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CREDIBILITY
HOWARD C. MAHLER AND CURTIS GARY DEAN

1. INTRODUCTION

Credibility theory provides tools to deal with the randomness
of data that is used for predicting future events or costs. For ex-
ample, an insurance company uses past loss information of an
insured or group of insureds to estimate the cost to provide fu-
ture insurance coverage. But, insurance losses arise from random
occurrences. The average annual cost of paying insurance losses
in the past few years may be a poor estimate of next year’s costs.
The expected accuracy of this estimate is a function of the vari-
ability in the losses. This data by itself may not be acceptable
for calculating insurance rates.

Rather than relying solely on recent observations, better esti-
mates may be obtained by combining this data with other infor-
mation. For example, suppose that recent experience indicates
that Carpenters should be charged a rate of $5 (per $100 of
payroll) for workers compensation insurance. Assume that the
current rate is $10. What should the new rate be? Should it be
$5, $10, or somewhere in between? Credibility is used to weight
together these two estimates.

The basic formula for calculating credibility weighted esti-
mates is:

Estimate = Z [Observation]+ (1 Z) [Other Information],

0 Z 1:

Z is called the credibility assigned to the observation. 1 Z is
generally referred to as the complement of credibility. If the body
of observed data is large and not likely to vary much from one
period to another, then Z will be closer to one. On the other hand,
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8-2 CREDIBILITY Ch. 8

if the observation consists of limited data, then Z will be closer
to zero and more weight will be given to other information.

The current rate of $10 in the above example is the “Other
Information.” It represents an estimate or prior hypothesis of a
rate to charge in the absence of the recent experience. As recent
experience becomes available, then an updated estimate combin-
ing the recent experience and the prior hypothesis can be calcu-
lated. Thus, the use of credibility involves a linear estimate of
the true expectation derived as a result of a compromise between
observation and prior hypothesis. The Carpenters’ rate for work-
ers compensation insurance is Z $5+ (1 Z) $10 under this
model.

Following is another example demonstrating how credibility
can help produce better estimates:

Example 1.1: In a large population of automobile drivers, the
average driver has one accident every five years or, equivalently,
an annual frequency of .20 accidents per year. A driver selected
randomly from the population had three accidents during the last
five years for a frequency of .60 accidents per year. What is your
estimate of the expected future frequency rate for this driver? Is
it .20, .60, or something in between?

[Solution: If we had no information about the driver other than
that he came from the population, we should go with the .20.
However, we know that the driver’s observed frequency was .60.
Should this be our estimate for his future accident frequency?
Probably not. There is a correlation between prior accident fre-
quency and future accident frequency, but they are not perfectly
correlated. Accidents occur randomly and even good drivers with
low expected accident frequencies will have accidents. On the
other hand, bad drivers can go several years without an ac-
cident. A better answer than either .20 or .60 is most likely
something in between: this driver’s Expected Future Accident
Frequency = Z :60+ (1 Z) :20:]
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The key to finishing the solution for this example is the cal-
culation of Z. How much credibility should be assigned to the
information known about the driver? The next two sections ex-
plain the calculation of Z.

First, the classical credibility model will be covered in Section
2. It is also referred to as limited fluctuation credibility because
it attempts to limit the effect that random fluctuations in the
observations will have on the estimates. The credibility Z is a
function of the expected variance of the observations versus the
selected variance to be allowed in the first term of the credibility
formula, Z [Observation].

Next Bühlmann credibility is described in Section 3. This
model is also referred to as least squares credibility. The goal
with this approach is the minimization of the square of the error
between the estimate and the true expected value of the quantity
being estimated.

Credibility theory depends upon having prior or collateral in-
formation that can be weighted with current observations. An-
other approach to combining current observations with prior
information to produce a better estimate is Bayesian analysis.
Bayes Theorem is the foundation for this analysis. This is cov-
ered is Section 4. It turns out that Bühlmann credibility estimates
are the best linear least squares fits to Bayesian estimates. For
this reason Bühlmann credibility is also referred as Bayesian
credibility.

In some situations the resulting formulas of a Bayesian analy-
sis exactly match those of Bühlmann credibility estimation; that
is, the Bayesian estimate is a linear weighting of current and
prior information with weights Z and (1 Z) where Z is the
Bühlmann credibility. In Section 5 this is demonstrated in the
important special case of the Gamma-Poisson frequency process.

The last section discusses practical issues in the application of
credibility theory including some examples of how to calculate
credibility parameters.
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The Appendices include basic facts on several frequency and
severity distributions and the solutions to the exercises.

2. CLASSICAL CREDIBILITY

2.1. Introduction

In Classical Credibility, one determines how much data one
needs before one will assign to it 100% credibility. This amount
of data is referred to as the Full Credibility Criterion or the
Standard for Full Credibility. If one has this much data or more,
then Z = 1:00; if one has observed less than this amount of data
then 0 Z < 1.

For example, if we observed 1,000 full-time Carpenters, then
we might assign 100% credibility to their data.1 Then if we ob-
served 2,000 full-time Carpenters we would also assign them
100% credibility. 100 full-time Carpenters might be assigned
32% credibility. In this case the observation has been assigned
partial credibility, i.e., less than full credibility. Exactly how to
determine the amount of credibility assigned to different amounts
of data is discussed in the following sections.

There are four basic concepts from Classical Credibility which
will be covered:

1. How to determine the criterion for Full Credibility when
estimating frequencies;

2. How to determine the criterion for Full Credibility when
estimating severities;

3. How to determine the criterion for Full Credibility when
estimating pure premiums (loss costs);

4. How to determine the amount of partial credibility to
assign when one has less data than is needed for full
credibility.

1For workers compensation that data would be dollars of loss and dollars of payroll.
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Example 2.1.1: The observed claim frequency is 120. The cred-
ibility given to this data is 25%. The complement of credibility
is given to the prior estimate of 200. What is the new estimate
of the claim frequency?

[Solution: :25 120+ (1 :25) 200 = 180:]

2.2. Full Credibility for Frequency

Assume we have a Poisson process for claim frequency, with
an average of 500 claims per year. Then, the observed num-
bers of claims will vary from year to year around the mean of
500. The variance of a Poisson process is equal to its mean,
in this case 500. This Poisson process can be approximated by
a Normal Distribution with a mean of 500 and a variance of
500.

