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Abstract 
 
Quantitative operational risk assessment is essentially based on stochastic scenario 

modeling of operational loss sequences. Given the lack of reliable historical data in most 
cases, mathematical methods should meet even stronger requirements in terms of results 
received and include specific features, namely: rare event analysis, uncertainty analysis and 
human factor analysis, etc. In this paper, the analytical-statistical simulation approach 
(ASSA) is considered as the most flexible approach to stochastic scenario loss sequence 
modeling and compared with Markov chain, fault/event tree and Monte Carlo, in terms of 
scenario loss sequence model adequacy and calculation cost. Probabilistic risk analysis 
software PRAISE and some applications are given. 
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1. Introduction 
 
A series of corporate scandals and downfalls in the last two decades showed how 

operational risk could be a long-term killer even for the most respected companies all over 
the globe. As noted in Böcker and Klüppelberg (2005), probably the most dramatic and well-
documented example of a bank collapse caused by operational risk losses was Britain’s oldest 
merchant bank Barings after the rogue trader Nick Leeson had been hiding loss-making 
positions in financial derivatives. Other well-known lessons the financial industry was taught 
by are: Société Générale loss of €4.9 billion due to trader fraud: foreign currency trader staff 
fraud at National Australia Bank ($A360 million loss); currency trader fraud at Allfirst bank, 
then part of AIB Group (a loss near US $691 million); and Bear Stearns’ near death since it 
was not able to price its mortgage portfolios. These examples obviously show the increased 
importance of effective and reliable operational risk management, based on risk 
identification, monitoring and reporting, risk mitigation, risk controlling and risk 
quantification. It is evident that most of these catastrophic losses would have never been 
prevented just by estimation of a loss distribution on historical data or naïve loss distribution 
approach (LDA) simulation techniques as they were due to flaws in internal control 
frameworks and ineffective internal audit functions. The first step in risk mitigation is 
effective management and internal control processes. 

 
As for the relevance of operational risk modeling, the simplest argument is regulatory 

requirements. The most popular framework of Basel II, being de facto the standard of risk 
management in financial institutions, provides the argument for quantification of operational 
risk for every financial institution. In this respect, the main intention for the so-called 
advanced measurement approaches (AMAs) is to calculate a capital charge as a buffer against 
potential operational risk losses. Another reason for building models, besides to make 
predictions, is that models can help us to gain a deeper understanding of a subject matter as 
that is noted in Böcker and Klüppelberg (2009).  

 
In Giacomelli and Pelizzon (2009), three classes of models for operational risk 

assessment and quantification are discussed. The most popular method, known as the LDA, is 
the parametric estimation of a frequency and a severity distribution for individual loss types 
and their subsequent aggregation that may incorporate dependencies. This general approach 
also includes the modeling of operational risk via extreme value theory (EVT), common 
Poisson shock models, and also some models based on ruin theory.  

 
The second wide class of operational risk models also employs statistical techniques 

to quantify operational risk but uses mainly qualitative measures to calibrate the model. Key 
features of these models are qualitative-based scenario analyses and scorecards. Expert 
judgment, risk and control self assessments also fall within this class. 

 
The third class of models focuses on the functional modeling of operational loss 

sequences. Functional processes and dependencies of operational risk events are defined and 
modeled via interdependence of the individual processes. The proposed approach of 
quantitative scenario modeling of operational losses, based on causal event tree analysis, is 
time-dependent, thorough and a realistic representation of real-world business processes 
going on in organization. 

 
The proposed approach, which falls within the third class, is particularly useful when 

the underlying distributions exhibit rare events and complex dependence structures that 
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influence the tails, which produce significant challenges for Monte Carlo modeling. 
 
This paper is organized as follows. The second section describes some popular logical 

probabilistic techniques for scenario modeling used in industry and the role event tree 
analysis plays among them. The third and forth sections describe mathematics that is used to 
quantify the models described in the second section. The fifth section illustrates advantages 
of analytical statistical simulation approach (ASSA) on a simple example. The sixth section 
concludes. The appendix includes terms and definitions used in the paper. 
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2. Approaches to Scenario Modeling  
 

Apart from quantitative scenario modeling, most financial institutions employ 
qualitative assessment of hazards by expert discussions and polling. Extensive literature is 
available on the use of expert aggregation techniques and questionnaires. Refer to Peters and 
Hübner (2009) for details. This paper is focused on formal logical probabilistic modeling of 
operational losses, which are based on probabilistic risk assessments (PRAs) originating from 
the complex system reliability engineering field, especially nuclear-power engineering. The 
proposed model is based on reliability stochastic models of complex system and operational 
loss sequences that are characterized by: 

 
• logic and time cause-consequence relationships; 
• random rare events are present in accident sequence. 
 
