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Abstract1
 

 

This paper develops an option pricing model that takes cost of capital concepts as its 

foundation rather than dynamic replication. The resulting model, called the ‗C‘ measure in this 

paper, is related to the family of Affine Jump Diffusion models that are well known in the 

finance literature, so it is fairly easy to understand and implement. We argue that this is a 

reasonable model to use for estimating equity implied volatilities that are beyond the five- to 10-

year horizon that can typically be observed in today‘s capital markets. The paper concludes with 

a short discussion of how to grade from observable market data to the ‗C‘ measure. 

 

     

 

                                                           
1
 The views and opinions expressed in this paper are those of the author and not the author‘s employer AEGON NV.  
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1. Introduction and Summary of Results 
 

 

A problem faced by many life insurers today is that of putting a market-consistent value on 

liability instruments that are longer than any comparable assets for which market data is 

available. This raises the issue of extrapolating yield curves, equity implied volatilities, 

correlations and other data beyond the available information. This paper focuses on the implied 

volatility problem, but many of the ideas could be applied to the other problems as well. 

 

One approach that immediately comes to mind is to take an industry standard model, a Heston 

model or a Heston model with jumps, for example, and use the available market data to calibrate 

the model‘s parameters. Having calibrated the first 10 or so years of the model we simply 

assume the model applies in the later years and use it. We will call this approach ―simple 

extrapolation‖ in this paper.  

 

This extrapolation method has the advantages of being simple to understand and easy to 

implement. A potential disadvantage is that the parameters that produce a reasonable fit to near-

term market data may produce an unreasonable extrapolation. 

 

The cost of capital method described here is a practical alternative to simple extrapolation. It is 

based on an approach endorsed by the CRO Forum for valuing non-hedgeable risk. The basic 

idea is that if a risk cannot be hedged in the capital markets, it should be valued using best 

estimate assumptions together with sufficient risk margins to pay for the cost of holding an 

appropriate amount of economic capital for the risk. 

 

This new approach essentially derives a long-term implied volatility assumption from first 

principles. In most situations it will do a better job of fitting observed volatility surfaces than the 

Black-Scholes model but, only by chance, will it produce a good fit to observed market data. 

Additional work is then needed to engineer a model that fits both the current market and then 

grades into the longer-term implied volatilities described here.  

  

This paper will use a three-step process to develop a cost of capital model, which we illustrate  

here using both a ―normal‖ insurance risk, mortality and option pricing risk. 

 

1) Develop a best estimate model. In the case of mortality risk this could be a deterministic 

or stochastic mortality table. For the option pricing problem, we will take best estimate to 

mean the P, or real-world, measure. Let   be our best estimate of long-term volatility 

and let  be our best estimate of long-term drift. These might come from a simple 

lognormal model or something more sophisticated. 

 

2) Acknowledge the fact that even if the best estimate model is correct we can still have bad 

experience in any given year. The occurrence of a serious flu pandemic would be an 

example in the mortality case. Economic capital and margins need to be established to 

cover this risk. We will refer to this as contagion risk. 

 

For the option pricing problem, we will take the analog of a contagion event to be an 

instantaneous jump in the equity markets JSS  . Here J would be 60 percent if we were 

holding capital cover a 40 percent drop in the equity markets. One of this paper‘s key 
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results is that the impact of adding contagion risk to the option pricing model is to raise 

long-term implied volatilities from the best estimate:  to 

)1/()ln1)((22 JJJr   . Here r is a long-term interest rate so r is the 

long-run equity premium. 

 

3) As time evolves new information can arrive, which causes us to revise one or more of the 

parameters in our best estimate model. We must hold economic capital and margins to 

cover a plausible shock to the best estimate model. Using mortality as an example, this 

could be a shock to the mortality level or improvement trend. This will be called 

parameter risk in this paper. 

 

If our best estimate equity volatility were , then this might entail holding capital to 

cover a jump in this parameter to something like 22    or higher. Adding 

parameter risk to the model increases long-term implied volatilities over and above the 

result obtained from contagion risk, although we argue that contagion risk is the more 

material issue. 

 

The main goal of this paper is to show how this three-step approach can be applied to develop an 

option pricing model. Once the model is developed, and its properties understood, we argue that 

it is a reasonable approach to valuing options that can‘t be hedged directly in the capital markets. 

The final step of the paper is to consider the practical problem of grading from a market-

calibrated model to a cost of capital model. 