The Normal Approximation can be used to estimate how often
the observed results will be far from the mean. For example, how
often can one expect to observe more than 550 claims? The stan-
dard deviation is 500 = 22:36. So 550 claims corresponds to
about 50=22:36 = 2:24 standard deviations greater than average.
Since ©(2:24) = :9875, there is approximately a 1.25% chance
of observing more than 550 claims.2

Thus there is about a 1.25% chance that the observed number
of claims will exceed the expected number of claims by 10% or
more. Similarly, the chance of observing fewer than 450 claims
is approximately 1.25%. So the chance of observing a number
of claims that is outside the range from 10% below to +10%
above the mean number of claims is about 2.5%. In other words,
the chance of observing within 10% of the expected number
of claims is 97.5% in this case.

2More precisely, the probability should be calculated including the continuity correction.
The probability of more than 550 claims is approximately 1 ©((550:5 500)= 500) =
1 ©(2:258) = 1 :9880 = 1:20%.
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More generally, one can write this algebraically. The proba-
bility P that observation X is within k of the mean ¹ is:

P = Prob[¹ k¹ X ¹+ k¹]

= Prob[ k(¹=¾) (X ¹)=¾ k(¹=¾)] (2.2.1)

The last expression is derived by subtracting through by ¹ and
then dividing through by standard deviation ¾. Assuming the
Normal Approximation, the quantity u= (X ¹)=¾ is normally
distributed. For a Poisson distribution with expected number of
claims n, then ¹= n and ¾ = n. The probability that the ob-
served number of claims N is within k% of the expected num-
ber ¹= n is:

P = Prob[ k n u k n]

In terms of the cumulative distribution for the unit normal, ©(u):

P =©(k n) ©( k n) = ©(k n) (1 ©(k n))

= 2©(k n) 1

Thus, for the Normal Approximation to the Poisson:

P = 2©(k n) 1 (2.2.2)

Or, equivalently:

©(k n) = (1+P)=2: (2.2.3)

Example 2.2.1: If the number of claims has a Poisson distribu-
tion, compute the probability of being within 5% of a mean
of 100 claims using the Normal Approximation to the Pois-
son.

[Solution: 2©(:05 100) 1 = 38:29%:]

Here is a table showing P, for k = 10%, 5%, 2.5%, 1%, and
0.5%, and for 10, 50, 100, 500, 1,000, 5,000, and 10,000 claims:
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Probability of Being Within k of the Mean

Expected #
of Claims k = 10% k = 5% k = 2:5% k = 1% k = 0:5%

10 24.82% 12.56% 6.30% 2.52% 1.26%
50 52.05% 27.63% 14.03% 5.64% 2.82%
100 68.27% 38.29% 19.74% 7.97% 3.99%
500 97.47% 73.64% 42.39% 17.69% 8.90%

1,000 99.84% 88.62% 57.08% 24.82% 12.56%
5,000 100.00% 99.96% 92.29% 52.05% 27.63%
10,000 100.00% 100.00% 98.76% 68.27% 38.29%

Turning things around, given values of P and k, then one
can compute the number of expected claims n0 such that the
chance of being within k of the mean is P. n0 can be calculated
from the formula ©(k n0) = (1+P)=2. Let y be such that ©(y) =
(1+P)=2. Then given P, y is determined from a normal table.
Solving for n0 in the relationship k n0 = y yields n0 = (y=k)

2.
If the goal is to be within k of the mean frequency with a
probability at least P, then the Standard for Full Credibility is

n0 = y
2=k2, (2.2.4)

where y is such that

©(y) = (1+P)=2: (2.2.5)

Here are values of y taken from a normal table corresponding
to selected values of P:

P (1+P)=2 y

80.00% 90.00% 1.282
90.00% 95.00% 1.645
95.00% 97.50% 1.960
99.00% 99.50% 2.576
99.90% 99.95% 3.291
99.99% 99.995% 3.891
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Example 2.2.2: For P = 95% and for k = 5%, what is the num-
ber of claims required for Full Credibility for estimating the fre-
quency?

[Solution: y = 1:960 since ©(1:960) = (1+P)=2 = 97:5%.
Therefore n0 = y

2=k2 = (1:96=:05)2 = 1537:]

Here is a table3 of values for the Standard for Full Credibility
for the frequency n0, given various values of P and k:

Standards for Full Credibility for Frequency (Claims)

Probability
Level P k = 30% k = 20% k = 10% k = 7:5% k = 5% k = 2:5% k = 1%

80.00% 18 41 164 292 657 2,628 16,424
90.00% 30 68 271 481 1,082 4,329 27,055
95.00% 43 96 384 683 1,537 6,146 38,415
96.00% 47 105 422 750 1,687 6,749 42,179
97.00% 52 118 471 837 1,884 7,535 47,093
98.00% 60 135 541 962 2,165 8,659 54,119
99.00% 74 166 664 1,180 2,654 10,616 66,349
99.90% 120 271 1,083 1,925 4,331 17,324 108,276
99.99% 168 378 1,514 2,691 6,055 24,219 151,367

The value 1,082 claims corresponding to P = 90% and k =
5% is commonly used in applications. For P = 90% we want
to have a 90% chance of being within k of the mean, so we
are willing to have a 5% probability outside on either tail, for a
total of 10% probability of being outside the acceptable range.
Thus ©(y) = :95 or y = 1:645. Thus n0 = y

2=k2 = (1:645=:05)2 =
1,082 claims.

In practical applications appropriate values of P and k have
to be selected.4 While there is clearly judgment involved in the

3See the Table in Longley-Cook’s “An Introduction to Credibility Theory” (1962) or
“Some Notes on Credibility” by Perryman, PCAS, 1932. Tables of Full Credibility stan-
dards have been available and used by actuaries for many years.
4For situations that come up repeatedly, the choice of P and k may have been made
several decades ago, but nevertheless the choice was made at some point in time.
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choice of P and k, the Standards for Full Credibility for a given
application are generally chosen within a similar range. This
same type of judgment is involved in the choice of error bars
around a statistical estimate of a quantity. Often 2 standard de-
viations (corresponding to about a 95% confidence interval) will
be chosen, but that is not necessarily better than choosing 1:5
or 2:5 standard deviations. So while Classical Credibility in-
volves somewhat arbitrary judgments, that has not stood in the
way of its being very useful for decades in many applications.

Subsequent sections deal with estimating severities or pure
premiums rather than frequencies. As will be seen, in order to
calculate a Standard for Full Credibility for severities or the pure
premium, generally one first calculates a Standard for Full Cred-
ibility for the frequency.

Variations from the Poisson Assumptions

If one desires that the chance of being within k of the mean
frequency to be at least P, then the Standard for Full Credibility
is n0 = y

2=k2, where y is such that ©(y) = (1+P)=2.

