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ABSTRACT  An unbiased, consistent and asymptotically efficient
estimator of 4*" (&) based on importance sampling variance reduction
technique, in the framework of Monte Carlo simulation methods, will
be presented, where £ () is the t-fold convolution of a c.d.f. 1 (z).
We will also show that the estimator is also highly efficient in terms of

number of computations.

Using the Pollaczeck-Khinchine formula, we will extent the use of the
above mentioned estimator 1o the calculation of ultimate ruin
probabilities in the context of the Classical case of Risk Theorv and
compare our results with recent actuarial literature using the same
methodology, Asmussen and Binswanger{1997).

1. INTRODUCTION

Defining a Classical Risk Process in continuous time {7, },.., with X; claim

sizes and premium ¢ per time unit,

Ny
Zr=u+cl - Z Ay

ko1

where u are the initial reserves and N, the total number of clains up to time
t (distributed Poisson with parameter At} where A 1s the average number of
claims In one year (or another time units considered ). Let I' denote the
distribution [unction of claim sizes Xy with mean p; and ¢ = Apy(1 +0), where
1 is the premium loading factor.

Let us now define 7 = inf {w > 0: Z,, < 0} as the ruin time and the ulti-
mate ruin probability

U(x)=P{r <oc}

We will use the text-book Pollaczeck-Khinchine formula extensively cited
in actuarial literature (sce for example Panjer and Willmot(1992). Theorem
L1.L5.) for ruin probability in the Classical case of Risk Theory (exponential
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waiting times between claims or Poisson number of claims)
(} oo 1 f

Vi) = L—dr)=1-_- 5 ('7—>II".I‘

L) r) 140 \1+0 )

= 0 5 ! '(1 Ho 1.1
o045 (1+0> = 1) (1-1)

where {17(r) is the t-fold convolution function of the distribution finction

/1(.;?):/"" Ll[lﬂ >4 (1.2)
0 P

The former t-fold convolution of H{x) can be expressed using the following
multiple integral

I n r
0 ) = /” / / G = s Sy — i)
. 81 EETEN
coeli{sy — s ) (s hdsy - odsy

In seetions 2 and 3, following Usdabel(1998), we will introduce a simple esti-
mator(based on a importance sampling Monte Carlo method) of 117 () /H* (i) .
and subsequently of 1 — 117 (1), and prove that il s unbiased and consistent,
giving an upper bound of its variance.

In scction !, a sample mean estimator of simple estimators introduced
in the former scetions is presented. The new estimator {N* (1)) inherits the
properties ol unbiasedness and consistency and we will prove, in section 5, that
1t 1s also asymptotically efficient. Following Hadelberger(1995) or Asmussen
and Rubinstein( 1995) or Asmussen and Binswanger(1997), we will use here the
same standard current eriterion for calhng a rare eventls sinmlation estimator
asymploticallv{or logarithmically) efficient,

> 1

RV

o log(sd {¥ ()]
A, it == )

where sd { U (r}} is the standard deviation of the estimator.

Nevertheless, our final aimn is approximating ultimate ruin probabilities.
Outstanding results of efficient simulation of ruin probabilities using impor-
tance sampling are Sicgmund(1976) and Asmussen (1981, in the case of light-
tailed distribution for the claim sizes. Regarding heavy-tailed claim sizes dis-
tributions (most interesting in actuarial practice), recently Asmussen and Bin-
swanger (1997) presented a very interesting cfficient. conditional Monte Carlo
algorithm {(algorithm TII of the original paper) based on the idea that, for
subexponential claim sizes, only the largest claim and not the sutn of all clains
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causes run, following the formal definition of subexponential claim size distri-
bution (7.2).

T the present work, we will first develop i section 6 an unbiasad, consistent
and etlicient estimator, based on the results of former sections, for the ultimate
run probability suitable to any tail behaviour of the distribution function of
the claim sizes. Later, i section 7, a second method based on conditional
Monte Carlo and the results of sections 2-5 will be presented. The estimator
of the ultimate rain probability obtlained in scction 7 is only valid for heavy-
tatled claim sizes distributions.