 

Before going into the option pricing issues in more detail, it is appropriate to point out that all 

cost of capital models are vulnerable to the criticism that it is not always clear how a given 

parameter or assumption should be shocked . For simple life insurance or annuity products, it is 

clear that mortality rates should be shocked up or down as the case may be. However, it is 

possible to engineer a product with a mix of mortality/longevity issues such that the nature of the 

risk varies by contract duration or possibly even market conditions. In this more general 

situation, rigorous application of the cost of capital principles can lead to problems that require 

stochastic control concepts for their solution.  

 

For the option pricing problem, the analog of the mortality/longevity conundrum described 

above is whether we have a long/short equity exposure or whether the volatility exposure is 

convex/concave. Since most life insurers are long equity exposure and have convex liabilities, 

there is a wide range of practical applications where this fundamental conundrum is not an issue. 

Problems requiring stochastic control concepts are therefore outside the scope of this paper.  

 

 2. Step 1: The Best Estimate Model 
 

We take the P, or real-world, measure to be the analog of a best estimate mortality table. This 

could be a very simple model such as the standard lognormal stock process SdzSdtdS    or 

something more sophisticated such as an affine jump diffusion model. For simplicity of 

exposition, we will use the the standard lognormal model as a starting point in the examples that 

follow.  

 

A high-level formula for a best estimate value could be written as:  
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where present values are calculated using an appropriate risk-free rate and Cash Flows are the 

projected cash flows of the instrument being valued. 

 

For a vanilla put or call option, a more mathematical formulation of the above idea is that the 

value ),(0 StV  satisfies the partial differential equation: 
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 Here r is the risk-free rate, and appropriate boundary conditions at maturity of the option must 

be specified.  

 

3. Step 2: Contagion Risk 
 

The analog of a contagion event for the option pricing problem is a finite jump JSS  where 

the jump factor J would be 60 percent if one wanted to hold capital for a 40 percent drop in the 

equity markets.  

 

The Responsible Speculator 

Let‘s start by taking the point of view of a speculator who doesn‘t delta hedge. A responsible 

speculator should hold enough economic capital to cover the loss that would occur if such a 

market jump occurred. A high-level formula that captures this idea is:  
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This value differs from the best estimate in that it adds in the cost of holding capital for the jump 

risk. Here  is the cost of capital or risk premium that an investor expects to receive for putting 

up the risk capital. We can think of this value as a sum of the best estimate value ),(0 StV  plus 

risk margins. 

 

The formula is intended to capture the idea that the cost of holding capital is being captured at all 

future points in time and market conditions. If the assumptions underlying the P measure model 

come true, then an investor putting up the risk capital would earn, on average, the risk-free rate 

plus the cost of capital . 

 

The model also assumes that gains and losses are continuously being trued up as time evolves. 

Gains are immediately paid out to the investor, and losses are immediately replaced. The investor 

is willing to replace losses, or put up additional required capital, because there is always 

sufficient margin left on the balance sheet to guarantee a reasonable future return on the newly 

invested capital. 

 



 

6 

 

As written, the above formula is not very practical because it defines value in a circular fashion. 

It turns out that this valuation problem has a very practical solution. We will define a new risk-

adjusted process, called the C measure here, which is the P measure process augmented by a 

jump process JSS  where the instantaneous probability of a jump occurring in a small time 

interval dt is equal to the cost of capital rate   multiplied by the time interval.  

 

A more mathematical way of seeing how the C measure concept comes about is to write down 

the basic valuation equation analogous to equation (1) above: 
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and then simply move all capital terms to the left-hand side to get: 
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The way to interpret equation (2) is to say that, in the real world, we expect the quantity V to 

grow at the risk-free rate while releasing sufficient margin to pay for the cost of capital. The 

mathematically equivalent formula (3) says that the quantity V has an expected rate of change 

equal to the risk-free interest rate in the C measure world where the dynamics of the stock price 

are given by 

.]1Pr[,)1( dtdNdNJSdzSdtdS    

 

In terms of the C measure, the value V defined above can then calculated as the expected present 

value:  

 

]""[),( FlowsCashPVEStV C . 

 

A minimal requirement for such a model to be market-consistent is that it price the stock process 

S back to itself.  Mathematically, this means that the function SStV ),( must be a solution of 

(3) above.  Going through the mechanics we find 
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This return makes sense from the perspective of investors putting up the risk capital since they 

have a leveraged exposure to the equity risk. The investor puts up a fraction )1( J of the equity 

position but takes 100 percent of the risk associated with that position.  