However, this depended on the following assumptions:

1. One is trying to estimate frequency;

2. Frequency is given by a Poisson process (so that the
variance is equal to the mean);

3. There are enough expected claims to use the Normal
Approximation to the Poisson process.

Occasionally, a Binomial or Negative Binomial Distribution
will be substituted for a Poisson distribution, in which case the
difference in the derivation is that the variance is not equal to the
mean.

For example, assume one has a Binomial Distribution with pa-
rameters n= 1,000 and p= :3. The mean is 300 and the variance
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is (1,000)(:3)(:7) = 210. So the chance of being within 5% of
the expected value is approximately:

©((:05)(300)=210:5) ©(( :05)(300)=210:5)

©(1:035) ©( 1:035) :8496 :1504 69:9%:

So, in the case of a Binomial with parameter .3, the Standard
for Full Credibility with P = 70% and k = 5% is about 1,000
exposures or 300 expected claims.

If instead a Negative Binomial Distribution had been assumed,
then the variance would have been greater than the mean. This
would have resulted in a standard for Full Credibility greater
than in the Poisson situation.

One can derive a more general formula when the Poisson
assumption does not apply. The Standard for Full Credibility for
Frequency is:5

y2=k2 (¾2f=¹f) (2.2.6)

There is an “extra” factor of the variance of the frequency divided
by its mean. This reduces to the Poisson case when ¾2f=¹f = 1.

Exposures vs. Claims

Standards for Full Credibility are calculated in terms of the
expected number of claims. It is common to translate these into a
number of exposures by dividing by the (approximate) expected
claim frequency. So for example, if the Standard for Full Credi-
bility is 1,082 claims (P = 90%, k = 5%) and the expected claim
frequency in Homeowners Insurance were .04 claims per house-
year, then 1,082=:04 27,000 house-years would be a corre-
sponding Standard for Full Credibility in terms of exposures.

Example 2.2.3: E represents the number of homogeneous ex-
posures in an insurance portfolio. The claim frequency rate per
exposure is a random variable with mean = 0:025 and variance =

5A derivation of this formula can be found in Mayerson, et al. “The Credibility of the
Pure Premium.”
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0:0025. A full credibility standard is devised that requires the
observed sample frequency rate per exposure to be within 5% of
the expected population frequency rate per exposure 90% of the
time. Determine the value of E needed to produce full credibility
for the portfolio’s experience.

[Solution: First calculate the number of claims for full credibility
when the mean does not equal the variance of the frequency:
1:6452=(:05)2 :0025=:025 = 108:241. Then, convert this into
exposures by dividing by the claim frequency rate per exposure:
108:241=:025 = 4,330 exposures.]

2.2. Exercises

2.2.1. How many claims are required for Full Credibility if one
requires that there be a 99% chance of the estimated fre-
quency being within 2:5% of the true value?

2.2.2. How many claims are required for Full Credibility if one
requires that there be a 98% chance of the estimated fre-
quency being within 7:5% of the true value?

2.2.3. The full credibility standard for a company is set so that
the total number of claims is to be within 6% of the true
value with probability P. This full credibility standard is
calculated to be 900 claims. What is the value of P?

2.2.4. Y represents the number of independent homogeneous ex-
posures in an insurance portfolio. The claim frequency
rate per exposure is a random variable with mean = 0:05
and variance = 0:09. A full credibility standard is devised
that requires the observed sample frequency rate per expo-
sure to be within 2% of the expected population frequency
rate per exposure 94% of the time. Determine the value
of Y needed to produce full credibility for the portfolio’s
experience.

2.2.5. Assume you are conducting a poll relating to a single
question and that each respondent will answer either yes
or no. You pick a random sample of respondents out of
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a very large population. Assume that the true percentage
of yes responses in the total population is between 20%
and 80%. How many respondents do you need, in order
to require that there be a 95% chance that the results of
the poll are within 7% of the true answer?

2.2.6. A Standard for Full Credibility has been established for
frequency assuming that the frequency is Poisson. If in-
stead the frequency is assumed to follow a Negative Bino-
mial with parameters k = 12 and p= :7, what is the ratio
of the revised Standard for Full Credibility to the original
one? (For a Negative Binomial, mean = k(1 p)=p and
variance = k(1 p)=p2:)

2.2.7. Let X be the number of claims needed for full credibility,
if the estimate is to be within 5% of the true value with a
90% probability. Let Y be the similar number using 10%
rather than 5%. What is the ratio of X divided by Y?

2.3. Full Credibility for Severity

The Classical Credibility ideas also can be applied to estimat-
ing claim severity, the average size of a claim.

Suppose a sample of N claims, X1,X2, : : :XN , are each inde-
pendently drawn from a loss distribution with mean ¹s and vari-
ance ¾2s . The severity, i.e. the mean of the distribution, can be es-
timated by (X1 +X2 + +XN)=N. The variance of the observed
severity is Var( Xi=N) = (1=N

2) Var(Xi) = ¾
2
s =N. Therefore,

the standard deviation for the observed severity is ¾s= N.
The probability that the observed severity S is within k of

the mean ¹s is:

P = Prob[¹s k¹s S ¹s+ k¹s]

Subtracting through by the mean ¹s, dividing by the standard de-
viation ¾s= N, and substituting u in for (S ¹s)=(¾s= N) yields:

P = Prob[ k N(¹s=¾s) u k N(¹s=¾s)]
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This is identical to the frequency formula in Section 2.2 except
for the additional factor of (¹s=¾s).

According to the Central Limit Theorem, the distribution of
observed severity (X1 +X2 + +XN)=N can be approximated
by a normal distribution for large N. Assume that the Normal
Approximation applies and, as before with frequency, define y
such that ©(y) = (1+P)=2. In order to have probability P that
the observed severity will differ from the true severity by less
than k¹s, we want y = k N(¹s=¾s). Solving for N:

N = (y=k)2(¾s=¹s)
2 (2.3.1)

The ratio of the standard deviation to the mean, (¾s=¹s) =
CVS, is the coefficient of variation of the claim size distribution.
Letting n0 be the full credibility standard for frequency given P
and k produces:

N = n0CV
2
S (2.3.2)

This is the Standard for Full Credibility for Severity.

Example 2.3.1: The coefficient of variation of the severity is 3.
For P = 95% and k = 5%, what is the number of claims required
for Full Credibility for estimating the severity?

[Solution: From Example 2.2.2, n0 = 1537. Therefore, N =
1537(3)2 = 13,833 claims.]