Numerical illustrations are presented in section 8 and section 9 is devoted
to concluding comments.

2. SIMPLE UNBIASED ESTIMATOR

Let us now introduce an estimator of the t-fold convolution of 11 (),
H () HY () = H (e =S, ) H (e =S, o) H (e —=S) () (2.0)

where S; 7 = 1,....1 — | are random numbers generated using the following
density functions:

‘ his .
h] “*>(1|(S|): 1[(;; 51 € [U,I}
X , Sy T v‘_ N .
S —d,; (.s‘j) SRS B Ll V) (5“ 2 1) 5; € [b}*],.rj 7 >1 (2.2)

][ (V.I,‘ - Sj_l)

We will prove now that the above mentioned estimator is unbiased.

Theorem 1. The function H*' (x) is an unbiased estimator of the t-fold con-
volution of I{x).

Proof. 'The expected value of the estimator H* (1) can be expressed:
AR E TN
I lH (x) |

= /‘r /T.~/J H(x = sy) H (0 = 54)
Jo Uy s d

It(sy) h(sy — 51)
H(x) H (2 - s)

L H (- ) H ()

) h (814 — S1_9)
H{r— 5,_9)

LI/:/:)H (= s ) h(semy — siy)

... h (.‘iAz — .‘9’])]74(.\‘[){1-‘7‘[ coe l]ﬁi,,, 1
1 ()

dz‘a’] b ’d-ﬁ" |

i

1
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It is clear, using Theorem 1, that

E{U=H" ()} =1- 1" ()

3. VARIANCE OF THE SIMPLE ESTIMATOR
The variance of the unbiased estimator 1 — H* (2) can be bounded using
the following theorem.

Theorem 2. The variance of the estimator 1 — H* (&) has an upper bound:
2
Var{l - " ()} < (H () 1" (@)~ [ ()] (3.1)
Proof. Using the properties of the variance

Var {1 — H* (Jr)l = Var {H"’ (1)}

Due to the fact that H*' (z) is an unbiased cstimator
r x - * * 2 9
Var {H ()} = k {(H (1) } (17 () (3.2)

Let us study the former expected value:

3 {(H (.,;))2}
./ ,/ / (= si-1) H? (22— s1_3)

hsi) b (59— s1)
H{e) I (x - s)

CHE(r — sy {1 ()

/J(s, (— S1-2)
I {x — si.9)

< M) H (). H () H () /0’ /SI o
/r ‘ (v — sy ) H (0 —si_y) - H (0 — 57} 1 ()

hisyhisy —sy) A (8=t — S¢_»)
H{x) H (e —s) H(x = 5_9)

—dsy - ds,_y

(1»5‘] s (l’”’w‘,“l (33)

because
Mar[H (x — s,20) H (e = s,20) o H (= sy} 1 ()] = (1 ()
since H(y) is non-decreasing.

Substituting (3.3) into (3.2) we get the statement of the theorem. B
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4. SAMPLE MEAN ESTIMATOR

Let us deline now this new estimator as a sample mean of 1 — H*' ()

r 51 @)
N‘( T = l———————
(z,n) "
S (1 H (o~ S ) H (0= Ss) ... H(x— ) (2))
= & {1.1)
a n "

using (2.1), where S5 are random numbers generated from the p.d.fs. (2.2) for
i=1....,nand j=1,...t—1

i i f h (s i
St — d) (5‘1> = “((:‘i 5y € [0, 7]

M st € [Sj_l.,.r} j>1 (12)

CH (- S1) J

and {1 - H;'(x)}] , is a sample of independent estimators 1 — H™ () .

As a sample mean of an unbiased estitnator, ¥* (ir;n) is also unbiased and
consistent with variance bounds (in the non trivial case 1 — I1*' (x) > 0)

Var {1-H"(x)} _ (1 () 1 () = [ ()

2! n

Var {N*' (.1‘:,7))} = (14.3)

under fairly general conditions (see for example [9] )

—
!