 

As a simple example, assume the equity premium is %4)(  r and %60J , then the cost of 

capital for this risk would be %10)6.1/(04.)1/()(  Jr . 
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The C measure model described above is actually a special case of Merton‘s (1973) Jump 

Diffusion model. There are many well documented
2
 technical tools available for working with 

this model. In particular, for a vanilla put or call option that expires at time T, the relationship 

between the value ),( StV  described here and the best estimate value ),(0 StV  is given by:  
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This formula is easy to program, so it is not hard to generate useful examples once a P measure 

model is chosen. We‘ll get more insight into what this means in the next section. 

 

A reasonable criticism of the model described above is that it only appears to make sense for an 

instrument where 0),(),(  StVJStV , i.e., a put option or a long cash position. The next 

section will show why this model actually makes sense for any instrument that is convex. 

 

Some additional insight into the model can be gained by considering the limit in which the jump 

size goes to zero i.e. 1J  .  In this limit the cost of capital rate )1/()( Jr   goes to 

infinity while the economic capital amount )],(),([ StVJStV  itself goes to zero. The limiting 

dollar cost of capital does have a finite limit since  
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Putting this result in to the fundamental valuation equation (3) we find 
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Simplifying this equation shows that the no jump limit is just the Black-Scholes model  
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which we have just derived without making any assumptions about hedging. 

 

 

The Responsible Hedger 

We now take the point of view of someone who chooses to delta hedge an obligation. A delta 

hedger can hold less economic capital because a portion of the risk is hedged. However, the act 

of hedging puts the company in the Q measure, effectively changing the expected return from   

to the risk-free rate r. A high-level formula for this new situation would be:  

 

                                                           
2
 See, for example, Haug, E.G.  1997. The Complete Guide to Option Pricing Formulas. McGraw-Hill.  
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}]/)1(),(),({ˆ""[),( SVSJStVJStVFlowsCashPVEStV Q   . 

 

The valuation equation is now given by: 
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The responsible delta hedgers using this model are saying that their Q measure calculation is 

basically right but they still hold enough capital to cover the un-hedged loss that would occur if a 

single large movement actually occurred. Adding this term addresses the very common criticism 

of the Black-Scholes model that it ignores the possibility of large price movements. We also note 

that the adjustment makes the model more conservative as long as the instrument is convex.  

 

We have used the symbol ̂  for the cost of capital here because this risk is technically different 

from the one faced by the responsible speculator. In particular, this model prices the stock 

process S back to itself no matter what we assume for ̂ . 

 

As before, there is a new risk-adjusted measure that can be used to solve the valuation problem 

posed above. The solution is to start with the Q measure SdzrSdtdS  and make two 

adjustments:  

 

1. Change the drift from the risk free rate r to )1(ˆ Jr   . 

2. Add jumps JSS  with intensity ̂  as before. 

 

The risk-adjusted stock process is now:  

 

.ˆ]1Pr[,)1())1(ˆ( dtdNdNJSdzSdtJrdS    

 

Again this is easily justified by rewriting equation (5) above with all capital terms on the left. 

 

We now note that this model will agree with the C measure derived for the responsible 

speculator provided we assume the same cost of capital )1/()(ˆ Jr   . We conclude 

that speculators and hedgers can agree on value if they each hold capital for their respective un-

hedged risk and they agree that the cost of capital is )1/()( Jr   . In the author‘s opinion 

this is a compelling argument for the use of the C measure as defined here because it gives us a 

value which is independent of the assumed risk management strategy. 

 

The chart below shows three simulated price processes. The first is a standard lognormal P 

measure scenario with 15.,08.   . The second series is the corresponding Black-Scholes Q 

measure scenario assuming the risk-free rate is r = .04. The third series is an example of a C 

measure scenario, which mimics P measure changes at all points in time except when a jump 

occurs. In this particular scenario, jumps occur near years 8 and 21 with the result that the Q and 

C measures end up at very similar points after 25 years. 
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Three Price Processes
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With the parameter choices made above, the cost of capital is %10)6.1/()04.08(.  and 

the expected number of jumps over a 25-year period is then 2.5. Observing exactly two jumps is 

therefore a relatively high-probability outcome.  