2.3. Exercises

2.3.1. The claim amount distribution has mean 1,000 and vari-
ance 6,000,000. Find the number of claims required for
full credibility if you require that there will be a 90%
chance that the estimate of severity is correct within 1%.

2.3.2. The Standard for Full Credibility for Severity for claim
distribution A is N claims for a given P and k. Claim
distribution B has the same mean as distribution A, but a
standard deviation that is twice as large as A’s. Given the
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same P and k, what is the Standard for Full Credibility
for Severity for distribution B?

2.4. Process Variance of Aggregate Losses, Pure Premiums,
and Loss Ratios

Suppose that N claims of sizes X1,X2, : : : ,XN occur during
the observation period. The following quantities are useful in
analyzing the cost of insuring a risk or group of risks:

Aggregate Losses : L= (X1 +X2 + +XN)

Pure Premium : PP = (X1 +X2 + +XN)=Exposures

Loss Ratio : LR = (X1 +X2 + +XN)=Earned Premium

We’ll work with the Pure Premium in this section, but the devel-
opment applies to the other two as well.

Pure Premiums are defined as losses divided by exposures.6

For example, if 200 cars generate claims that total to $80,000
during a year, then the observed Pure Premium is $80,000=200
or $400 per car-year. Pure premiums are the product of fre-
quency and severity. Pure Premiums= Losses/Exposures=
(Number of Claims/Exposures) (Losses/Number of Claims)=
(Frequency)(Severity). Since they depend on both the number of
claims and the size of claims, pure premiums have more reasons
to vary than do either frequency or severity individually.

Random fluctuation occurs when one rolls dice, spins spin-
ners, picks balls from urns, etc. The observed result varies from
time period to time period due to random chance. This is also
true for the pure premium observed for a collection of insureds
or for an individual insured.7 The variance of the observed pure
premiums for a given risk that occurs due to random fluctuation

6The definition of exposures varies by line of insurance. Examples include car-years,
house-years, sales, payrolls, etc.
7In fact this is the fundamental reason for the existence of insurance.
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is referred to as the process variance. That is what will be dis-
cussed here.8

Example 2.4.1: [Frequency and Severity are not independent]

Assume the following:

For a given risk, the number of claims for a single exposure
period will be either 0, 1, or 2

Number of Claims Probability

0 60%
1 30%
2 10%

If only one claim is incurred, the size of the claim will be 50
with probability 80% or 100 with probability 20%

If two claims are incurred, the size of each claim, independent
of the other, will be 50 with probability 50% or 100 with
probability 50%

What is the variance of the pure premium for this risk?

[Solution: First list the possible pure premiums and probabil-
ity of each of the possible outcomes. If there is no claim (60%
chance) then the pure premium is zero. If there is one claim, then
the pure premium is either 50 with (30%)(80%) = 24% chance
or 100 with (30%)(20%) = 6% chance. If there are two claims
then there are three possibilities.

Next, the first and second moments can be calculated by list-
ing the pure premiums for all the possible outcomes and taking
the weighted average using the probabilities as weights of either
the pure premium or its square.

8The process variance is distinguished from the variance of the hypothetical pure premi-
ums as discussed in Bühlmann Credibility.
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Pure Square
Situation Probability Premium of P.P.

0 claims 60.0% 0 0
1 claim @ 50 24.0% 50 2,500
1 claim @ 100 6.0% 100 10,000
2 claims @ 50 each 2.5% 100 10,000
2 claims: 1 @ 50 & 1 @ 100 5.0% 150 22,500
2 claims @ 100 each 2.5% 200 40,000

Overall 100.0% 33 3,575

The average Pure Premium is 33. The second moment of the
Pure Premium is 3,575. Therefore, the variance of the pure pre-
mium is: 3,575 332 = 2,486.]

Note that the frequency and severity are not independent in
this example. Rather the severity distribution depends on the
number of claims. For example, the average severity is 60 if
there is one claim, while the average severity is 75 if there are
two claims.

Here is a similar example with independent frequency and
severity.

Example 2.4.2: [Frequency and Severity are independent]

Assume the following:

For a given risk, the number of claims for a single exposure
period is given by a binomial distribution with p= :3 and
n= 2.

The size of a claim will be 50, with probability 80%, or 100,
with probability 20%.

Frequency and severity are independent.

Determine the variance of the pure premium for this risk.
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[Solution: List the possibilities and compute the first two mo-
ments:

Pure Square
Situation Probability Premium of P.P.

0 49.00% 0
1 claim @ 50 33.60% 50 2,500
1 claim @ 100 8.40% 100 10,000
2 claims @ 50 each 5.76% 100 10,000
2 claims: 1 @ 50 & 1 @ 100 2.88% 150 22,500
2 claims @ 100 each 0.36% 200 40,000

Overall 100.0% 36 3,048

Therefore, the variance of the pure premium is: 3,048 362 =
1,752.]

In this second example, since frequency and severity are in-
dependent one can make use of the following formula:

Process Variance of Pure Premium=

(Mean Freq:)(Variance of Severity)

+ (Mean Severity)2(Variance of Freq:)

¾2PP = ¹f¾
2
S +¹

2
S¾
2
f (2.4.1)

Note that each of the two terms has a mean and a variance, one
from frequency and one from severity. Each term is in dollars
squared; that is one way to remember that the mean severity
(which is in dollars) enters as a square while that for mean fre-
quency (which is not in dollars) does not.

Example 2.4.3: Calculate the variance of the pure premium for
the risk described in Example 2.4.2 using formula (2.4.1).

[Solution: The mean frequency is np= :6 and the variance of
the frequency is npq= (2)(:3)(:7) = :42. The average severity
is 60 and the variance of the severity is (:8)(102)+ (:2)(402) =
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400. Therefore the process variance of the pure premium is
(:6)(400)+ (602)(:42) = 1,752.]

Formula (2.4.1) can also be used to compute the process vari-
ance of the aggregate losses and the loss ratio when frequency
and severity are independent.

Derivation of Formula (2.4.1)
The above formula for the process variance of the pure pre-

mium is a special case of the formula that also underlies analysis
of variance:9

Var(Y) = EX[VarY(Y X)] +VarX(EY[Y X]),

where X and Y are random variables. (2.4.2)

Letting Y be the pure premium PP and X be the number of
claims N in the above formula gives:

Var(PP) = EN[VarPP(PP N)]+VarN(EPP[PP N])

= EN[N¾
2
S]+VarN(¹SN) = EN[N]¾

2
S +¹

2
SVarN(N)

= ¹f¾
2
S +¹

2
S¾
2
f

Where we have used the assumption that the frequency and
severity are independent and the facts:

For a fixed number of claims N, the variance of the pure pre-
mium is the variance of the sum of N independent identically
distributed variables each with variance ¾2S . (Since frequency
and severity are assumed independent, ¾2S is the same for each
value of N.) Such variances add so that VarPP(PP N) =N¾2S .