T erye . ! A} 1
lim N (zn) — N |1 - 1™ (;r),\/‘_“—’—{l—MJ (1.4)

n-—oo

n

and the interval estimation with a confidence level 1 — o 1s

T
{N*f () F o (l - a) \/ Var {1 H'H (J)}il

(15)

we can use an cstimator of the variance of the H* () :

Var {1 = 1" (1)} ~ k = 1 . (Z (1-n (;1:))2 —n }:} (1w (;r)))

T =1
(16)

as recommended in [9, pg. 6§, k is a strongly consistent estimator of

Var {’H"' (r)} — Var {l — H* (1)}
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Then an asymptotically valid confidence interval can be

R () Fo(l - a) (f‘lﬁ {1.7)
Vo

We can also avord the use of an estimator [or Lthe variance substituting the
resuli. of Theorem 2 into (-L.5) and get a broader confidence interval

u ‘ T
R () + ¢l — o) \/;]

where
12

— ()Y R () = (R ()
5. BrrFiENcey or T ESTIMATOR R (1)

We will follow here a standard current, eriterion {e.g. Heidelberger(1995) or
Asmussen and Rubinstein{1995) or Asmssen and Binswanger(1997) ) for call-
ing a rarc events sinlation asymptotically or logaritlonically efficient. The-
orem 1 proves that the unbiased and consistent estimator X™ (a,n) is also
asvinptotically eflicient
g (wd R (1)}

lim in

e log (11" ('))

In order to prove Theorem 1 the following lemmia is introduced.

Lemma 3. Defining the functions f(x), g(x) > Owhere

lim J) = lim ¢g(x) =0

if
FerYy < (g(e))? as w00

,\
e |
—_—

then
log(,/f
um - :
% Toglg(r))

)
>

Proof. When 5.1 holds, with some simple arithimetical operations we can get
for x large enough
—log(f(#)) = —logllg (+)*) =
—log(f(x)) > -2logly(«)) =
(T () = —logly ()

v/

V
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it 15 casy Lo prove then that

log(y(r)

im
r=eo Jog(g(a))
|
And finally we will prove that the estimator R* (z,n) is unbiased, consistent
and eflicient.

Theorem 4. The estimator R* (x.n) of the function, 1 — (1* (2}, Is asvinp-
totically efficient .

N *l .
Hm inf log (sd {R* (2.1)}) -

700 log (1 — H* (x)) —
Proof. Lct us remember that
Var {1 - K (1)} = Var {'H*’ ())}
1t 1s clear that,

log (sd {R* (x.n)})  log (sd {H"' (r)})

inf = (5.2
M e (- T () dog (L 17 (1) (5-2)
bhecause
\ sd {H*(r)}
S(L N*I T = 1 _
log (sd { (l,n)}) og ( 7
1
= log (sd {H”(.I‘)H -5 log(n)
expression decreasing; with increasing n.

Using 'I'heorem 2 (3.1)

log (sd {H*r (I)}) R log (V/(l] (.l:)‘)' I+ (,1:) - {“' (1)}2>
log (1 - 1~ (x)) — log (L= 11 (&)

It is clear that

i (1 (o))" 1 () — {Il*f {(x)

IO J

]2) — lin (1 — 1 (1))2 -0

and as 7 — 0o

L
/

~UMMYH“QO

(1= 17 )" = () oy = [ (]

12
|

I

120 () + <2[1/*’(11J
~ L2 (o) + 1 )]

(R A S
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because

lim (H () = lim 1™ () =) (5.

g Hiaman o}

<~
o
~—

and finally
(L= 1 (et = (H ) 1 () — (H ()
following the result of lemina 3 we can conclude the statement of the theorem.

