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I ntroduction

In this chapter we will prove the point wise convergence of the Bayesian point estimates

under conjugate priors belonging to the 'linear exponential families. The result below

demonstrates that if E[X|q] =q , then the Bayesian Point estimates

(i) Have a generic formula that also provides the empirical Bayes point estimate of Q.

(if) Converge point-wise to the sample mean under increasing sample sizes, as do the

Maximum Likelihood estimates.



A. Bayesian Experience Premium

Theorem 5-1: For a linear exponentia likelihood, having a finite mean and variance,

satisfying the relationship E[(x|q)] =q then using a conjugate prior (and sguared error

loss function) we have
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WhereTV is the total distribution variance of X, n is the sample sze,

a=E(@@)- EVar[(x@)]].
Proof (Casel): E[Var[(Xq)]] = E[q].
We assumed that E[X|q] =q .From the definition of ain the Theorem, it is easy to see

that

E(@) - E[Var[(xq)]] =a=0.

Therefore we need to show (from the Theorem with a = 0) that,
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In order to prove this relationship, we begin by noting that under a Conjugate Prior, the

Bayesian Pure Premium equals the Buhlmann Credibility Estimate of the Pure Premium.

Using conventional notation, Bayesian Pure Premium is the predictive mean. That is,

E[X

n+l

X =X, %, X,] = Q) @], X;--x,)dg

Where E[X[g] =m(q) ad - ¥ <q <¥

The above expression must then equal the Buhlmann estimate of Pure Premium.

Therefore,
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0
For qg, wefind the E[q] first. Use the credibility factor, Z, in the Buhlmann formula,
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where k is given by,
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Also since Total Variance = E[Var(X|q)] +Var[E(X|q)] = EVPV + VHM we have for a

Poisson Likelihood,

Total Variance = Var (X) = Eq] + Var[q]

Thus,
(5-3) Var[q]=Var(X) - E[q]

So that,
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Substituting it in the expression for Z and solving for E[q]yields,
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Finally we have from (5-1) and (5-5) and the fact that the support of g ison [0, ¥ ),
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Now the left hand side is clearly the Bayesian Posterior Mean which is equa to the

0
Bayesian Point Estimate = q, (under the squared error [oss minimization criteria). Thus,
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Casell: E[Var[({)]] <E[q].

We assumed that E[(x|q)] =q . From the definition of ain Theorem (5-1) it follows that

E[Var[(xa)]] = E[a]- a.

Asin (5-1),
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For g, wefind the E[q] first. Use the credibility factor, Z, in the Buhlmann formula,

Z= where Kk is given by,
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Also since Total Variance = E[\/ar(X|q)] +Var[E(X|q)] =EVPV + VHM we have,

(5-9) Totd Variance =TV =E[g]+Var[q]- a

Thus,

(5-10) Var[q] =TV - E[q] +a

So that,
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Substituting it in the expression for Z and solving for E[q]yields,
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(5-12) Elal = nil- Z]+zZ n[l- Z]+Z

Finaly from (5-7) we have,

ayf @)L@)dqg

nTV[1- Z] - Z] a(n+Z- nz)

=X+l 2] nl- Z]+Z nl- Z]+Z

& @)L@)dg

Thus the left hand side is clearly the Bayesian Posterior Mean which is equa to the
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Bayesian Point Estimate = q, . Thus,
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This completes the proof of Casell.



Caselll: E[Var[(xq)]] > E[q].
We assumed that E[(X|q)] =q . Let the E[Var[(xlq )] =E[q]+b for some rea number,

b>0. Then from the definition of ain Theorem (5-1) we have

E[Var[(Xa)]l - E@) =b=-a

Asin (5-1),
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For tu , we find the E[q] first. Use the credibility factor, Z, in the Buhlmann formula,
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where Kk isgiven by,
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Also since Total Variance = E[Var(X|q )] +Var[E(X|q)] =EVPV + VHM we have,

(5-17) Tota Variance =TV =E[q]+b+Var[q]

Thus,



(5-18) Var[q]=TV - E[q]- b

So that,

E[g]+b
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Substituting it in the expression for Z and solving for E[q]yields,
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Thus the left hand side is recognized as the Bayesian Posterior Mean which is equal to
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the Bayesian Point Estimate = q . Thus,
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But Z=

. Further, b =- a .Rearranging and plugging yields,

Y é % k*TV ka
(5'22) Qs = = + +
n+k (n+k)(k+1) (n+k)

This completes the proof of Caselll.