In the nuclear industry, the most widely used method for system reliability and safety 

analysis is logic-probabilistic (based on Boolean algebra) using cut set definitions and the 
Markov process. The discussion below is mainly based on Papushkin, Islamov and Volkov 
(1999).  

 
Let’s formulate the problem for analysis. 
System state is usually denoted by binary structural function: 
     f(x1, x2,..., xn)  
or n-dimensional vector  
    {xi}, i = 1,..., n ,  
where xi - binary vector component corresponds to system element state: 
xi = 0 is efficiency state, xi = 1 is failure state, 
n denotes full number of elements in considered structural scheme, 
f = 1 denotes efficiency system state, 
f = 0 denotes failure system state (operational risk realization). 
 
When random vector x(ω) takes the value in the sampling space  

(Ω, A, P), where Ω is event space, A is event σ-algebra, P is probabilistic measure, then the 
range of f(x) forms the state set Ex(phase space), where system behavior random process ξ(t) 
takes its value at the moment of time t∈[0,T]. 

 
The total number of states can be equal to N(Ex) = 2n. The process can be modeled as 

discrete Markov process crossing from one space Ex state into other one. However, when the 
number of elements n > 20, phase space increases N(Ex) > 106 and as a rule the Fault Tree 
method (with cut set tool) is used.  

 
If the statistical simulation is used, there is a problem of sample volume. Random 

values, which define accident events, belong to so-called rare events. Satisfied number of 
sample is usually obtained as 102np-1. The number of simulation for one element is equal to 
109 for probability estimation p = 10-7. 

 
Analytical methods are simple to use and calculation-efficient, but statistical 

simulation ones have no restrictions on used models and have correct justification.  
 
In order to use advantages of both approaches, the analytical-statistical simulation 

approach (ASSA) has been developed. 
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3. Scenario Model Essentials 
 
Once initial events have been identified and grouped, it is necessary to determine the 

system response on each initiating event group. The modeling of the system response results 
in the generation of operational loss (accident) sequences due to operational risk. 

 
Accident sequences are modeled in the form of event trees that are the logic diagrams 

reflecting success/failure of barrier functions required to prevent an accident in each initial 
event. There are two types of random events: 

 
Random State: This state is described only by probability point estimation for the 

corresponding event in the considered accident sequence. In different accident sequences, the 
probability frequency estimation of the same barrier could be different.  

 
Random Process: This process consists of parameter or parameters, which are the 

random values. A distribution function of this process and a time interval where the process is 
defined are considered to be known. In this case, one can obtain mean value, variance, other 
moments and confidence interval. Data for each barrier analysis depend on the type of the 
event. 

 
One can obtain data for random state or random process by three ways: from 

modeling fault trees for functional events; from historical or general database; or from expert 
estimations. When the event frequency estimation or point probability estimation for the 
whole barrier in the considered accident sequence is known from historical evidence, the first 
way takes place. When estimations for the whole barrier in the considered accident sequence 
are unknown from statistics and fault frequencies estimation of elements which form the 
barrier are known, the second way takes place. In this case, the barrier is considered as a 
system or a part of the system. Given the data for elements one can construct fault trees. The 
required event frequency estimation for the whole barrier is defined with the aid of these fault 
trees. A system description, system boundaries, a system scheme, an element description, 
dependencies analysis and fault trees are initial data for the analysis.  The third way takes 
place when data for the first and the second ways are unavailable. Initial data for this way are 
general databases, which are statistically analyzed or taken from experts’ estimations.  

 
Final states in event trees are grouped in categories. The first category is the safe state 

of the system representing zero operational loss. Other categories can be defined by two 
ways. In the first case, an operational loss interval from normal value of loss to maximum 
value of loss is divided into some parts. Each resulted interval corresponds to the defined 
category. In PRA software results, the total risk and the risk for each category are presented, 
so one can group final states in such a way that some chosen ones conclude in a category.  