6. AN FEFFICIENT ALGORITHM FOR APPROXIMATING ULTIMATE RUIN
PROBABILITY

Using expression (1.1} and the family of estimators X (x.n) = 0,1, ...
we obtain

‘ ¢ X Ly
vir) = —- —— ) (1= 1"
W =5 (Y e 6.1
o~ Wi{w.n) = ey (1 ‘r()) (.n (6.1)

where
LI Py T R
<1+0) e T

as long as we have to estimate the functions (1 — 17 () one by one up
to t — L, estimator ¥(u, 1) of the ultimate run probability inherits the
properties of estimator N (1) and is, subsequently, unbiased, consistent and
asvinplotically efficient.

[.et us now highlight an important property of this method, When we get
the estimator from (-1.1) and store these pairs of values

(l AH:PI(J').AS'LZ) P—1.....n
then
N* ()
(- H ()
_ i |
I
B pOICEN (v =) 1 (i— Si_y) oo H o = S 1 ()
N n
ST (o= Sp )R ()
N S
1
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where using (2.2)
h(si-St)
H(x—S_y) fre

This last resalt means that inereasing one unit the order of the convolution

I
—

6[ (- p-fﬂ ’

Sty —— (15_2 (S,,z) =

only implies generating n randomn numbers more and the total amount of
random numbers required is n(f — 1), where t is the dimension considered.
The save of number of steps - random numbers in our case  become even
more obvious when we need to evaluate 1 — /{* (z) for t = 1,2,.. ., one by
one up to a certain integer 1. The total amount of calculations will still
be n (I — 1). increasing linearly with L or the number of simulations
per step, n.

7. A SECOND FFFICIENT ALGORITHM FOR SUBEXPONENTIAL CLAIM
SIZ1E DISTRIBUTIONS
Let us introduce now a second estimator for ultimate ruin probability based
on the compound method of generating random numbers.
Using expression (1.1)
!

=053 () 0 )

) = .

Tl 4+0/4 \N1+0

1t is clear that the ultimate ruin probability is a geometric compound process

and

| "1 — H ()
W) = lim el )

n—oo 1
v R ()

1

~ Yi{z,m,n)=
m o= 1.2...

(7.1)

where [’ is a randon number generated {rom a geometric distribution
4 o)

ety (st
' 14+0 \1+0

It is easy to prove that estimator U§(x, i, n) is unbiased,

EAES(u,m,n)} = £, [I0{1 —H7(x)|p} =

0 & 1

= — — ) KA{l—~H7P(x)
1+0P0(1+0>1{1 )
1 P .

— — P (o
1+9P0(1+0>(1 )

= lI}(
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and consistent because

Var It*l""(.z‘.m)1
Var{&, (rommn)} = )

I

Var IH* (1 )}

rrivd

We will now prove that this estimator is also asyinptotically eflicient for

subexponential claim size distributions.

Theorem 5. The unbiased and consistent estimator Wy (e, o) of the ulti-
et e ruin probability is also asviuptoticallyv efficient

. wf .
i influg(.sd{b«l (.n)}) >

v o log (W (1))

for subexponential claim size distributions.

Proof. A non-negative random variable X with distribution function I is
called subexponential if, for ¢ > 2

1“(4\’1 +ooo kX, o)

lim - - - — =1
woeo Pmax (X, LX) > o)
where XL ..., X, are Li.d. copies of X{sce for instance Asmussen and Bin-

swanger(1997) Definition 1.1.).
It 1s obvious then that
PXy+ 4+ X > 0) . — H™'(r)
— = hm ),

i _—
P Plmax(X, ... X)) >0y woeel = (11

SO 7.2
. (7:2)
concluding that 1 — 117" (&) and 1 — ({{{2))" decrease asymplotically at the
same order.

