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Abstract 

In this paper we study the effect of random interest rates on life insurance programs and  

on annuities both certain and non-certain. This is done under several assumptions on the 

stochastic structure of the interest rates. We find the moments and the distributions of 

several random actuarial functions of interest, such as  n:xa   n:xA . Comparisons 

with the case of fixed interest rates are given. This is done using numerical results and 

graphical representations of our model. 

1. Introduction and literature review 

An important problem facing the insurance industry is estimating 

 future interest rates. In particular the future interest rates are important in long term 

insurance contracts such a life insurance. The liquidity in financial markets make this 

problem even more significant.  

Risks in life insurance are due to two factors (i) Randomness in the remaining lifetime of 

the insured (ii) Uncertainty in interest rates. The law of large numbers guarantees that the 
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risk due to deaths can be reduced by selling many contracts. Risks due to fluctuating 

interest rates are difficult to reduce. 

This observation motivated many researches to study the effect of volatility on pricing 

and reserving life insurance in random environment. In actuarial literature there is a 

distinction between analyzing the effect of randomness in the two cases above. As early 

as 1969  A.H. Pollard. and J.H. Pollard published a paper in which they treated actuarial 

functions as random variables. The randomness being caused only by variations in the 

age at death. Specifically  they analyze  xA  , xa  and xvt   as random variables giving 

their first two moments and the correlation between pairs of these random variables.  

 later on De Peril (1989) gave a survey of the distribution functions (d.f.) and the 

probability density functions (p.d.f.) of the benefit function of most common life 

insurance’s and annuities.  

Boyle (1976) studied the effect of the stochastic nature of interest rates on actuarial 

functions, assuming that the force of interest is generated by a white noise, that is forces 

of interest in successive years are assumed to be uncorrelated and normally distributed 

random variables.  

Panjer and Bellhouse (1980,1981) developed a general theory for annuities and 

insurance functions assuming that the force of interest follows autoregressive process. 

The theory is further worked out for unconditional and conditional autoregressive 

processes of orders one and two. Beekman and Fuelling, (1990,1991) presented a model 

evaluating annuities when interest rates and future life times are random. Expressions for 

mean values and standard deviations of  present value of  future payments  are obtained. 

This is done assuming the force of interest rate behaves either like Orenstein-Uhlenbeck 

process or  a  Wiener process.   
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2. The model 

We study important random actuarial functions in discrete time, when the interest rates 

form a sequence of random variables. The actuarial functions include: 

ns~&&  -      Accumulated annuity - certain due under stochastic interest rates. 

1
n:xA~ -  Temporary life assurance (with term - n ) under stochastic interest rates . 

n:xA~ -   n-year endowment assurance under stochastic interest rates . 

1
n:xA~I - Increasing whole- life assurance under stochastic interest rates. 

n:xa~&& -    Temporary life annuity under stochastic interest rates. 

n:xa~I -  Increasing temporary life annuity under stochastic interest rates.  

Hereafter  ~  above an actuarial function denotes the value of an actuarial functions 

under random interest rates. 

In this work the interest rates are assumed to be either i.i.d  r.v’s or markovian stream. 

We get the cumulative distribution functions of these actuarial functions as well as their 

moments. Graphs and numerical solutions are given for the distributions and moments  

of the above actuarial functions.   

2.1  Distributions and moments of annuity certain  - ns
~
&&  

Let tR  be the annual interest rate during   [n-t, n-t+1) for  t=1,2,...,n. And  let 

tR1tX +=  (i.e  tX  is the value of   $1  at   n-t+1  if  deposited  at   n-t. 
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Hence  the random value of  an annuity certain for n years is: 

(1)                                     

)*
ns

~1(1X

)nX3X2X3X2X2X1(1X
n

1i

i

1t tXns
~

&&

LKK&&

+=

++++=∑
=

∏
=

=
    

Where ∑
=

∏
=

+=
n

2k

k

2j jX1*
ns~&&  

Note that   i) *s~n
&&   is   independent  of  1X .   

                 ii) *s~n
&&  is distributed as 1ns~ −&& . 

Let  )yns~(p)y(
ns~

F ≤= &&
&&

, Conditioning on  1X  we get:  

)x(1dG)1
1x
y(

s~
F)y(

s~
F

1nn
∫ −=

−
&&&&

                                                                             (2) 

Where 1G   is  the distribution  of  1X .  

Observed that (2) is a recursive equation for )y(
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Let  )ns~(En &&=µ , Then  
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This yields the recursive relation: 

1)1n1(n µ−µ+=µ           1n ≥∀      ,      00 =µ                                                       (5) 

So 

11

1n
11n

1
2
11n µ−

+µ−µ
=µ++µ+µ=µ L                                                                         (6) 

Similarly  if we  denote by  2
nσ   the variance of  ns~&& , )ns

~(Var &&  . we get  

2)1(2
1n

2
1

2)1n1(2
n µ−σ+σ−µ+=σ            2n ≥∀                                                  (7) 

Note that the above recursive relations ( (2), (6), (7) ) applies  for any distributions of 

i.i.d interest rates.  