For a fixed number of claims N with frequency and severity
independent, the expected value of the pure premium is N
times the mean severity: EPP[PP N] =N¹S.

9The total variance = expected value of the process variance+ the variation of the hypo-
thetical means.
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Since with respect to N the variance of the severity acts as a
constant:

EN[N¾
2
S] = ¾

2
SEN[N] = ¹f¾

2
S

Since with respect to N the mean of the severity acts as a
constant:

VarN(¹SN) = ¹
2
SVarN(N) = ¹

2
S¾
2
f

Poisson Frequency
In the case of a Poisson Frequency with independent fre-

quency and severity the formula for the process variance of the
pure premium simplifies. Since ¹f = ¾

2
f :

¾2PP = ¹f¾
2
S +¹

2
S¾
2
f

= ¹f(¾
2
S +¹

2
S) = ¹f(2nd moment of the severity)

(2.4.3)

Example 2.4.4: Assume the following:

For a given large risk, the number of claims for a single ex-
posure period is Poisson with mean 3,645.

The severity distribution is LogNormal with parameters ¹= 5
and ¾ = 1:5.

Frequency and severity are independent.

Determine the variance of the pure premium for this risk.

[Solution: The second moment of the severity = exp(2¹+2¾2) =
exp(14:5) = 1,982,759.264. (See Appendix.) Thus ¾2PP = ¹f(2nd
moment of the severity) = (3,645)(1,982,759) = 7:22716 109:]

Normal Approximation:
For large numbers of expected claims, the observed pure

premiums are approximately normally distributed.10 For ex-

10The more skewed the severity distribution, the higher the frequency has to be for the
Normal Approximation to produce worthwhile results.
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ample, continuing the example above, mean severity = exp(¹+
:5¾2) = exp(6:125) = 457:14. Thus the mean pure premium is
(3,645)(457:14) = 1,666,292. One could ask what the chance
is of the observed pure premiums being between 1.4997 mil-
lion and 1.8329 million. Since the variance is 7:22716 109,
the standard deviation of the pure premium is 85,013. Thus this
probability of the observed pure premiums being within 10%
of 1.6663 million is

©((1:8329 million 1:6663 million)=85,013)

©((1:4997 million 1:6663 million)=85,013)

= ©(1:96) ©( 1:96) = :975 (1 :975) = 95%:

Thus in this case with an expected number of claims equal to
3,645, there is about a 95% chance that the observed pure pre-
mium will be within 10% of the expected value. One could turn
this around and ask how many claims one would need in order
to have a 95% chance that the observed pure premium will be
within 10% of the expected value. The answer of 3,645 claims
could be taken as a Standard for Full Credibility for the Pure
Premium.11

2.4. Exercises

2.4.1. Assume the following for a given risk:

Mean frequency = 13; Variance of the frequency = 37

Mean severity=300; Variance of the severity=200,000

Frequency and severity are independent

What is the variance of the pure premium for this risk?

2.4.2. A six-sided die is used to determine whether or not there
is a claim. Each side of the die is marked with either a
0 or a 1, where 0 represents no claim and 1 represents a

11As discussed in a subsequent section.
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claim. Two sides are marked with a zero and four sides
with a 1. In addition, there is a spinner representing claim
severity. The spinner has three areas marked 2, 5 and 14.
The probabilities for each claim size are:

Claim Size Probability

2 20%
5 50%
14 30%

The die is rolled and if a claim occurs, the spinner is
spun. What is the variance for a single trial of this risk
process?

2.4.3. You are given the following:

For a given risk, the number of claims for a single ex-
posure period will be 1, with probability 4=5; or 2, with
probability 1=5.

If only one claim is incurred, the size of the claim will
be 50, with probability 3=4; or 200, with probability
1=4.

If two claims are incurred, the size of each claim, inde-
pendent of the other, will be 50, with probability 60%;
or 150, with probability 40%.

Determine the variance of the pure premium for this risk.

2.4.4. You are given the following:

Number of claims for a single insured follows a Poisson
distribution with mean .25

The amount of a single claim has a uniform distribution
on [0, 5,000]

Number of claims and claim severity are independent.
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Determine the pure premium’s process variance for a sin-
gle insured.

2.4.5. Assume the following:

For the State of West Dakota, the number of claims for
a single year is Poisson with mean 8,200

The severity distribution is LogNormal with parameters
¹= 4 and ¾ = 0:8

Frequency and severity are independent

Determine the expected aggregate losses. Determine the
variance of the aggregate losses.

2.4.6. The frequency distribution follows the Poisson process
with mean 0.5. The second moment about the origin for
the severity distribution is 1,000. What is the process vari-
ance of the aggregate claim amount?

2.4.7. The probability function of claims per year for an in-
dividual risk is Poisson with a mean of 0.10. There are
four types of claims. The number of claims has a Pois-
son distribution for each type of claim. The table be-
low describes the characteristics of the four types of
claims.

Type of Mean Severity
Claim Frequency Mean Variance

W .02 200 2,500
X .03 1,000 1,000,000
Y .04 100 0
Z .01 1,500 2,000,000

Calculate the variance of the pure premium.

PREPUBLICATION



CLASSICAL CREDIBILITY 8-23

2.5. Full Credibility for Aggregate Losses, Pure Premiums,
and Loss Ratios

Since they depend on both the number of claims and the size
of claims, aggregate losses, pure premiums, and loss ratios have
more reasons to vary than either frequency or severity. Because
they are more difficult to estimate than frequencies, all other
things being equal, the Standard for Full Credibility is larger
than that for frequencies.

In Section 2.4 formulas for the variance of the pure premium
were calculated:

General case: ¾2PP = ¹f¾
2
S +¹

2
S¾
2
f (2.5.1)

Poisson frequency: ¾2PP = ¹f(¾
2
S +¹

2
S) =

¹f(2nd moment of the severity)
(2.5.2)

The subscripts indicate the means and variances of the frequency
(f) and severity (S). Assuming the Normal Approximation, full
credibility standards can be calculated following the same steps
as in Sections 2.2 and 2.3.

