touu) # w (9)

Then, T, is the first time {X(#)} hits the lower barrier z = @ without hitting = = b carlier,
while 7y is the first time {X (¢} hits the upper barrier x = b without hitting & = a carlier.
[n the following, we will identify the defective densities of T, and T,. The density of
T, then is the sum of these two.
We tirst compute the Laplace transforms of T, and Ty using the Gerber-Shiu Technique.
We then express them as a series of the Laplace transforms of stable distributions.

[t is well know that for any real A, the exponential

2

Zy(t) = (AN At EA%aty
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is a martingale. For an arbitrary =z > 0, let A; and A, be the negative root and the positive

root of the quadratic equation
L gy
oA+ pA -2 =10,
2

respectivelv. Then,

A =

—p— 2+ 2072 \, = —p+ Vit F 207z
- P

a? lod
We obtain two martingales:

Mi(t) = Zy, (1) = M X0

and

Ma(t) = Zy,(t) = ¢2¥0 2t
By the optional sampling theorem, we have
E[M(T,p)] =1, i=12
[t follows from the law of total probability that
E(e T e 4 BlesThyebh = 1,
E(e 7)o 4 Bl To)ebhe = 1

Solving the linear equations above yields the Laplace transforms

bAa JbA
. ebrr — ¢
—z7a
V = ————
E(e ) eahi TbAz _ pbA; tars
and
Ele- 4,’1}) Cuz\x . (:a/\g
e = paditbhe _ pbArtaAs
Since
1 e (
_—aky bl —n(b-a)(Aa - Ar)
PrIYRYS VRS VRS VS > '
=0
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we have

o =]

]1‘(( ':/d) — Z(, alb—al{de =Ny} -ad) Z()——»[nqtl)(b allAy A} a,\g‘ (]5)
o n=0
0 =Y

Ele z'[‘b) = Z F»n(b ap{Ap=Ayj—bAy Z ﬁ—(u+1)(b al{ Az )\U‘——b/\]' (10)
=0 n=u

We now identify the defective density functions of T, and T, through the Laplace transforms
{15) and (16). To do so, we first identify functions that correspond to the terms of the

series in {15) and (16). Let ay = 2[2n(b - a) — a] and b, = i[2‘n(b —a) + b, forn =

1
a

+=2,-1.0,1,2,- -+, and let g4(t) and g,(t) represent the defective density function of

T, and T, respectively. From (10), the terms of the first series in [15) can be rewritten as
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The second factor above is the Laplace transform of the Inverse Gaussian distribution with

2. X . p .
parameters o = 283 = & Thus it follows from (1) and (3) that the corresponding
function to this expression is

[

ap_ugs Q@ _ {ut-ano)? ap _Ligy2
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For expressions ¢ n=0,1,--,letm= -n-1 Thenm=-1,-2,-.-

- 202,
e Db-a)Og X ady _ S tne 50 [1' \ﬂ*—r"

Thus. the functions corresponding to the terms is the second series in (15) are

and we have

wp s 0 ittamry? ap o lipad,
P A My Wl s e S ) s — L =2 (18)
V2mt?

Together with (17) and (18), we obtain the density of T,:
o

galt) = 3N f( gy, (19)

n==--00
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where [t uy) is defined in (4).
A similar argument yields
oo
wlt) = A HD ST f k). (20)
n=—oc
To apply the above results to option pricing, we consider a geometric Brownian motion
as the price of a stock under the risk-neutral probability measure. Under a Black-Scholes
cconomy with one stock with price process {S(¢)} and one riskfree bond with constant
force of interest r, it is well know that, if the stock pays no dividends, the price process

{S(t)} under the risk-nentral probability measure follows a geometric Brownian motion
S(t) — Se(r/%az)t*aw(t)‘ (21)

where S is the initial stock price at time 0 and {WW(¢)} is a standard Brownian motion. In

this case, S(t) = Se*M X (#) is a Brownian motion with drift parameter

pu=r— 1(72 (22)
2
and diffusion parameter .
Let L and I/ be a lower barrier and an upper barrier for {S{¢)} with 0 < L < § < U.
Denote 7, and 7y as the first hitting time to the lower barrier without hitting the upper
barrier earlier and the first hitting time to the upper barrier without hitting the lower

sarrier earlier, respectively, i.e.,
barrier earlier ectively, i.e

=inf{t; S{t) =L, L < 5(s) < U for all s € [0,)},

Tz

-

e =inf{t; S(t) =U.L < S(s) < U forall 5 £{0,¢)}.

