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Outline of Talk

1. Principle of equivalent utility—static model

2. Principle of equivalent utility—dynamic model

3. Examples with exponential utility
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Equivalent Utility—Static Case

•  Find the largest price that a (potential) buyer of

insurance is willing to pay for insurance against a

random loss—this is the so-called reservation

price.

•  This reservation price is determined within the

context of expected utility theory.

•  u = concave utility function of wealth of the buyer.

•  w = initial wealth of the buyer.

•  Y = random loss.

•  P = maximum premium that the buyer is willing to

pay for complete coverage against the loss Y.

u(w – P) = E[u(w – Y)].

•  See Bowers et al. (1997, equation 1.3.1).
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Equivalent Utility—Dynamic Case

•  Now, suppose our buyer of insurance has other

decisions to make besides the maximum amount to

pay for insurance.

•  For example, the buyer chooses how much of her

wealth to invest in riskless bond versus a risky

stock.

•  Riskless bond price Xt follows process dXt = rXt dt.

•  Risky stock price St follows geometric Brownian

motion

dSt = St (µ dt + σ dBt),

in which µ > r and σ > 0 are constants, and Bt is a

standard Brownian motion with respect to a

filtration {Ft} of the probability space (Ω, F, Pr).

•  Wt is the wealth of the decision maker at time t.

•  πt is the amount that the decision maker invests in

the risky asset at time t.
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Dynamic Case (continued)

•  On the left-hand side of u(w – P) = E[u(w – Y)], we

have the utility of the buyer without the risk.

•  In the dynamic case, we represent this as

{ }
( , ) sup [ ( ) ],

t
T tV w t E u W W w

π ∈
= =

A

in which u is the utility of terminal wealth at some

specified time T, and A is the set of allowable

investment policies.

•  We will also allow the terminal time T to be a

random time, such as the time of death τ.

•  V solves the Hamilton-Jacobi-Bellman equation

2 21max ( ) 0,
2

( , ) ( ).

t w ww wV r V V rwV

V w T u w
π

µ π σ π�+ − + + =� ���
� =�
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Exponential Example

•  1( ) ,wu w e α

α
−= −  for some α > 0.

•  The value function V is given by
2

( )
2

1 ( )( , ) exp ( ) .
2

r T t rV w t we T tµα
α σ

−� −= − − − −�
�

•  The optimal amount of money invested in the risky

stock at time t is given by
( )

2

( )* .
r T t

t
r eµπ

σ α

− −−=

•  Note that this amount is independent of wealth, a

common phenomenon with exponential utility.
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Dynamic Case (continued)

•  On the right-hand side of u(w – P) = E[u(w – Y)],

we have the utility of the buyer with the risk.

•  In the dynamic case, we represent this as

{ }
( , , ) sup ( ) , ,

t
T t tU w y t E u W W w Y y

π ∈
�= = =�

A

in which Wt follows the wealth process given by

[ ]( ) ,t t t t t tdW rW r dt dB dYµ π σπ= + − + −

and Yt is the loss process.

•  For concreteness, suppose that Yt follows a

diffusion process

( , , ) ( , , ) ,t t t t t tdY W Y t dt W Y t dBθ ζ= + %

in which tB% is a standard Brownian motion,

independent of the Brownian motion Bt for the

stock process.
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Dynamic Case (continued)

•  U solves the Hamilton-Jacobi-Bellman equation

2 2

2 2 2

1max ( ) ( ( , , )) ( , , )
2

1 1( , , ) ( , , ) ( , , ) 0,
2 2

( , , ) ( ).

t w ww w y

ww wy yy

U r U U rw w y t U w y t U

w y t U w y t U w y t U

U w y T u w

π
µ π σ π θ θ

ζ ζ ζ

�+ − + + − +� ���
� + − + =�
�
�
� =�

•  This equation simplifies considerably if θ and ζ are

independent of y. We will see this in the next

example.