 
For each final state in each accident sequence, the total operational loss is defined. It 

is modeled by a random variable with one of many available probabilistic distributions. The 
data for a particular scenario loss distribution parameters assessment are taken either from 
historical-based statistics or experts’ estimations. 
 



6 
 

4. Scenario Model Quantification 
 
For the system first failure (sequence first operational accident) modeling, the 

situation when system or accident sequence (AS) reaches at least one failure (final) state on 
the denoted time interval is considered.  

 
Let ξ(t) represent stochastic process on the probabilistic space (Ω, A, P), taking the 

value from the finite set Z (possible states of the system). The process ξ can be also 
represented by a sequence of pairs of random values ζn = (ξn , τn ), where ξn denotes system 
state at the moment of time τn when process changes its state,  

 
0 < τ0 < τ1 < ... < τn < ... 
 
The set Z0 ⊆ Z designates all the states of interest and denotes final events (human 

errors, equipment failures, etc.). 
 
Suppose that the families of the conditional distributions 
 

Fn (X, t ;Y0 , Y1 , Y2 ,..,Yn-1 ) =  
P{ξn =X, τn ≤ t | ζ0 =Y0 , ζ1 = Y1 ,.., ζn-1 = Yn-1 },  
 
F0 (X) = P{ξ0 =X}, n = 1,2,..., 

(1) 

 
where Yi =(Xi ,si ),  X,Xi ∈ Z ,  0 = s0 <s1 <...sn <... are given. 
 
Consider time interval [0,T] and introduce the following event:  
 

A = { ∃ n : ξn ∈ Z0 , τn ≤ T } (2) 
 
It is usually a rare event, i.e., the probability of this event is very small. The problem 

is to estimate P{A}. The method is based on modeling of random moments of time only 
inside the considered time interval [0,T]. 

 
Put  
 

An = { ξ0 ,..., ξn-1 ∉ Z0 , ξn ∈ Z , τn ≤ T }, (3) 
 
then  
 

P A P P An
n

{ } { } { }= ∈ +
=

∞

∑ξ0 0
1

Z (4) 

 
Let us estimate P{An} . We can write 
 

P A P A X P Xn n
X Z

{ } { } { }= = =
∉
∑
0 0

0 0 0 0ξ ξ (5) 
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Recurrently using the total probability formula we have for  
 
k=1,..., n-2 
 

P A Y Y

P A Y Y F X ds Y Y

n k k

n k k k k k k
s

T

X Z kk

{ ,..., }

{ ,..., } ( , ; ,..., )

ζ ζ

ζ ζ

0 0

0 0 1 1 1 1 1 0
1 0

= = =

= =+ + + + +
∉
∫∑

+

 

(6) 

 
And finally for k=n-1 we can write 
 

P A Y Y F X ds Y Yn n n n n n n
s

T

X Z nn

{ ,..., } ( , ; ,..., )ζ ζ0 0 1 1 0 1
10

= = =− − −
∈

−

∫∑
 

(7) 

Consequent application of formulas (5) - (7) yields function P{W} expressed by 
conditional distributions (1). 

 
The P{A} estimation using analytical-statistical simulation is as follows. Let’s 

transform Equation (6) into a more appropriate form 
 

P A Y Y P A Y Y

F X T Y Y F X s Y Y
P ds Y Y X s s T

n k k n k k
s

T

X Z

k k k k k k k

k k k k k k k

kk

{ , ... , } { , .. . , }

[ ( , ; , . .. , ) ( , ; , .. . , )]
{ | , . .. , , , }

ζ ζ ζ ζ

ζ ζ ξ

0 0 0 0 1 1

1 1 0 1 1 0

1 0 0 1 1 1

1 0

= = = = = •

− •

= = = < ≤

+ +
∉

+ + + +

+ + + +

∫∑
+

 

(8) 

 
Each integral on the right-hand side of Equation (8) is estimated using the Monte 

Carlo method. At every step a random value sk+1 is simulated with the condition that  
 

ξk+1 = Xk+1 , sk < sk+1 ≤ T    and   ζ0 =Y0 ,..., ζk =Yk (9) 
 
The integrals on the last interval  
 

F X ds Y Yn n n n
s

T

n

( , ; ,..., )0 1
1

−
−

∫ (10) 

 
are estimated analytically. 
 