 

We can get a high-level sense of how this model differs from the standard Black-Scholes model 

by starting with equation (5) above and then approximating the cost of capital by a Taylor series: 
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The valuation equation can then be rewritten as: 
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Adding this cost of capital to the Black-Scholes equation is therefore roughly equivalent to using 

the Black-Scholes model with an implied volatility given by the simple formula: 
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In practice, this approximation is not very good at short durations, and it slightly underestimates 

implied volatility at longer durations. A more detailed argument outlined in the appendix shows 

that )ln1(222 JJimp    is a better formula approximation. 

 

The graph below shows the entire volatility surface for the C measure model using the yield 

curve at Dec. 31, 2008, a dividend rate of 2 percent, a jump factor of 60 percent and a cost of 

capital equal to 10 percent. For P measure, the graph assumes the standard lognormal model with 

15.,08.   . 
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For each maturity and strike, put option values were calculated using the series expansion (4). 

We then solved for the volatility assumption that would produce the same value using the Black-

Scholes model. 

 

Three points worth noting at this stage of the model‘s development are: 

 

 The model exhibits the phenomenon of ―skew‖ at shorter maturities where implied 

volatilities are a decreasing function of the strike price when the option is close to 

being at the money. 

 

 The surface is almost flat by the time we are out 50 years. The implied volatility varies 

from 21.4 percent to 21.0 percent as the strike price ranges from 50 percent to 150 

percent. This is consistent with the formula approximation  

 
222 )21(.)ln1(210.)15(.  JJimp   
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described earlier. The model has added a risk premium of about 600 vol points. 

 

 The model does not exhibit the kind of ―smile‖ that is observed in actual volatility 

surfaces. One reason for this is the use of the lognormal model as our best estimate. 

Had we started with a stochastic volatility model—the Heston model, for example—

the resulting C measure model would exhibit more smile at shorter durations.
3
  

 

4. Step 3: Parameter Risk 
 

The model summarized briefly above has two key parameters: the best estimate volatility  and 

the long run equity premium r . If there were no uncertainty in the best estimate model, or its 

parameters, then )1/()ln1)((222 JJJrimp   might be an appropriate long-run 

implied volatility assumption as determined by the cost of capital method.  

 

A wide range of models have been proposed to explain real-world volatility. In the finance 

literature, the Heston model is well-known; while regime-switching models
4
 are common in the 

actuarial literature. No matter what model we pick, we have to estimate parameters, and, as time 

evolves, new information can arrive which causes us to change our parameter estimates. 

 

The issue is illustrated by Figure 1, which shows realized volatility by calendar year for the S&P 

500 for the 60-year period beginning in 1950.  Daily data was used to calculate the realized 

volatilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
3
 For more background on the concepts of skew and smile, see Gatheral, J. 2006. The Volatility Surface: A 

Practitioner’s Guide. Wiley. 
4
 Hardy, M.R. 2001. ―A Regime-Switching Model of Long-Term Stock Returns.‖ North American Actuarial Journal 

5(2): 41–53. 
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Figure 1 
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Figure 1 also shows the trailing 10 and 25-year realized volatilities.  If we take the midpoint of 

the 10 and 25 year average numbers to be our ―best estimate‖ of long run volatility then we could 

justify a value of 20. at the end of 2009. 

 

While there is no unique methodology for turning historical data into a best estimate assumption, 

it is clear that any reasonable combination of P measure model and parameter estimation method 

would have resulted in revisions to the long-term parameter assumptions as time evolved.  Ten 

years ago 15.  would have been a very defensible number but the experience of the last few 

years would have forced us to revise that assumption. 

 

One way to deal with this is to hold sufficient economic capital that we can cover the loss that 

would occur if the liability were revalued using a revised set of parameter values. We‘ll illustrate 

this idea in the case where the P measure model is just the standard lognormal. We have a best 

estimate long-term volatility assumption of 
2 , and we want to hold capital and margins to 

cover a shocked assumption 222ˆ   . Here 
2 is a plausible (99.5 percent) shock to the 

volatility assumption that could result from new information arriving in the course of the next 

year.  

 

As an example, suppose we are at the end of 2009 and our best estimate of 20.  is based on 

the prior 10-25 years of history. Assume 2010 were another year like the financial crisis, in 2008, 

when realized volatility jumped to 41 percent. A revised best estimate might then be something 

like: 
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This kind of analysis suggests that a plausible one-year shock in the range of 
222 )10(.)05(.   would be reasonable.   For definiteness, we will take the 1 year 99.5% 

shock 2 to be such that 103.)225(.ˆ 2222   . 