•  Once we have the value functions V and U, then

we solve for the lump sum premium P(w, y, t):

V(w – P(w, y, t)) = U(w, y, t).
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Exponential Utility (continued)

•  1( ) ,wu w e α

α
−= −  for some α > 0.

•  θ and ζ are independent of w and y.

•  Then, U is independent of y, and can be written as

U(w, t) = V(w, t) eψ(t),

in which V is as in the previous example and ψ

solves the ordinary differential equation

( ) 2 2 ( ) 21( ) ( ) ( ) 0,
2

( ) 0.

r T t r T tt e t e t

T

ψ α θ α ζ

ψ

− −′ + + =
�

=�

•  It follows that the reservation price of the buyer is

( ) ( ) 2 ( ) 21( , ) ( ) ( ) ,
2

Tr T t r T s r T s

t
P w t e e s e s dsθ α ζ− − − −�= +�

�
�

the discounted expected loss plus a loading

proportional to the variance of the loss during the

period [t, T].
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Exponential Utility (continued)

•  In the fixed horizon case, the reservation price is

independent of the stock process. In fact, we would

get the same price if we allowed the buyer to invest

only in the riskless bond.

•  Now, suppose we randomize the time until

“expiration” of the contract. Specifically, we

replace T with the time of death of the buyer of

insurance.

•  For simplicity, suppose that r = 0. We omit the

details, but we can show that the reservation price

of the buyer is now
2 2( ( ) ( ) / 2)

( )1( , ) ln ,

s

t
u u du

x s t x tt

x t

e s p ds
P w t

A

δ αθ α ζ

δ

λ
α

∞ − − −

− +

+

� �
�= �
�
�

�

in which 
2

2 .
2
µδ
σ

=



11

Exponential Utility (continued)

•  If we set T equal to t + x te +

o
, then we can show that

the reservation price with the fixed horizon is less

than the one when the horizon is random.

•  Also, if we model the losses as a Poisson process,

we can find the reservation prices in the cases of

fixed and random horizons. If the expected loss

and variance of the loss for the Poisson process

equal those of the diffusion process, then the

reservation price for the diffusion process is less

than the price for the Poisson process.

•  I find both results to be intuitively pleasing.
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Equivalent Utility—Static Case
•  Find the largest price that a (potential) buyer of insurance is willing to pay for

insurance against a random loss—this is the so-called reservation price.
•  This reservation price is determined within the context of expected utility theory.
•  u = concave utility function of wealth of the buyer.
•  w = initial wealth of the buyer.
•  Y = random loss.
•  P = maximum premium that the buyer is willing to pay for complete coverage against

the loss Y.
u(w – P) = E[u(w – Y)].

•  See Bowers et al. (1997, equation 1.3.1).
Equivalent Utility—Dynamic Case

•  Now, suppose our buyer of insurance has other decisions to make besides the
maximum amount to pay for insurance.

•  For example, the buyer chooses how much of her wealth to invest in riskless bond
versus a risky stock.

•  Riskless bond price Xt follows process dXt = rXt dt.
•  Risky stock price St follows geometric Brownian motion

dSt = St (µ dt + σ dBt),
in which µ > r and σ > 0 are constants, and Bt is a standard Brownian motion with
respect to a filtration {Ft} of the probability space (Ω, F, Pr).

•  Wt is the wealth of the decision maker at time t.
•  πt is the amount that the decision maker invests in the risky asset at time t.
•  On the left-hand side of u(w – P) = E[u(w – Y)], we have the utility of the buyer

without the risk.
•  In the dynamic case, we represent this as

{ }
( , ) sup [ ( ) ],

t
tTV w t E u W W w

π ∈
= =

A

in which u is the utility of terminal wealth at some specified time T, and A is the set of
allowable investment policies.

•  We will also allow the terminal time T to be a random time, such as the time of death
τ.