The probability that the observed pure premium PP is within
k% of the mean ¹PP is:

P = Prob[¹PP k¹PP PP ¹PP + k¹PP]

= Prob[ k(¹PP=¾PP) u k(¹PP=¾PP)],

where u= (PP ¹PP)=¾PP is a unit normal variable, assuming
the Normal Approximation.

Define y such that©(y) = (1+P)=2. (See Section 2.2 for more
details.) Then, in order to have probability P that the observed
pure premium will differ from the true pure premium by less
than k¹PP:

y = k(¹PP=¾PP) (2.5.3)
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To proceed further with formula (2.5.1) we need to know some-
thing about the frequency distribution function.

Suppose that frequency is a Poisson process and that nF is
the expected number of claims required for Full Credibility of
the Pure Premium. Given nF is the expected number of claims,
then ¹f = ¾

2
f = nF and, assuming frequency and severity are in-

dependent:
¹PP = ¹f¹S = nF¹S

and,
¾2PP = ¹f(¾

2
S +¹

2
S) = nF(¾

2
S +¹

2
S):

Substituting for ¹PP and ¾PP in formula (2.5.3) gives:

y = k(nF¹S=(nF(¾
2
S +¹

2
S))

1=2):

Solving for nF :

nF = (y=k)
2[1+ (¾2S=¹

2
S)] = n0(1+CV

2
S ) (2.5.4)

This is the Standard for Full Credibility of the Pure Pre-
mium. n0 = (y=k)

2 is the Standard for Full Credibility of Fre-
quency that was derived in Section 2.2. CVS = (¾S=¹S) is the
coefficient of variation of the severity. Formula (2.5.4) can also
be written as nF = n0(¹

2
S +¾

2
S)=¹

2
S where (¹

2
S +¾

2
S) is the second

moment of the severity distribution.

Example 2.5.1: The number of claims has a Poisson distribution.
The mean of the severity distribution is 2,000 and the standard
deviation is 4,000. For P = 90% and k = 5%, what is the Stan-
dard for Full Credibility of the Pure Premium?

[Solution: From section 2.2, n0 = 1,082 claims. The coeffi-
cient of variation is CV = 4,000=2,000 = 2. So, nF = 1,082
(1+22) = 5,410 claims.]

It is interesting to note that the Standard for Full Credibility
of the Pure Premium is the sum of the standards for frequency
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and severity:

nF = n0(1+CV
2
S ) = n0 +n0CV

2
S

= Standard for Full Credibility of Frequency

+Standard for Full Credibility of Severity

Note that if one limits the size of claims, then the coefficient
of variation is smaller. Therefore, the criterion for full credibility
for basic limits losses is less than that for total losses. It is a
common practice in ratemaking to cap losses in order to increase
the credibility assigned to the data.

The pure premiums are often approximately Normal; gen-
erally the greater the expected number of claims or the shorter
tailed the frequency and severity distributions, the better the Nor-
mal Approximation. It is assumed that one has enough claims
that the aggregate losses approximate a Normal Distribution.
While it is possible to derive formulas that don’t depend on the
Normal Approximation, they’re not covered here.12

Variations from the Poisson Assumption
As with the Standard for Full Credibility of Frequency, one

can derive a more general formula when the Poisson assumption
does not apply. The Standard for Full Credibility is:13

nF = y2=k2 (¾2f=¹f +¾
2
s =¹

2
s ), (2.5.5)

which reduces to the Poisson case when ¾2f=¹f = 1. If the sever-
ity is constant then ¾2s is zero and (2.5.5) reduces to (2.2.6).

2.5. Exercises

[Assume that frequency and severity are independent in the follow-
ing problems.]

12One can, for example, use the Normal Power Approximation, which takes into account
more than the first two moments. See for example, “Limited Fluctuation Credibility with
the Normal Power Approximation” by Gary Venter. This usually has little practical effect.
13A derivation can be found in Mayerson, et al, “The Credibility of the Pure Premium.”
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2.5.1. You are given the following information:

The number of claims is Poisson.

The severity distribution is LogNormal with parameters
¹= 4 and ¾ = 0:8.

Full credibility is defined as having a 90% probability
of being within plus or minus 2.5% of the true pure
premium.

What is the minimum number of expected claims that will
be given full credibility?

2.5.2. Given the following information, what is the minimum
number of policies that will be given full credibility?

Mean claim frequency=:04 claims per policy. (Assume
Poisson.)

Mean claim severity= $1,000:

Variance of the claim severity= $2 million:

Full credibility is defined as having a 99% probability
of being within plus or minus 10% of the true pure
premium.

2.5.3. The full credibility standard for a company is set so that
the total number of claims is to be within 2.5% of the true
value with probability P. This full credibility standard is
calculated to be 5,000 claims. The standard is altered so
that the total cost of claims is to be within 9% of the true
value with probability P. The claim frequency has a Pois-
son distribution and the claim severity has the following
distribution:

f(x) = :0008(50 x), 0 x 50:

What is the expected number of claims necessary to obtain
full credibility under the new standard?
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2.5.4. You are given the following information:

A standard for full credibility of 2,000 claims has been
selected so that the actual pure premium would be
within 10% of the expected pure premium 99% of the
time.

The number of claims follows a Poisson distribution.

Using the classical credibility concepts determine the co-
efficient of variation of the severity distribution underly-
ing the full credibility standard.

2.5.5. You are given the following:

The number of claims is Poisson distributed.

Claim severity has the following distribution:

Claim Size Probability

10 .50
20 .30
50 .20

Determine the number of claims needed so that the total
cost of claims is within 20% of the expected cost with
95% probability.

2.5.6. You are given the following:

The number of claims has a negative binomial distribu-
tion with a variance that is twice as large as the mean.

Claim severity has the following distribution:

Claim Size Probability

10 .50
20 .30
50 .20
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Determine the number of claims needed so that the total
cost of claims is within 20% of the expected cost with 95%
probability. Compare your answer to that of exercise 2.5.5.

2.5.7. A full credibility standard is determined so that the total
number of claims is within 2.5% of the expected num-
ber with probability 98%. If the same expected number
of claims for full credibility is applied to the total cost of
claims, the actual total cost would be within 100k% of
the expected cost with 90% probability. The coefficient
of variation of the severity is 3.5. The frequency is Pois-
son. Using the normal approximation of the aggregate loss
distribution, determine k.