The system final state has the following probability estimation property. The 

statistical estimation for P{W} under m-times simulation is derived by selecting (P1,...,Pm ).  
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The value  
 

h W
P

mm

i
i

m

( ) = =
∑

1

 
(11) 

 
is point estimation for P{W }. It has asymptotically the Gaussian distribution with 

parameters 
 

Ehm (W ) = P{W } 
Dhm (W ) = P{W }(1-P{W })/ m (12) 

 
The upper and lower confidence boundaries, Pu (hm ) and Pl (hm ) respectively, can 

be found by solving the following equation 
 

ααα −=
⎭
⎬
⎫

⎩
⎨
⎧ +<<− −− 1)()()( 1,2/11,2/1 mmmm t

m
SWhWPt

m
SWhP

 
(13) 

where, 

S
P h W

m

i m
i

m

2

2

1

1
=

−

−
=
∑ ( )

; 
 t α,m-1 - is the correspondent α-quantile for the Student distribution with  m-1 

  parameters,  
 
 α- is the confidence level. 
 
Estimation for models (2)–(3) is similar to (13). One of the important estimation 

properties is that variance of these estimations is not greater than in standard simulation 
procedures.  

 
The described mathematics of ASSA for event tree scenario model quantification is 

effectively implemented in Probabilistic Risk Assessment for Industrial Safety Evaluation 
software package (PRAISE code for short) developed by Xlerate Technologies LLC. This 
package handles event tree development and quantification easily with a user-friendly 
graphical user interface and combines graphical simplicity with powerful numerical 
procedures for importance, sensitivity and uncertainty analyses. The implementation details 
of these methods lie beyond the scope of this paper. Refer to both papers (Islamov, 1998) for 
details on methods used.  
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5. Advantages of ASSA  
 
As  mentioned in the previous paragraph, PRAISE/EventTree is focused on event tree 

representation of ASSA. PRAISE/EventTree, according to its documentation, has been 
developed to satisfy professional requirements in: 

 
• analysis of time-dependant events; 
• event random time simulation; 
• event random probability function simulation; 
• event deterministic time process modeling (mostly for application in 

engineering); 
• point and interval probability and risk estimate; 
• simulation speed optimization. 
 
We’ll illustrate the advantages of ASSA for quantitative operational risk analysis and 

modeling on a simplified scenario of two consecutive operational risk events.  
 
Consider the simplest event tree representing a logic model of operational loss event 

sequence (accident sequence). The first considerable event, which is called Initial Event, may 
cause several possible paths. Each of other events may form the event tree branches by logic 
Yes/No:  

 
 
 
 
 
 
 
 
 

branch is determined by respective probability P of the event E:  
 
{ 1}No=E{}Yes=E =+ PP  

 

In the general case a final state probability is obtained as follows ⎩
⎨
⎧

⎭
⎬
⎫

= I
i

if EPP
. For 

independent events (in probabilistic sense) a final state probability can be given 
}{I

i
if EPP =

, where event E relates to an appropriate logic function (Yes/No). The path 
final states with respective probability Pf and accident consequence Cf characterize the risk  

f
f

f CPR ⋅= ∑
. 

 

Fi
na

l s
ta

te
s
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Consider a fragment from a simple model in  Pic. 1. Shortcomings in the underwriting 
process cause the initiating event, an erroneous purchase of a fraudulent mortgage credit on a 
random time t1, then a consequent event, failure to satisfy the terms of a loan obligation or a 
90+ days payment delinquency (mortgage credit default) at random time t2 follows. So we 
have an accident. Other functional events include the possible reselling to the originator of 
the loan in case of default, securitization of the loan, possible foreclosure and so on. For 
illustrative purposes and simplicity, we take only two events. So times t1, t2 are independent 
in a probabilistic sense and have distribution functions F1, F2 respectively. The mission time 
is T, which is the time interval risk analysis is conducted on. 

 
 
 
 
 
 
 
 
 
 

The accident final state probability is defined as }{ TttPPf <+= 21  
 
Let’s compare standard Monte Carlo simulation approach with ASSA for a simple 

scenario of two consecutive events in Pic. 2. 
 
Standard Monte Carlo Simulation 
 
In standard simulation procedure we would have to: 
 
1. simulate random values  0 < r < 1 for each distribution function F1, F2; 
2. estimate random times t = F-1(r) using inverse functions of F1, F2; 
3. check the event {t1+t2<T}, whether it is successful or not; 
4. repeat items1-3 N times to estimate  the probability Pf = m/N, where m is a 

number of successful events. 
 