 

Taking the responsible speculator‘s point of view, a high-level formula that captures this idea 

would be to write 

 

)}],(),(ˆ{~},(),({""[),( StVStVStVJStVFlowsCashPVEStV P   . 

 

Here ),(ˆ StV is a value calculated using shocked volatility and ~ is a new cost of capital 

appropriate for this new risk. If P̂ is the shocked P measure, then we would compute the shocked 

value ),(ˆ StV using  
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This formula assumes we take the same approach to contagion risk when calculating ),(ˆ StV that 

we did in the base case. The formula also indicates that we would continue to hold capital 

)},(ˆ),(
ˆ̂

{ StVStV   for parameter risk in the shocked world. The only reason to omit such a term 

from the calculation of ),(ˆ StV would be because we thought the shocked parameter value 
222ˆ   could never get any worse. If this is not the case, then double, triple, …,n times 

shocked worlds need to be considered, in theory. 

 

 If this seems like over-engineering, we would agree, and we will shortly show how the 

technicalities can be simplified significantly. However, it is worth emphasizing why such a 

model structure makes sense. If the shocked value ),(ˆ StV  contains no margins, then we are not 

in a position to attract new capital if we found ourselves in the shocked world and the previous 

capital )},(),(ˆ{ StVStV  was used up by an assumption change. In order to attract a capital 

infusion of )},(ˆ),(
ˆ̂

{ StVStV  , the shocked value ),(ˆ StV must contain sufficient margin to 

compensate an investor for taking the risk.  

 

The technical solution to the valuation problem we have just defined is a regime-switching 

model where volatility starts out equal to the best estimate value and then randomly jumps from 

one level to the next with a transition rate equal to the cost of holding capital for parameter risk.  

 

In theory, this requires us to specify an infinite hierarchy of volatility levels  
2222 ˆ...    along with a cost of capital ~ . The C measure introduced earlier is 
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now augmented by allowing the volatility parameter to jump randomly up the shock hierarchy 

with transition intensity~ . 

 

Mathematically, this is equivalent to an infinite system of equations of the form 
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To calculate the shocked value ),(ˆ StV , we need a shocked C measure Ĉ , which is the same as 

the C measure except the volatility assumption starts out in the first shocked level 
222ˆ    and then jumps randomly up the hierarchy from there. 

 

In theory, the discussion above completes the description of the C measure. Had we started with 

a more sophisticated P measure model, the same basic ideas could have been developed except 

that the specific parameters subject to regime switching might be different from what makes 

sense in the standard lognormal model. 

 

As a practical matter, we need a way to justify a set of assumptions and, if possible, simplify the 

actual calculations. Most practitioners would consider implementing the regime-switching 

model, as specified, to be over-engineering. 

 

To simplify the regime-switching model, we make a new assumption. 

 

The shock hierarchy is assumed to have a simple geometric structure governed by a 

parameter 10    . In terms of this parameter the n’th level in the volatility hierarchy is 

given by:   











1

1
ˆ 222

n

n  .            

 

The parameter  is then chosen so that the ultimate volatility level )1/(222  
 

makes sense. The historical evidence shown earlier indicates that it is very difficult to get S&P 

500 realized volatility over a 10-year, or longer, period to exceed 25 percent. This supports an 

alpha factor of about 50 percent.  For definiteness, we set 53.  so that 22 )25(. . 

 

If the cost of capital is ~ , then the C measure expected squared forward volatility, T years from 

the valuation date, is
5
:  

                                                           
5
 This follows from the fact that number of regime changes N(T) has a Poisson distribution with 

mean T~  so that ])1(~exp[][ )( TE TN   . This is one reason for choosing the geometric 

hierarchy. 
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This is a good approximation to the regime-switching model‘s implied volatility for all but very 

short maturities.  

 

A more formal way to see why this approximation works is to imagine that, in the C measure, the 

variance process 2v follows a mean reverting deterministic process of the form  

 
2)(,))(1(~    tvdtvvdv . 