2.5.8. The ABC Insurance Company has decided to use Classi-
cal Credibility methods to establish its credibility require-
ments for an individual state rate filing. The full credibil-
ity standard is to be set so that the observed total cost of
claims underlying the rate filing should be within 5% of
the true value with probability 0.95. The claim frequency
follows a Poisson distribution and the claim severity is
distributed according to the following distribution:

f(x) = 1=100,000 for 0 x 100,000

What is the expected number of claims, NF necessary to
obtain full credibility?

2.5.9. A full credibility standard of 1,200 expected claims has
been established for aggregate claim costs. Determine the
number of expected claims that would be required for
full credibility if the coefficient of variation of the claim
size distribution were changed from 2 to 4 and the range
parameter, k, were doubled.

2.6. Partial Credibility

When one has at least the number of claims needed for Full
Credibility, then one assigns 100% credibility to the observa-
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GRAPH 1

CLASSICAL CREDIBILITY

tions. However, when there is less data than is needed for full
credibility, less that 100% credibility is assigned.

Let n be the (expected) number of claims for the volume
of data, and nF be the standard for Full Credibility. Then the
partial credibility assigned is Z = n=nF . If n nF , then Z =
1:00. Use the square root rule for partial credibility for either
frequency, severity or pure premiums.

For example if 1,000 claims are needed for full credibility,
then Graph 1 displays the credibilities that would be assigned.

Example 2.6.1: The Standard for Full Credibility is 683 claims
and one has observed 300 claims.14 How much credibility is
assigned to this data?

14Ideally, n in the formula Z = n=nF should be the expected number of claims. How-
ever, this is often not known and the observed number of claims is used as an approxi-
mation. If the number of exposures is known along with an expected claims frequency,
then the expected number of claims can be calculated by (number of exposures)
(expected claims frequency).
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[Solution: 300=683 = 66:3%.]

Limiting Fluctuations

The square root rule for partial credibility is designed so that
the standard deviation of the contribution of the data to the new
estimate retains the value corresponding to the standard for full
credibility. We will demonstrate why the square root rule accom-
plishes that goal. One does not need to follow the derivation in
order to apply the simple square root rule.

Let Xpartial be a value calculated from partially credible data;
for example, Xpartial might be the claim frequency calculated from
the data. Assume Xfull is calculated from data that just meets the
full credibility standard. For the full credibility data, Estimate=
Xfull, while the partially credible data enters the estimate with
a weight Z in front of it: Estimate= ZXpartial + (1 Z)[Other
Information]. The credibility Z is calculated so that the expected
variation in ZXpartial is limited to the variation allowed in a full
credibility estimate Xfull. The variance of ZXpartial can be reduced
by choosing a Z less than one.

Suppose you are trying to estimate frequency (number of
claims per exposure), pure premium, or loss ratio, with estimates
Xpartial and Xfull based on different size samples of a population.
Then, they will have the same expected value ¹. But, since it is
based on a smaller sample size, Xpartial will have a larger stan-
dard deviation ¾partial than the standard deviation ¾full of the full
credibility estimate Xfull. The goal is to limit the fluctuation in
the term ZXpartial to that allowed for Xfull. This can be written
as:15

Prob[¹ k¹ Xfull ¹+ k¹]

= Prob[Z¹ k¹ ZXpartial Z¹+ k¹]

15Note that in both cases fluctuations are limited to k¹ of the mean.
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Subtracting through by the means and dividing by the standard
deviations gives:

Prob[ k¹=¾full (Xfull ¹)=¾full k¹=¾full]

= Prob[ k¹=Z¾partial (ZXpartial Z¹)=

Z¾partial k¹=Z¾partial]
16

Assuming the Normal Approximation, (Xfull ¹)=¾full and
(ZXpartial Z¹)=Z¾partial are unit normal variables. Then, the two
sides of the equation are equal if:

k¹=¾full = k¹=Z¾partial

Solving for Z yields:

Z = ¾full=¾partial: (2.6.1)

Thus the partial credibility Z will be inversely proportional to
the standard deviation of the partially credible data.

Assume we are trying to estimate the average number of
accidents ¹ in a year per driver for a homogeneous popula-
tion. For a sample of M drivers, ¹M =

M
i=1mi=M is an esti-

mate of the frequency ¹ where mi is the number of accidents
for the ith driver. Assuming that the numbers of claims per
driver are independent of each other, then the variance of ¹M
is ¾2M =Var[

M
i=1mi=M] = (1=M

2) M
i=1Var(mi). If each insured

has a Poisson frequency with the same mean ¹=Var(mi), then
¾2M = (1=M

2) M
i=1¹=M¹=M

2 = ¹=M:

If a sample of size M is expected to produce n claims, then
since M¹= n, it follows that M = n=¹. So, the variance is ¾2M =
¹=M = ¹=(n=¹) = ¹2=n, and the standard deviation is:

¾M = ¹= n: (2.6.2)

Example 2.6.2: A sample with 1,000 expected claims is used
to estimate frequency ¹. Assuming frequency is Poisson, what

16Note that the mean of ZXpartial is Z¹ and the standard deviation is Z¾partial.

PREPUBLICATION



8-32 CREDIBILITY Ch. 8

are the variance and standard deviation of the estimated fre-
quency?

[Solution: The variance is ¹2=1000 and the standard deviation is
¹= 1,000 = :032¹:]

A fully credible sample with an expected number of claims
n0, will have a standard deviation ¾full = ¹= n0. A partially
credible sample with expected number of claims n will have
¾partial = ¹= n: Using formula (2.6.1), the credibility for the

smaller sample is: Z = (¹= n0)=(¹= n) = n=n0. So,

Z = n=n0 (2.6.3)

Equation 2.6.3 is the important square root rule for par-
tial credibility. Note that the Normal Approximation and Pois-
son claims distribution were assumed along the way. A similar
derivation of the square root formula also applies to credibility
for severity and the pure premium.17

2.6. Exercises

2.6.1. The Standard for Full Credibility is 2,000 claims. How
much credibility is assigned to 300 claims?

2.6.2. Using the square root rule for partial credibility, a certain
volume of data is assigned credibility of .36. How much
credibility would be assigned to ten times that volume
of data?

2.6.3. Assume a Standard for Full Credibility for severity
of 2,500 claims. For the class of Salespersons one has
observed 803 claims totaling $9,771,000. Assume the av-

17The square root formula for partial credibility also applies in the calculation of ag-
gregate losses and total number of claims although equation (2.6.1) needs to be revised.
For estimates of aggregate losses and total number of claims, a larger sample will have a
larger standard deviation. Letting L= X1 +X2 + +XN represent aggregate losses, then
the standard deviation of L increases as the number of expected claims increases, but
the ratio of the standard deviation of L to the expected value of L decreases. Equation
(2.6.1) will work if the standard deviations are replaced by coefficients of variation.
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erage cost per claim for all similar classes is $10,300.
Calculate a credibility-weighted estimate of the average
cost per claim for the Salespersons’ class.