Numerics  

First case 

)1.1,1(U~)tR1(tX +=       ∀      t=1,...n. 
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Certain annuity  under               
 U (1,1.1) for n =11                     
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Note the larger the  n  the steeper the graph of the distribution. 

For the moments we get first two moments   of  ns
~
&&   assuming  )1.1,1(U~tR   ∀  

t=1,...n.  
  

                   n         First moments 

      

Second moments 

               1                     1.05=  µ1 0.000833=2
1σ 

                    2            2.157=µ2 0.004421=2
2σ 

                    4           4.565=  µ4 0.03001=2
4σ 

                   11          14.917=µ11 0.78804=2
11σ 
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Second and third case 

2nd  case  )69exp(1tX =λ+=  ∀   t=1,...n. So with probability 0.999,  X  falls  in  

(1,1.1).  

 

Certain annuity under 
Exp (69 ) for n = 4
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3rd  case     )20exp(1tX =λ+=  ∀   t=1,...n. So that mean interest rate is  5%. 

 

Certain annuity under Exp (20 ) for n = 4
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Certain annuity under Exp (20) for n =11
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We can see the slopes of the  ns~&&   when  tX  is exponential, steeper in the case when 

tX  has uniform distribution. 

For example if we compare the uniform case with exp(λ=20) for n=11 unit time: 
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n=11expuniform
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We see that the exponential distribution is more  risky then the uniform distribution (i.e. 

one cross over), see Kaas(1994) ch. III. 

Waters (1978) gave recursive formulas for the moments of the annuity certain under i.i.d 

random interest rates, calculated at the beginning of the annum and, solved it 

numerically, when the tX ’s are i.i.d  r.v’s having lognormal distribution. We  compare 

the expected value of ns
~
&& when (i) Interest rates have lognormal distribution and (ii) 

When interest rates have a uniform distribution, assuming the two distributions have the 

same first two moments. We find  for  ns
~
&&   in the lognormal  case that µ2   = 2.1524 , 

µ4=4.5255. while in the uniform case , we get  µ2 = 2.157, µ4=4.565. Clearly in both cases 

the first moments of  ns
~
&&  is  1.05  for  both  distributions.  
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2.2  Temporary assurance under random interest rates  - 1
n:xA~  

In this case the randomness is due to : 

(i) The lifetimes of the insureds. 

(ii) The interest rates. 

More specifically the remaining life, xT  ,is clearly random. Moreover xT , has known 

distribution as given by an appropriate life-table (such as A(1967-70)).  

The sequence 0t}tR{ ≥  assumed to be random, having properties as listed in subsection 

2.1. 

Specifically let  tR   be  i.i.d  random variables which represent the interest rates  at the 

year  [ t-1, t )  for   t=1,2,....,n. 

Rn                            ...........   R3                 R2               R1 

x+n-1        x+n     x+3        x+2     x+1          x  
 

Recall  that  

∑
−

=
+=

1n

0k
1kvxqk

1
n:xA                                                                                     (8) 

under random interest rates one has to replace kv  in  (8)   by   1)1tR1(
1k

0t
E −

++∏
−

=
        

thus we get : 

1)1tR1(
k

0t
E
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0k xqk)1
n:xA~(E −

++∏
=

∑
−

=
=                                              (9)      

The tree diagram for  )1
n:xA~(E  is: 



 11

 
  n=1                    q xE R( )1

1
1+ −  

                                                                                                             )1n1
n:xA~(E =

      )                         0 $ . (px 

 

n=2                                                              q xE R( )1
1

1+ − 

     q x t
E Rt+ =

∏ + +
−

1
0

1
1

1
1( )                                                                         )2n1

n:xA~(E =                      

                 px 

       )0 $  . (px+1 

 

The backward  and forward recursive equation  for  )1
n:xA~(E   are given respectively by  

(10)  and (11)  below  
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 n≥2         ∀  

∀   n≥2         (11)          1)1R1(Exq1)1R1(E)1
1n:1x

A~(Exp)1
n:xA~(E −++−+

−+
= 

With boundary conditions. 

      )12(          n=0 ,                                                               ∀    x                            0)1
0:x

A~(E =       

with boundary conditions given by (12). 

Conditioning on the status of the individual at the end of the first year (i.e -  active or 

dead) we get: 
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             (13)
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Where 

 

              0  -        if  the insured, aged x, dies    

I =      during  the first year i.e during (x,x+1).  