To find the density for 7, and 7, let.

a=1n {%] b=1In [2} (23)
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Thus, the density g (¢£:.5) of 71 s g, (¢). It follows from (19) and (22} that

L}(rn 2-%\ ] o . o

gt 8) = [;

Similarly, it follow from (20) and (22) that the density ¢/ (6 5) of 70 18

—u_1
0743 20

12 {re 5 . .
gt S) = [E] e hlre T o)t Z flt by

n=-10

[andd

- _ Cing 1
Herc Uy = n IR and ()” = n TG

L
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4 Pricing Single Barrier Options

In this section we consider exotic options whose payoffs depend on the hitting time dis-

tribution of their nunderlying asset price to a single barrier. Although the single barrier

hitting probabilities can be derived by the reflection prineiple, they are simply a special

case of our results in the last section.

Two cases are cousidered: the barrier level is less than the initial price of the underlying

asset. Lo, Lo<0 S0 and the barrier level is greater than the nitial price of the underlying,

S < U We denote g(¢) for the density of the former and g,(¢) for the density of the later.

[t is obvious that

gt S) lix};y, (1:5), and ¢,(t:S) = ;il}z)g,:(t S),

=
where g (f; 5) and g, (t: .§) are given in (24) and (25). Note that for n > 0,
lim a, = oc, limb, = oc;
[EENT>"S) L +0
for n << 0.
lim a, = —nc. limb, = —x;
Lo [ =0

and

v

1 S 1 U
ay = - in {7} . by = 5 In {@‘;} .
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Thus, we have

L (r(r'?f.l) - .
altS) = |g| e HT ), (26)
and
Lyl ?) Lipg—t . Lgy2
(1 8) = H 3T doP (g ) (27)

S
In the following we use the density functions obtained above to evaluate continuous
lookback options. Lookback options have been used in several equity-indexed annuitics.
For example, an EIA which indexes on highest daily point of S&P 500 over 6 years contains
a lookback option with fixed strike price over 6 years.
In this section, we always assume the Black-Scholes economy with one stock and one
riskfree bond as discussed in section 3. The stock pays no dividends. Consider a European

lookback call which pays at maturity T

max | max Sit) - K, ()} . (28)
The price of this lookback option is
e TE {max [ max  S(t) - K, O] } . (29)
0<S(L<T

The expectation is taken under the risk-neutral probability measure. To evaluate, we need

to identify the distribution of maxg<gn<y S(t). Define

T - . .

_ S, U > S

Gl = Jo gult: S)dt. AU 2 (30)
1, ifU <8

Then Gy{L7) = Pr{maxpcsuy<r S(t) > U} is the survival function of maxgcsy<r S(f).

Thus.

0<S(H<T

E {max [ max_ S(t) — K, ()}} = /x Gi(x)dx, (31)
w

which is analogous to the formula for the stop-loss premium in insurance.

173



It follows from (6) that

.
/ gu(t: S)dt
0

_ ;\r('ﬂiﬂr*%”z”p ST (i =ity
aJ/T

VT U

Denote
Y — Llayr
In 2+ (r 30 )y

v, (33)

Then, if K > S, the integration of the first term on the right hand side of (32) vields

/:J\'(du.S))dl» - /:c/i” \/;Fe’]iyrzdydz

d{K,S) pseoYTyrro et -
~——¢ "2¥"drd
d(K,S ;
/ o [Ge-oVTyttr=5a5T _ 1\"] ; ﬁl—’t' '%yldy
— 00 - 27
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i

I

and the integration of the second term of (32) yields

A A
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Together with (3:1) and {35), we have from (29) that the price of this lookback is

7 s(eR iy
2 ) avT

(35)

2 5 . A% al
) 0% T Ql-tra~? g ror "2y lnf _ (I R 20 )7 1
_TT_,f) -5 'S Ko NS R — )36
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If A <5, the price i1s

T /:O? (2)de = e T(S — K) + ¢ _/;Ofil(r)d:r- (37)

The second term on the right hand side of (37) is given by (36) with A = 5.

5 Pricing Double Barrier Options

In this section, we consider a double lookback option whose payoff is contingent on the.

spread between the maximum and the minimum of a stock. It pays
max {max S(t) — min S(t) - K, 0]
lo<i<T 0<t<T
at maturity T. The value of this option is

0<t<T

e 'E {max [Ur?taé‘S( ) — min S{t) — K, (]} } (38)

where K is the strike price.