•  V solves the Hamilton-Jacobi-Bellman equation
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2 21max ( ) 0,
2

( , ) ( ).

t w ww wV r V V rwV

V w T u w
π

µ π σ π�+ − + + =� ���
� =�

Exponential Example

•  1( ) ,wu w e α

α
−= −  for some α > 0.

•  The value function V is given by
2

( )
2

1 ( )( , ) exp ( ) .
2

r T t rV w t we T tµα
α σ

−� −= − − − −�
�

•  The optimal amount of money invested in the risky stock at time t is given by
( )

2

( )* .
r T t

t
r eµπ

σ α

− −−=

•  Note that this amount is independent of wealth, a common phenomenon with
exponential utility.

Dynamic Case (continued)
•  On the right-hand side of u(w – P) = E[u(w – Y)], we have the utility of the buyer with

the risk.
•  In the dynamic case, we represent this as

{ }
( , , ) sup ( ) , ,

t
T t tU w y t E u W W w Y y

π ∈
= = =�

A

in which Wt follows the wealth process given by
[ ]( ) ,t t t t t tdW rW r dt dB dYµ π σπ= + − + −

and Yt is the loss process.
•  For concreteness, suppose that Yt follows a diffusion process

( , , ) ( , , ) ,t t t t t tdY W Y t dt W Y t dBθ ζ= + %

in which tB% is a standard Brownian motion, independent of the Brownian motion Bt

for the stock process.
•  U solves the Hamilton-Jacobi-Bellman equation

2 2

2 2 2

1max ( ) ( ( , , )) ( , , )
2

1 1( , , ) ( , , ) ( , , ) 0,
2 2

( , , ) ( ).

t w ww w y

ww wy yy

U r U U rw w y t U w y t U

w y t U w y t U w y t U

U w y T u w

π
µ π σ π θ θ

ζ ζ ζ

�+ − + + − +� ���
� + − + =�
�
�
� =�

•  This equation simplifies considerably if θ and ζ are independent of y. We will see this
in the next example.

•  Once we have the value functions V and U, then we solve for the lump sum premium
P(w, y, t):

V(w – P(w, y, t)) = U(w, y, t).
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Exponential Utility (continued)

•  1( ) ,wu w e α

α
−= −  for some α > 0.

•  θ and ζ are independent of w and y.
•  Then, U is independent of y, and can be written as

U(w, t) = V(w, t) eψ(t),
in which V is as in the previous example and ψ solves the ordinary differential
equation

( ) 2 2 ( ) 21( ) ( ) ( ) 0,
2

( ) 0.

r T t r T tt e t e t

T

ψ α θ α ζ

ψ

− −′ + + =
�

=�
•  It follows that the reservation price of the buyer is

( ) ( ) 2 ( ) 21( , ) ( ) ( ) ,
2

Tr T t r T s r T s

t
P w t e e s e s dsθ α ζ− − − −�= +�

�
�

the discounted expected loss plus a loading proportional to the variance of the loss
during the period [t, T].

•  Note that the reservation price is independent of the stock process. In fact, we would
get the same price if we allowed the buyer to invest only in the riskless bond.

•  Now, suppose we randomize the time until “expiration” of the contract. Specifically,
we replace T with the time of death of the buyer of insurance.

•  For simplicity, suppose that r = 0. We omit the details, but we can show that the
reservation price of the buyer is now

2 2( ( ) ( ) / 2)
( )1( , ) ln ,

s

t
u u du

x s t x tt

x t

e s p ds
P w t

A

δ αθ α ζ

δ

λ

α

∞ − − −

− +

+

� �
�= �
�
�

�

in which 
2

2 .
2
µδ
σ

=

•  If we set T equal to t + x te +

o
, then we can show that the reservation price with the fixed

horizon is less than the one when the horizon is random.
•  Also, if we model the losses as a Poisson process, we can find the reservation prices

in the cases of fixed and random horizons. If the expected loss and variance of the
loss for the Poisson process equal those of the diffusion process, then the reservation
price for the diffusion process is less than the price for the Poisson process.

•  I find both results to be intuitively pleasing.