When claim sizes [ollow a subexponential distribution(F({x}), 11 is casy to

prove that
: L= Flr)
) = / ——(— >0
Ju 14
is also subexponential,
et us study now the following variance
Var JN”“(.r.ln)l
Var {lIf’z (r, m,n)} S S |
7
Ver [H ()}

nn
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using expressions 1.1 and <L3.
Again, it is casy to prove that

log(sd { @, (e, mn)}) log (“"d {H*P (’)})

0 L)) T leg(B(a)

becanse

n vmn
log (s’d {’H*P(J‘)}) — }) log(mn)

od IRP (0 an) L s8¢ i
1Ug('{{N (i, )J> _ 10g( 2 ()})

i

expression decreasing with increasing n or m.

If we apply the variance decomposition theorem (see for example Bratley,
Fox and Schrage(1987). Lemma 2.1.1.) and theorem 2 and expression (5.1)
and (7.2}, for x large enough

Var {(H*P (J“)) }

= I, [Var{H" (z)|p}] + Var, {££[H" (x) |p]}
_ v (—l-YRmrmwan

14054 \1+0
e i (1) (17 - ey’
< 4 i (f’i;) 119(x) ~ ((x))"
~ i (1) Gy = @y
- ;%i () (=) - (= vy
- zryﬁi (1Aio)p(@(')‘(l'_[[”(1”)2
- i (155) -1 - ey
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l & 1 B , T R
~ e () W U - @y

o 1+
2 0 o,
= e Ty - (e
(1 — H{x)) — ¢ .
S L e TN (7.3)

(L= H@))+0 " 140 (H(x))?

and finally, because (7.3) should be non-negative, for x large enough

(1—1(x)) —0 0 . N
[(THTW TSR (Llf(«r))‘} — (U())*
0 )
~ —14 }___:()—_(T[(W < 0
(L—H(x) -0 ) 1 )
{u_-‘m L T Wz(r))’] < (U()

= Var {('H*P (1))} < (‘I’(""))z

The former result and lemma 3 lead us to the statement of the theorem.

K. NUMBERICAL RESULTS

We will test the two estimators Ui (w, n)(6.1) and W5 (w. e, »)(7.1) in prac-
tical calcalation of ruin probabilitics and compare with similar results of ac-
tuarial literature.

Both estimators of the ultimate ruin probability are Inalt upon the sim-
ple estimator R™ (1) (4.1) of 1— H*' () . It is obvious that estimator ¥ (. n)
should be better than W4 {u, m. n) because the second one, besides using R* (ar.n)
is based on conditional Monte Carlo.

Contidence intervals with significance level o of R*' (ir.n) were obtained

using formulas (1.1), (1.2), (1.6) and (1.7) of section L.
Figures for estimator ¥{{wu. n) were generated using the results of section 6
G 1 I 4
U (u, n) = —— ———) R (r.n

tn

and the sum was truncated when the terms became neglectible

] L i ‘
(Ta) N*L‘ ! (.lf(N) < lU“b
+
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For the sccond estimator of the ultimate ruin probability, §(u, m.n), re-
sults of section 7 are used,

, SN (e
Wi (xm.n) = Lo N em)
n

where £ is a random number generated from a geometric distribution

0 I NP
e ()
T+0 \1 40

and subsequently following Fishman(1996)

In(u
P ~—~(]—)— u — (0, 1) uniform distribution
In (}5)
i = 1.2..n

We will consider as an illustration, a subexponential claims size distribu-
tion, Pareto, and an exponentially tailed one, exponential.

8.1. Parecto distribution PAR(a,b).
The distribution function is

£

b
Flx) = (l - (2) ) I(x>a) a>0b>1landx >0

the mean is p; = ab/(b—1), and the density f(z) and the c.dl.f. of the integrated

tail distribution 7{(x} are respectively

_b-l

" (](;I: <a)+ (%) I(x > u))