Denote
_ T T
(}'(l»}L):/ g,;(t;S)d.twL/ gult; S)dt, L<S<U.
0 o
Then
G(U, Ly = Pr{UIQIaQVS(t) > U or min S(t) < L}
Thus,

E { max

max S(t) — min S(t) — K, OJ}
0<t<T 0<t<T

5 R 7
/ /OO max[z — y — I&',O]a—g—(é'—y)drdy

L PG, y) ’
/(; </max S, y+1‘) ¥ A) a 0 o dr dy,
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If S < K. integration by parts and the fact that Gu(y) = ling L Gl y) vield

I {mux
(AN e

wmax S(f) - [;1'111 S — K, l)}}
S diGy G
/ / ‘ J‘U); [\177 1{71 drdy
S ¥

PR dy
v K 7 G S 9l G -G
/ / d—* ‘~\G( ) dydr +/ / b AL SRS A ) b u”dud
K 0 iy dy
SR — — o
_ / IGitr) + Caler - K) — Gl — K)lde + / Gl
K Isew
- 5 5
= Gogr)de + / Galy)dy — / Glr + K, ryde. (39)
Ju 0 i

fS>Hh

F {mn.\' {max] S{t) - mirﬁx»S((} - K, ()]}
theds :

R () Gl y) o x i (:(1 Y)
= I e - e
'/U / ( G dady + Hs/ (o m = KT e drdy
S R )” S—K rx )
w / (S -y K )( ¢ [/ / / ¢ GZ(U)—-‘\ drdy
i
0(,1 y)— (r((,IHI/)J‘
= - Lr
T /‘w K /u N ()1/ o (“/
Sk RERA ()(v &
= L Gy(y) du+/ j )dgwly(I‘l.
S =K 9\Goly) ~ C:(I )] (){(12 i) - ﬁ(]‘. ¥ i
+ / / fffff —dydr + /“‘/; . oy —=dydi
= / Ghle)dr +/ G (y)dy - / Glr+ K. rydr. (4
g8 ) SR

All the fntegrals above can be evaluated explicitly.

References

(1] Bacinello, AR and Ortu, ¥ (1993). Pricing equity-linked life insurance with en-
dogenous minimum guarantecs. Insurance: Mathematics and Fconomics 12, 245-257:

Clorrigendam 13 11993), 303-304

176



|

6]

Bacinello, A and F, Ortu (1994). Single and periodic premiums for guaranteedecuity-
Hnked life insurance under interest-rate risk: the “lognormal + Vasicek™ case. In
Finanicial Modeling: Recent Research, Peccati, L. and M. Viren ed., Physica-Verlag,

Berlin.

| Bensman, M., (1996). Insurers play the equity-indexed game. Dertvatives Strategy

11-15.

| Black, F.oand M) Scholes (19731, The pricing of options and corporate Habilities.

Journal of Political Economy 81, 637-654.

Bovle, P.P. and X.S. Lin (1997). Bounds on contingent claims based on several assets,

Journal of Financial Economics, 46, 383-400.

Feller, W. {1971). An Introduction to Probability Theory and Its Applications, Vol 2,
2nd Edition. John Wiley, New York.

Gerber, HU and E.S.W. Shiu (1994). Martingale approach to pricing perpetual Amer-
ican options. ASTIN Bulletin 24, 195-220.

Gerber, H.UL and E.S.W. Shiu (1996). Martingale approach to pricing perpetual Amer-

tcan options on two stocks. Mathematical Finance 6, 303-322.

Harrison J.M. (1985). Browniun Motion and Stochastic Flow Systems. John Wiley,

New York. Reprinted by Krieger Publishing Company, Malabar, F1..

He, H.. W.P. Keirstead and J. Rebholz (1997). Double lookbacks. Forthcoming in

Mathemabical Finance.

Hull, J. (1997). Options, Futures, and Other Derwatives, 3rd ed. Pratice-Hall, Engle-
wood Cliffs, N.J.

177



12) Lin, N.S. {1998). Double barrier hitting time distributions with applications 1o exotic
J / 8 Pl

options, Insurance: Mathematics and Feonomacs, in press.
113] Oksendal, B. (1985). Stochastic Differential Equations. Springer-Verlag, Berlin.

(14 Panjer. HL (Editor) (1998). Financiaf Economics: with Applications to Investments,

Tuswrance wed Penstons. Fortheoming,

115] Panjer, L and GUE. Willmot {1992). Insurance Risk Models. Society of Actuaries,

Schanmburg, 11

6] Rich, D.R. (1995). The mathematical foundations of barrier option pricing theory.

Advances in Futures and Options Research 7, 267-312.

178