Corollary 5-2: We have for a Poisson- Gamma case,

i=n
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Proof: We note that for a Gamma (a,b) prior we have k =b [Reference Credibility

Theory, Herzog]. Also the tota distribution variance given by (5-3) aboveis

TV = E[Var (X)) +Var[E(X[a)] = E@) +Var @) =%+%

Plugging thisinto (5-1) with a = 0 (since Poisson likelihood satisfies the requirements of

Casel) gives
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Corollary 5-4: The Bayesan and the Maximum Likelihood variances are related as
under (restricting ourselves to cases where (iML =X under the assumption that

E[(xia)] =q):

(5-24) Var(qy) = ZVar(Gy,).

Thus the Bayesian estimate can be regarded as a superior estimate since (5-25 implies

V] ~
that Var(g;) £ Var(q,, )as0£Z £1

Proof: We note from the formula of Theorem (5-1) that the only term containing X is the
first term. The rest will therefore be zero when the variance operator is applied to them.

as under

We rewrite the formula with the observation that Z = "
n+

ea Xlu
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g
Var((iML) =Var[X]. Thus
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Since 0£Z £1, weseethat Var(q;) £ Var(Q,,, ) -

Corollary 5-5: qu and dML converge point-wise to the samevalueas n® ¥ for casesin
which dML =X (under the assumption that E[(x|q)] =q). Interestingly, the Bayesian

point estimate converges to X for every case of the class of distributions we have

considered.

We aso restrict ourselves to cases where dML =X under the assumption that

E[(x)] =q .

Proof: We note that Actual TV = Constant. Also k does not depend on n. Thus in the

limit,
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Example 11: From the foregoing Theorem, we draw the attention of the reader to the
Normal-Normal case. Since Normal is a conjugate prior of the Normal Likelihood, we

have using the mean of the likelihood as the parameter,

Limite — o— Limit
oy ds = XZnoy Que
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This result can be confirmed independently using the fact the posterior is Normal with

mean

2 2 o
= M8y +S,MX

5 > [Reference Credibility Theory, Herzog, 132]
s, +ns;

For n® ¥ the mM® X as predicted by our theorem.
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C. Conclusion
Before moving on to explain the use of the Theorem as an empirical Bayesian estimate of

g, we must point out the restrictions imposed by Theorem (5-1). These are as under:

(a) The underlying distribution should be linearly exponential

(b) The prior must be conjugate with a finite mean and variance

(©) E[X[al=q

These three facts must be known before one attempts to use Theorem (5-1) to empirically

find q s - Once known the following are the reasons of using Theorem (5-1):

(1) Since the analyst need not know the shape of the prior and the underlying distribution,

he is being alowed by the Theorem to explore a whole class of distributions and

conjugate priors with a single use of the formula. That is whether the true scenario was

Poisson-Gamma or Bernoulli-Beta or Normal-Normal, the formula will adjust itself
according to the empirically derived value of a(using Empirical Bayesian Methods) and
yield the true value of q s - Clearly then, from a computational point of view, the utility of

the formula is noteworthy.

(2) We have dready established in corollary (5-4) that the Bayesian Point estimate is

superior to the Maximum Likelihood estimate. That is
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V] ~
Var(@g) = Z*Var@y,,) -
For lower credibility situations (0 £ Z £ 1) then, it is advisable to use Theorem

(5-1) to arrive at the Bayesian based estimate of Pure Premium since Z? <1 in this

situation and therefore Var(q,) <Var(g,,, ) -

(3 As explained above, no further knowledge (beyond that assumed in (a), (b), (¢
above) is needed about the underlying distribution or even the prior to find dB. One

merely needs to apply ssimple Empirical Bayesian Procedures to find of g -

(4) 1t is the only formula which alows empirical Bayesian estimation of ¢ under the

assumptions outlined above.
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