 

Here 










1

2
2v  is the ultimate variance level under the regime switching model.  The 

valuation equation corresponding to this deterministic volatility assumption is  
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which can also be written as 
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In the P measure, where ,2v we can interpret the last term as a cost of capital.  In particular,  
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Our short cut deterministic volatility model can therefore be viewed as an approximation to the 

exact regime switching model, or as an exact solution to a model where the economic capital is 

approximated by 
v

V




 2 .  As noted earlier, the approximation is very good for the longer 

option maturities of interest to us in this paper and is very easy to implement. 
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If we now put the contagion and parameter risk pieces together, we find that, for long-dated 

options, the cost of capital model suggests the following approximate formula for implied 

volatility: 

2

2

2

2
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The end result of the process would appear to add roughly 900 vol points to the best estimate 

volatility of 20 percent. As Table 1 shows, it takes more than 50 years for this long-term implied 

volatility to be reached if we assume a reasonable cost of capital for parameter risk.  

 

Each line in Table 1 is designed to illustrate the impact of a specific set of C measure parameters 

on at-the-money (ATM) implied volatilities for maturities of 10, 25 and 50 years.  

 

Table 1 

 

Contagion Shock Parameter Shock At the Money Implied Vol %

   J           ~ 10 25 50

1     20.0% 60.0% 10.0% 10.3% 53.0% 6.0% 25.3% 26.0% 26.8%

2     20.0% 60.0% 10.0% 0.0% 53.0% 6.0% 24.7% 24.8% 24.8%

3     22.5% 60.0% 10.0% 10.3% 53.0% 6.0% 27.3% 28.0% 28.7%

4     20.0% 50.0% 8.0% 10.3% 53.0% 6.0% 26.7% 27.5% 28.2%

5     20.0% 60.0% 15.0% 10.3% 53.0% 6.0% 27.2% 28.0% 28.7%

6     20.0% 60.0% 10.0% 12.0% 53.0% 6.0% 25.5% 26.5% 27.5%

7     20.0% 60.0% 10.0% 10.3% 75.0% 6.0% 25.3% 26.2% 27.2%

8     20.0% 60.0% 10.0% 10.3% 53.0% 10.0% 25.6% 26.6% 27.4%  
 

The first line of Table 1 shows what happens if we assume that a risk premium of 6 percent is 

appropriate for parameter risk. This rate seems reasonable given that parameter risk is not 

leveraged like contagion risk, and so it is more like an un-hedgeable insurance risk. 

 

With a 6 percent probability of stepping up the shock hierarchy each year, we have experienced, 

on average, only three regime changes in 50 years. This would lead to an expected forward 

volatility of about 24 percent and a spot volatility of 22.5 percent under the regime-switching 

model.  A formula estimate for the full model‘s implied volatility at the 50 year point is therefore 

270.))6ln(.16)(.10(.2)225(. 2   which is close to the more accurate value of .268 in line 

1 of the table. 

 

The last line in Table 1 shows what happens if we increase the cost of parameter risk capital 

from 6 percent to 10 percent. The effect is not huge. In fact, an important high-level conclusion 

is that contagion risk issues are more important than parameter risk issues. 

 

Line 2 in the table simply turns off the parameter shock. This shows that the impact on 50-year 

implied volatility of adding parameter risk is about 200 vol points which is less than the 250 vol 
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point shock to best estimate volatility.  The reason we get a smaller number is because there is a 

diversification benefit when we aggregate parameter and contagion risk.    

 

Line 3 shows what happens if we change the underlying best estimate volatility from 20 percent 

to 22.5 percent. Fifty-year implied volatilities go up by about 190 vol points. There is a 

diversification effect at work here, which is why the implied volatility did not go up by 250 vol 

points. 

 

Line 4 shows what happens if the contagion capital shock is changed from 40 percent to 50 

percent while we leave the equity risk premium fixed at 4 percent. The leveraged cost of capital 

is now 8 percent. This does increase implied volatilities in a material way though not as much as 

in Line 3. 

 

Line 5 shows what happens if we change the cost of contagion risk capital while leaving the 

capital shock at 40 percent. This is equivalent to assuming that the equity risk premium is raised 

from 4 percent to 9 percent. This produces results very similar to Line 3. 

 

Lines 6,7 and 8 test the model‘s sensitivity to changes in the parameters controlling the cost of 

parameter risk. Not surprisingly, the first level shock in Line 6 is the most significant issue.  

 

 

5. Step 4: The Case for the C Measure 
 

The first argument to support the use of the C measure is that it represents a cost of 

manufacturing an option that depends only on a small number of fundamental economic 

assumptions. All of these assumptions are fairly transparent and easily subjected to scrutiny. 

Furthermore, this has been done within the context of high-level principles already accepted by 

the CRO Forum as reasonable for valuing non-hedgeable risk. 