It is obvious that, the lower probability Pf we estimate, the larger number of 

simulation N we have to carry out (so-called rare event problem): 
 

Pf m M 
~ 2·10-4 20 105 
~ 2·10-6 20 107 
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Analytical-Statistical Simulation Approach (ASSA) 
 
Let’s transform the expression:  
 

}{ 21 TttPPf <+= : 
 

.}{}|{}|{

}{}|{

}{

0
11112

1121

21

∫ <<<<−<

=<⋅<<+

=<+=

T

f

TtPTtutdPTtuTtP

TtPTtTttP

TttPP

 
 
The integral 
 

∫

∫

<<<−

=<<<−<

T

T

TtPTtutdPuTF

TtPTtutdPuTtP

0
1112

0
1112

}{}|{}{

}{}|{}{

 
may be considered as a mathematical expectation of the function  

F2(T - u), because  

.1}|{
0

11 =<<∫
T

TtutdP
 

In ASSA simulation procedure we should: 
 
1. estimate F1(T); 
2. simulate random value  0 < r < 1; 

3. estimate random time ( )( )TFrFu 1
1

1 ⋅= −
 using inverse function of F1; 

4. estimate F2 (T-u); 
5. repeat items 2-4 m times to estimate the probability 
 

.
)(

1
2

m

uTF
P

m

i
i

f

∑
=

−
=

 
 
That is why ASSA has no “rare event” problem: 
 

Pf m 
~ 2·10-4 20 
~ 2·10-6 20 
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6. Conclusion 
 
An important quantitative operational risk analysis benefits from the ability to 

estimate the precision of results received, which combines uncertainty analysis of the input 
data, the model uncertainty, sensitivity and importance analyses. Nowadays many of them are 
elaborated and well-documented steps described in probabilistic risk assessment procedure 
guides available.  

 
Given powerful estimation methods like ASSA, one can fully use limited data 

available. These techniques are usually not used in simpler approaches, but nonrealization of 
a rare event is useful information, which helps to build one-sided interval estimations. 
Stochastic modeling itself provides instruments taking into account the uncertainty in 
observed or just roughly estimated frequencies and probabilities. That’s why quantitative 
scenario modeling, linked with uncertainty analysis, particularly helps fully use data available 
on frequency and probability estimations of rare operational risk events.  

 
The ability to deal with analysis of time-dependant events (stochastic processes) 

makes the proposed model suitable for complex cases, including multi-event scenarios with 
complex dependencies. 

 
The ability to deal with rare event problems, computational efficiency and flexibility 

of statistical simulation apparatus makes ASSA well-suited for nontrivial problems of 
reliability, engineering and quantitative operational risk analysis. 
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Appendix: Terms and Definitions 
 
Throughout the paper some specialized terms and definitions are used originating 

from nuclear power safety engineering, operational risk and reliability analyses. Some of 
these terms and definitions are given below. 

 
Initiating event—an event that creates a disturbance in the business process 

functionality that directly leads to operational loss depending on the successful operation of 
the various mitigating controls and systems in the business process. 

 
Components—equipment, devices, operations and other elements designated to 

perform specific functions solely or as a part of the system and considered as a design 
structural element when performing reliability and safety analysis. 

 
Failure—an event of disrupting operating conditions of a component, or whole 

system. 
 
Event tree—a logical model that expresses in graphical form the different ways of 

operational loss sequence development for an initiating event group being considered that 
depends on accomplishing or failure of safety functions and successful or not successful 
personnel activities necessary for prevention of operational loss. 

 
Fault tree—a logical model presenting the various failure combinations resulting to 

safety function non-performance. 
 
Point Estimate (Parameter Point Estimate)—a single number that represents an 

estimate of a reliability parameter, such as the mean, median or mode developed through 
maximum likelihood (in some sense it gives the best estimate), moments method, Bayesian 
estimation methods or other methods. The Point Estimate does not contain any information 
on possible discrepancy of the parameter estimation. 

 
System—a set of components designed for fulfilling specified functions. 
 
Uncertainty—random variability in given parameters or measurable quantity or the 

imprecision in the knowledge of the parameter or model. 
 