H{x) = h- l-‘"[(-'l’ <a)+ (1 - ;j (2)8,‘1) I{x > a)

f(x)

ab i«

I'or the simulation, we can obtain the inverse function

iy ab b—-1 a b—-1
7 () = rilz< + - ~— /x>
b1 b (b(1 — x))es b

Igures are compared in Table 1 with those obtained by Asmussen and
Binswanger(1997), where only subexponential claim sizes was considered, using
the efficient estimator of algorithm I  Table I ), considered the best of the
original paper. Their results were based on the idea that only the largest claim
and not the sum of all claims causes ruin, following the formal definition of
subexponential claim size distribution (7.2).
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Table 1
Ultimate ruin probability confidence intervals for Parcto claims size
distribution

i PAR(L2), 0=0.1n=1,000.m =1.0 = 0.05

{ U { ] -_\I/"(u.n) _ }r _ W) _ ! ;‘\lg(_)n.l,luu I}I(z\;&;l_&)_l
W [ (5.37 FUU5)I07T | (569 FOU.25)10 7 | (5.5 FU.3)10
50 [ (1.9237006)107" | (1.93 %0.18)107" (1.9 7 0.2)10!
100 | (8.86 =0.75)1072 | (7.02 70911072 | \56:;1 7)10 : ]
500 [ (LI4 700710 2 | (LIZF009)10 *]  (LOF0.2)10 2 |

11000 | (3.36 TO.15)10°" | (3.27 T 037107 | (3.3 xu 0.6)10 \

8.2. Exponeuntial distribution

The distribution function is

Flay=1—-¢ xr >0

the inverse of the c.duf. of the mtegrated tail distribution

H71) = —pyIn(r)

Table 2
Ultimate ruin probability confidence intervalsfor exponential claims size
distribution

e =L 0=011n=1000 =005

\_F’—J_*V Ui {u.n) |
(8.30F U.009) 107! |

(5.75 % 0.063)107" [

10 (369 T 00THI0 T
(9 )

(6. )

v

')()J 9.75 + U.638)107° )
80! 30 F 0401107 ‘7_J

From table 1. we can conclude that estimator (i, 1) is hetter than the

methods based on conditional Monte Carlo { as it was expected ) because
generates smaller conlidence intervals and can be used for any tail behaviour
of the claims size distribution ( see also table 2 ).

Regarding the resulls of the estimators based on conditional Monte Carlo;
Wi{u, m.n) also showed smaller intervals than algorithm IIT of Asmussen and

Binswanger (1997}, in the example considered.
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9. CoNcrLUpING COMMENTS

An unbiased, consistent and asymptotically eflicient estimator based on
importance sampling variance reduction technique, in the framework of Monte
Carlo simulation methods, was obtained, R (1) (4.1) for the reciprocal of

the t-fold convolution function of a distribution function 1 — /¥ (&), = > 0.

Based on the former estimator, two new estimators, using the Pollaczeck-
Khinchine fornla, of the ultimmate ruin probabilities in the context of the
Classical case of Risk Theory were presented.

The first one, Wi (w,1) (6.1), estimates the set of convolutions {1 — /1™ (u)}.”,
used 1o the Pollaczeck-Khinchine formmda up to a certain integer I for which
the rest of the terms of the sum are neglectible. In the second estimator of
the nltimate ruin probability obtained, 5 {w.m, n) (7.1).instead of truncation,
considering that the Pollaczeck-Khinchine formula represents a compound geo-
melric process, conditional Monte Carlo method was used. Both estimators
are unbiased and consistent.

However, ¥ (u, n) can be considered better than the estimators based on
Conditional Monte Carlo because

a) Il is asvmptotically eflicient for any distribution of the claims size
while W5(z, . n) and Algoritm T of Asmussen and Binswanger(1997) just
for subexponential distributions.

b} Generates smaller conlidence intervals.

Finally, it is very important to highlight that in estimator ¥ (w, n), al-
though we need to oblain approximations for the set {1 — /" (u)}zl , . the
number of computations required, random mumbers in our case case, is just
n (L — 1), mercasing linearly with the precision parameter n. bor the reason
Just cited above we can consider U (u, 1) a very eflicient estimator in terms
of computational time despite the complexity involved when approximalting
stcesive comvolutions, in other words, multiple integrals of increasing dimen-

ston.
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