 

The model does not assume delta hedging, but it is not inconsistent with delta hedging either. In 

fact, the model addresses one of the principal criticisms of the Black-Scholes model in that it 

recognizes that delta hedging, if implemented, is an imperfect process.  

 

The technicalities of the model are not onerous. Anyone familiar with basic Black-Scholes 

concepts and Merton‘s Jump Diffusion extension can come to grips with the technical details at 

whatever level is necessary.  

 

It is not necessary to take the standard lognormal model as the starting point. This paper takes 

this approach to simplify the presentation of the relevant new ideas. Once can easily start with a 

more sophisticated P measure model and then adjust it for contagion and parameter risk as we 

have done here. 

 

6. Step 5: Grading from a Market-Calibrated Model to the C Measure 
 

The model described in this paper can be used in a number of different ways. The simplest way 

is to use the ideas developed here to justify the choice of parameters in some other model. How 

this works in practice will depend on the other model being used, so we can‘t comment further 

here. 
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At the other end of the spectrum, one can imagine trying to come up with a version of the C 

measure model that can be calibrated to market data. Some of the challenges that must be 

addressed can be seen in the short history of 10-year ATM options in Table 2. 

 

Table 2 

6/30/2010 35.6%

6/30/2009 31.1%

12/31/2008 34.9%

12/31/2007 27.5%

12/31/2006 22.4%

12/30/2005 24.0%

12/31/2004 19.7%

12/31/2003 18.0%

S&P 500 10 Year

ATM Implied Vol

 
 

These volatilities have not borne much resemblance to the C measure estimate of 25.3 percent 

since 2007. More generally, the volatility surfaces that have been observed in the market during 

the last few years exhibit more skew and smile than can be explained by the simple C measure 

model discussed in this paper.  

 

If a high degree of fit is required, then we would need to add elements such as stochastic 

volatility and/or jumps to the P measure model before we started adjusting for the cost of capital. 

See Chapter 5 of Gatheral
6
 for more details of how this might work. 

 

If we have a more limited objective, matching ATM implied volatilities only, for example, then a 

simpler approach is possible. One idea is to start with a slightly more sophisticated P measure 

model  and then go through the same cost of capital risk adjustment steps described earlier.  We 

will use the continuous time limit of a GARCH stochastic volatility model, as described by 

Heston & Nandi (2000)
7
.  In this model the variance 

2v follows a mean reverting stochastic 

process.  The stock price and variance processes are assumed to be  

 

.,)(

,)(

dtdwdzdwvdtvvdv

SdzvdtvrSdS
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




 

 

In this model the quantities  ,,,,v are assumed to be constants that must be estimated from 

empirical data.  Notice that the equity premium is now given by 2  vr . 

 

A contagion event in this model would consist of a market jump ),(),( vvJSvS   and theory 

suggests we should consider subjecting all of the model‘s parameters to some kind of regime 

switching process.  In practice, this will be simplified by considering separate jumps JSS  , 

                                                           
6
 Gatheral, J. 2006. The Volatility Surface A Practitioner’s Guide. Wiley. 

7
 Heston, N.L., Nandi,S., ―A Closed-Form GARCH Option Valuation Model‖, Review  of Financial 

Studies (2000). 
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vvv   and, since v is clearly the most important parameter, it is the only one that will be 

dynamic in the risk adjusted C measure. The speculator‘s form of the valuation equation for 

),,,( vvStVV    is then 
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The first two terms on the right hand side of the equation above are directly analogous to what 

was done for the simple lognormal model.  The cost of capital for the equity jump must be  

)1/( Jv    in order for the model to re-price the stock. 

 

We have simplified the variance jump term by assuming the cost of capital for this risk is v and 

by using the approximation 

.),,,(),,,( v
v

V
vvStVvvvStV 




  

Collecting like terms we get the hedger‘s form of the equation 
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From the equation above we see that the impact of adding a variance shock to the model is to 

risk adjust the variance dynamics from the P measure dwvdtvvdv   )(  to a new process 

dwvdtvvdv   )(  where v  and )/( vvv   .  We still have a mean 

reverting variance process but the speed of mean reversion has been reduced and reversion target 

itself has been grossed up.  

 

The model above is technically more involved than the simpler Black-Scholes-Merton model we 

have been working with so far. However, the above model falls within the affine jump-diffusion 

family of models for which there are industry standard techniques
8
 available to get numerical 

results.  