              1 -        otherwise 

 

Let  )z(
n:xα   be the distribution function of   1

n:xA~ ,  so by conditioning on 1R  we get 

from (13) the following equation: 

dr)r(

1Rf
r

))r1(z(
1n:1xxp)1

z
1

1R(Pxq)z(
n:x ∫

+
−+

α+−≥=α       ∀     n≥2                 (14) 

with  boundary conditions: 

x
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=α =0,1,2,…                                  (15) 

Numerics    

Let  n21tdii100UtR ,...,s'v.r..).,(~ =∀  

Using  life table  A(1967-70) and equation (14) we get the following graphs for           

)z(
10:55

α   and  )z(
20:45

α   
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Temporary life assurance distribution uner random 
interest  - alpha(45:20)
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We can see that alpha is monotone increasing function of  x .  

Note that )0(
n:xα  is the probability that nxT ≥ . 
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Remark 

We would like to compare temporary insurance with discount factor v where  

1)tR1(Ev −+= , with temporary insurance under random interest rates. Then by Jensen  

inequality 1
n:xA)1

n:xA~(E ≥  .  In particular for  x=55  and  n=10 ,  we get: 

0966857.01
10:55

A1001328.0)1
10:55

A~(E =≥=  

2.3   whole life assurance under random interest  rates -   xA~  

For whole life assurance with random interest rates, one can derive formulas for the 

moments  of  xA~  and for its distribution by letting  ∞=n  in the formulas  obtained  for 

 1
n:xA~ . In particular we have: 

1)1tR1(
k
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E

0k xqk)1
xA~(E −

++∏
=

∑
∞

=
=                                                (17) 

Let  )z(
xζ   be the cumulative distribution function of   1

xA~  .  By  conditioning on 1R   we  

get from the following recursive equation: 

dr)r(
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z
1

1R(Pxq)z(
x ∫

+
+ζ+−≥=ζ                                      (18) 

2.4  Term endowment assurance under random interest rates - nxA :
~

 

For this random endowment assurance, we have:  

∀      n≥2          (19)      1)1R1(Exq1)1R1(E)
1n:1x

A~(Exp)n:xA~(E −++−+
−+

= 

with initial condition  

 n=1      (20)                       1)1R1(E1)1R1(Exp1)1R1(Exq)
1:x

A~(E −+=−++−+=  
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Let  )z(
n:xβ  be  the cumulative distribution function of  n:xA~   i.e 

then we get: )zn:xA~(P)z(
n:x ≤=β 

(21) n≥2        ∀                    dr)r(

1Rf
r

))r1(z(
1n:1xxp)1

z
1

1R(Pxq)z(
n:x ∫

+
−+

β+−≥=β  
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Term endowent assurance under random interest rates -  
betha(45:20)
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Here we can see that as the insured is younger, z  - the l.h.s of the support of betha is 

closer to  0,  and the graph, the neighborhood of  0  is  steeper. 

         2.5 . n-year life annuity under random interest  rates -  n:xa~  
 

Consider  the case where the insured aged   x  pays  1$  per annum in the end  of  each 

year until the minimum between his remains life and the next  n  years. We would like to 

study such a program under stochastic interest rates.  

We  have the following basic relation  













=−++
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=

=

1I,1)1R1)(1
1n:1x

a~(

0I,0

n:xa~                                                (23) 

where  I  is  given in  (13). 

Conditioning on  I  we have the following recursive relation for )z(
n:xψ  
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                                                                                                                              (24)  

[ ]
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                                                                                                                                  ∀       n ≥ 2       

under the boundary condition: 

                            (25)                   z        ∀                  )1
z
1

1R(Pxpxq)z(
1:x

−≥+=ψ 

Numerics 

Let  n21tdii100UtR ,...,s'v.r..).,(~ =∀  

Using  life table  A(1967-70) and equation (24) we get the following graphs for           

)z(
10:55

ψ   and  )z(
5:60

ψ  : 
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The distribution of n-year life annuity  - 
psi(55:10;z)

0

0.2

0.4

0.6

0.8

1

1.2

6.
14

6.
35

6.
55

6.
76

6.
97

7.
17

7.
38

7.
58

7.
79 8

8.
2

8.
41

8.
61

8.
82

9.
03

9.
23

9.
44

z

ps
i(5

5:
10

;z
)

The distribution of n-year life annuity  -
psi(60:5;z)

0

0.2

0.4

0.6

0.8

1

1.2

3.
79

3.
86

3.
94

4.
01

4.
08

4.
15

4.
22 4.
3

4.
37

4.
44

4.
51

4.
58

4.
66

4.
73 4.
8

4.
87

4.
94

z

ps
i(6

0:
5;

z)

 

We can see here that as the insured is younger, z  - the l.h.s of the support of  psi  is 

closer to  0. 
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