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Introduction

In this chapter we will prove the point wise convergence of the Bayesian point estimates

under conjugate priors belonging to the 'linear exponential families'. The result below

demonstrates that if θθ =][XE , then the Bayesian  Point estimates

(i) Have a generic formula that also provides the empirical Bayes point estimate of θ .

(ii) Converge point-wise to the sample mean under increasing sample sizes, as do the

Maximum Likelihood estimates.
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A. Bayesian Experience Premium

Theorem 5-1: For a linear exponential likelihood, having a finite mean and variance,

satisfying the relationship θθ =)][(xE  then using a conjugate prior (and squared error

loss function) we have

=
∧

Bθ +
+

∑
=

=

kn

X
ni

i
i

1

)()1)((

2

kn
ka

kkn
TVk

+
+

++

WhereTV is the total distribution variance of X , n  is the sample size,
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Proof (Case I): ][]])[([ θθ ExVarE = . 

We assumed that θθ =][XE .From the definition of a in the Theorem, it is easy to see

that

axVarEE =− ]])[([)( θθ =0 .
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In order to prove this relationship, we begin by noting that under a Conjugate Prior, the

Bayesian Pure Premium equals the Buhlmann Credibility Estimate of the Pure Premium.

Using conventional notation, Bayesian Pure Premium is the predictive mean. That is ,

∫==+ θθφθµ dxxxxxxXXE nnn )...,()(]...,[ 21211

Where )(][ θµθ =XE  and ∞<<∞− θ

The above expression must then equal the Buhlmann estimate of Pure Premium.

Therefore ,
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For  
∧

Bθ , we find the ][θE  first. Use the credibility factor, Z, in the Buhlmann formula,
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Also since Total Variance = )]([)]([ θθ XEVarXVarE + = EVPV + VHM  we have for a

Poisson Likelihood,
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Finally we have from (5-1) and (5-5) and the fact that the support of θ  is on [0, ∞ ),
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Now the left hand side is clearly the Bayesian Posterior Mean which is equal to the

Bayesian Point Estimate = 
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Bθ  (under the squared error loss minimization criteria). Thus,
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Case II: ][]])[([ θθ ExVarE < .

We assumed that θθ =)][(xE . From the definition of a in Theorem (5-1) it follows that

 aExVarE −= ][])][([ θθ .

As in (5-1),
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For  
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Bθ , we find the ][θE  first. Use the credibility factor, Z, in the Buhlmann formula,
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 Also since Total Variance = )]([)]([ θθ XEVarXVarE + = EVPV + VHM  we have,
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Substituting it in the expression for Z and solving for ][θE yields,
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Thus the left hand side is clearly the Bayesian Posterior Mean which is equal to the

Bayesian Point Estimate = 
∧

Bθ . Thus,
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This completes the proof of  Case II.
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Case III: ][]])[([ θθ ExVarE > .

We assumed that θθ =)][(XE . Let the bExVarE += ][])][([ θθ  for some real number,

0>b .  Then from the definition of a in Theorem (5-1) we have
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As in (5-1),
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Thus,
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(5-18) bETVVar −−= ][][ θθ

So that,
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Thus the left hand side is recognized as the Bayesian Posterior Mean which is equal to

the Bayesian Point Estimate = 
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This completes the proof of  Case III.

Corollary 5-2: We have for a Poisson- Gamma case,

(5-23) =
∧

Bθ +
+

∑
=

=

βn

X
ni

i
i

1

n
xn

n
TV

+
+

=







++ β

α
ββ

β
)1)((

2

Proof: We note that for a Gamma ( ), βα  prior we have β=k  [Reference Credibility

Theory, Herzog]. Also the total distribution variance given by (5-3) above is
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Plugging this into (5-1) with 0=a (since Poisson likelihood satisfies the requirements of

Case I) gives
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Corollary 5-4: The Bayesian and the Maximum Likelihood variances are related as

under (restricting ourselves to cases where xML =θ̂  under the assumption that

θθ =)][(xE ):

(5-24) =
∧
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MLVarZ θ .

Thus the Bayesian estimate can be regarded as a superior estimate since (5-25 implies

that ≤
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Proof: We note from the formula of Theorem (5-1) that the only term containing X is the

first term. The rest will therefore be zero when the variance operator is applied to them.
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Since 10 ≤≤ Z , we see that ≤
∧
)( BVar θ  )ˆ( MLVar θ .

Corollary 5-5: Bθ̂  and MLθ̂  converge point-wise to the same value as ∞→n  for cases in

which xML =θ̂  (under the assumption that θθ =)][(xE ). Interestingly, the Bayesian

point estimate converges to x  for every case of the class of distributions we have

considered.

We also restrict ourselves to cases where xML =θ̂  under the assumption that

θθ =)][(xE .

Proof: We note that Actual TV = Constant. Also k  does not depend on n . Thus in the

limit,
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Example 11: From the foregoing Theorem, we draw the attention of the reader to the

Normal-Normal case. Since Normal is a conjugate prior of the Normal Likelihood, we

have using the mean of the likelihood as the parameter,

ML
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This result can be confirmed independently using the fact the posterior is Normal with

mean

2
2

2
1

2
2

2
1ˆ

σσ
σµσµ
n

xn
+
+= [Reference Credibility Theory, Herzog, 132]

For ∞→n  the x→µ̂  as predicted by our theorem.
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C. Conclusion

Before moving on to explain the use of the Theorem as an empirical Bayesian estimate of

θ , we must point out the restrictions imposed by Theorem (5-1). These are as under:

(a) The underlying distribution should be linearly exponential

(b) The prior must be conjugate with a finite mean and variance

(c) θθ =][XE

These three facts must be known before one attempts to use Theorem (5-1) to empirically

find Bθ̂ . Once known the following are the reasons of using Theorem (5-1):

(1) Since the analyst need not know the shape of the prior and the underlying distribution,

he is being allowed by the Theorem to explore a whole class of distributions and

conjugate priors with a single use of the formula. That is whether the true scenario was

Poisson-Gamma or Bernoulli-Beta or Normal-Normal, the formula will adjust itself

according to the empirically derived value of a (using Empirical Bayesian Methods) and

yield the true value of Bθ̂ . Clearly then, from a computational point of view, the utility of

the formula is noteworthy.

(2) We have already established in corollary (5-4) that the Bayesian Point estimate is

superior to the Maximum Likelihood estimate. That is
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=
∧
)( BVar θ  )ˆ(2

MLVarZ θ .

For lower credibility situations ( )10 ≤≤ Z then, it is advisable to use Theorem

(5-1) to arrive at the Bayesian based estimate of Pure Premium since 12 <Z  in this

situation and therefore (Var )ˆ()ˆ
MLB Var θθ < .

(3) As explained above, no further knowledge (beyond that assumed in (a), (b), (c)

above) is needed about the underlying distribution or even the prior to find Bθ̂ . One

merely needs to apply simple Empirical Bayesian Procedures to find Bθ̂ .

(4) It is the only formula which allows empirical Bayesian estimation of θ  under the

assumptions outlined above.