 

The chart that follows in figure 2 is based on the above model using the following specific 

parameter choices. 

 

For the P measure we assume:  
 

22 )20(.)(,)40(.)(,30.,20.1,02.,00.1,04.  tvtvqr   

 

and the risk adjustment related parameters are given by; 

0.1,12.)20(.)40(.,6.,25.,225. 22

1    vJ  

                                                           
8
 This model can be solved using Fourier Transform techniques. 
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Figure 2 
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The first two horizontal lines on the chart show the best estimate and ultimate shock assumptions 

to the 20. and 25. .  The next series show the target spot volatility which starts at 

20.  and then grades toward 25. . The fourth series is the deterministic spot volatility 

derived by assuming 0 so that the forward variance evolves according to  
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This variance is not grading toward 25. but rather 264.05.1   it just has not got there. 

 

The final two series represent at the money implied volatilities for the full model under the 

assumptions that 0 and 30. respectively.  For short maturities the deterministic variance 

0 model is more conservative than the stochastic variance model.  As the maturity grows the 

two models get closer.  We conclude that assuming 0 is a reasonable simplification for 

extrapolation purposes.   
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There is no real science in the choice of grading scheme, but most people would probably find 

grading over a five- to 10-year period reasonable. 

 

An alternative is to allow the forward rate assumption to jump discontinuously from the last 

market determined rate to C measure value. This may seem extreme, but it is consistent with the 

idea of using the C measure to put a value, at time 10, on all cash flows beyond the market‘s 

horizon. Market discounting is then used to discount those values from time 10 to the valuation 

date. 

 

While neither of the two approaches outlined above is ―right,‖ they do have different risk 

management implications. Allowing discontinuous forward rates will generally lead to values 

that are less volatile and more easily hedged with real market instruments.  

 

7. Conclusion 
 

This paper has developed an option pricing model from first principles using cost of capital 

concepts as a foundation. In the author‘s opinion, the most useful aspect of the model is its 

ability to defend a long-term implied volatility assumption. This long-term volatility depends on 

a small number of fairly transparent macroeconomic inputs and is independent of many 

modeling details.  
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We have also shown that modeling parameter risk naturally leads to a regime-switching model 

for the uncertain parameters, and we have given a simple example.  

 

APPENDIX 

 

The main purpose of this appendix is to derive the formula approximation for long-term implied 

volatility used in Step 2 of this paper:  

 

).1/()ln1)(()ln1(2 222 JJJrJJimp    

 

The key idea is that, over longer periods of time, the law of large numbers allows us to 

approximate any reasonable P measure process by a lognormal model. Adding the simple jumps 

required by the C measure simply gives rise to a different lognormal approximation.  

 

Suppose that, under the P measure, we have the approximation: 

 

)].()2/exp[()0()( 2 tZtStS    

 

Going to the C measure means we now have:  
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Here N(t) is a Poisson process with mean )1/()( Jtrt   . 

 

Now use )1( Jr   to write the stock process as  

 

)]()ln()1(exp[)]()2/exp[()0()( 2 tNJtJtZtrStS   . 

 

This shows that the C measure process is, roughly, the product of a Black-Scholes Q measure 

process with volatility  and a second, independent, process )]()ln()1(exp[ tNJtJ  . This 

second process always has a mean of 1, so we expect that, for large enough t, we should have an 

approximation of the form:  

 

)],(
~~2/~exp[)]()ln()1(exp[ 2 tZttNJtJ                                  (*) 

 

where )(
~

tZ is a new Weiner process independent of )(tZ . For large t we know that 

)(
~

)( tZttN   , which suggests that )ln(~ J  might be a good answer. This 

approximation suggests that 222 )ln( Jimp    ought to be a reasonable long-term implied 

volatility. Practical testing shows that this formula tends to overstate the implied volatility for 

long-dated vanilla options.  

 

A better approximation is obtained by choosing ~  so that the log means of each term in equation 

(*) above are equal, i.e., we choose ~  so that:  
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In conclusion, this paper has actually derived three formula approximations for long-term 

implied volatility. These are: 

 
222222 )ln()ln1(2)1( JJJJimp   . 

 

Empirical testing shows that the middle formula works best for the implied volatility of vanilla 

options.  

 

The other two expressions are reasonable approximations for the fair value of a variance swap 

contract under the C measure. Each formula applies to a slightly different definition of realized 

volatility.  