2.6.4. The Standard for Full Credibility is 3,300 claims. The ex-
pected claim frequency is 6% per house-year. How much
credibility is assigned to 2,000 house-years of data?

2.6.5. You are given the following information:

Frequency is Poisson.

Severity follows a Gamma Distribution with ®= 1:5.

Frequency and severity are independent.

Full credibility is defined as having a 97% probability
of being within plus or minus 4% of the true pure
premium.

What credibility is assigned to 150 claims?

2.6.6. The 1984 pure premium underlying the rate equals
$1,000. The loss experience is such that the observed
pure premium for that year equals $1,200 and the num-
ber of claims equals 600. If 5,400 claims are needed for
full credibility and the square root rule for partial credi-
bility is used, estimate the pure premium underlying the
rate in 1985. (Assume no change in the pure premium
due to inflation.)

2.6.7. Assume the random variable N, representing the number
of claims for a given insurance portfolio during a one-
year period, has a Poisson distribution with a mean of n.
Also assume X1,X2 : : : ,XN are N independent, identically
distributed random variables with Xi representing the size
of the ith claim. Let C = X1 +X2 + Xn represent the
total cost of claims during a year. We want to use the
observed value of C as an estimate of future costs. We are
willing to assign full credibility to C provided it is within
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10.0% of its expected value with probability 0.96. If the
claim size distribution has a coefficient of variation of
0.60, what credibility should we assign to the experience
if 213 claims occur?

2.6.8. The Slippery Rock Insurance Company is reviewing their
rates. The expected number of claims necessary for full
credibility is to be determined so that the observed total
cost of claims should be within 5% of the true value
90% of the time. Based on independent studies, they have
estimated that individual claims are independently and
identically distributed as follows:

f(x) = 1=200,000, 0 x 200,000:

Assume that the number of claims follows a Poisson
distribution. What is the credibility Z to be assigned to
the most recent experience given that it contains 1,082
claims?

2.6.9. You are given the following information for a group of
insureds:

Prior estimate of expected total losses $20,000,000

Observed total losses $25,000,000

Observed number of claims 10,000

Required number of claims for full credibility 17,500

Calculate a credibility weighted estimate of the group’s
expected total losses.

2.6.10. 2,000 expected claims are needed for full credibility. De-
termine the number of expected claims needed for 60%
credibility.

2.6.11. The full credibility standard has been selected so that
the actual number of claims will be within 5% of the
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expected number of claims 90% of the time. Determine
the credibility to be given to the experience if 500 claims
are expected.

3. LEAST SQUARES CREDIBILITY

The second form of credibility covered in this chapter is called
Least Squares or Bühlmann Credibility. It is also referred as
greatest accuracy credibility. As will be discussed, the credibil-
ity is given by the formula: Z =N=(N +K). As the number of
observations N increases, the credibility Z approaches 1.

In order to apply Bühlmann Credibility to various real-world
situations, one is typically required to calculate or estimate the
so-called Bühlmann Credibility Parameter K. This involves being
able to apply analysis of variance: the calculation of the expected
value of the process variance and the variance of the hypothetical
means.

Therefore, in this section we will first cover the calculation
of the expected value of the process variance and the variance of
the hypothetical means. This will be followed by applications of
Bühlmann Credibility to various simplified situations. Finally,
we will illustrate the ideas covered via the excellent Philbrick
Target Shooting Example.

3.1. Analysis of Variance

Let’s start with an example involving multi-sided dice:

There are a total of 100 multi-sided dice of which 60 are 4-
sided, 30 are 6-sided and 10 are 8-sided. The multi-sided dice
with 4 sides have 1, 2, 3 and 4 on them. The multi-sided dice
with the usual 6 sides have numbers 1 through 6 on them. The
multi-sided dice with 8 sides have numbers 1 through 8 on them.
For a given die each side has an equal chance of being rolled;
i.e., the die is fair.
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Your friend picked at random a multi-sided die. He then rolled
the die and told you the result. You are to estimate the result when
he rolls that same die again.

The next section will demonstrate how to apply Bühlmann
Credibility to this problem. In order to apply Bühlmann Cred-
ibility one will first have to calculate the items that would be
used in “analysis of variance.” One needs to compute the Ex-
pected Value of the Process Variance and the Variance of the
Hypothetical Means, which together sum to the total variance.

Expected Value of the Process Variance:
For each type of die we can compute the mean and the (pro-

cess) variance. For example, for a 6-sided die one need only list
all the possibilities:

A B C D

A Priori Column A Square of Column A
Roll of Die Probability Column B Column B

1 0.16667 0.16667 0.16667
2 0.16667 0.33333 0.66667
3 0.16667 0.50000 1.50000
4 0.16667 0.66667 2.66667
5 0.16667 0.83333 4.16667
6 0.16667 1.00000 6.00000

Sum 1 3.5 15.16667

Thus the mean is 3.5 and the variance is 15:16667 3:52 =
2:91667 = 35=12. Thus the conditional variance if a 6-sided die
is picked is: Var[X 6-sided] = 35=12.

Example 3.1.1: What is the mean and variance of a 4-sided die?

[Solution: The mean is 2.5 and the variance is 15=12.]

Example 3.1.2: What is the mean and variance of an 8-sided die?
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[Solution: The mean is 4.5 and the variance is 63=12.]

One computes the Expected Value of the Process Variance
(EPV) by weighting together the process variances for each type
of risk using as weights the chance of having each type of
risk.18 In this case the Expected Value of the Process Variance
is: (60%)(15=12)+ (30%)(35=12)+ (10%)(63=12) = 25:8=12 =
2:15. In symbols this sum is: P(4-sided)Var[X 4-sided]+
P(6-sided)Var[X 6-sided]+P(8-sided)Var[X 8-sided]. Note
that this is the Expected Value of the Process Variance for one
observation of the risk process; i.e., one roll of a die.

Variance of the Hypothetical Means
The hypothetical means are 2.5, 3.5, and 4.5 for the 4-sided,

6-sided, and 8-sided die, respectively. One can compute the Vari-
ance of the Hypothetical Means (VHM) by the usual technique;
compute the first and second moments of the hypothetical means.

A Priori19 Square of Mean
Chance of this Mean for this of this

Type of Die Type of Die Type of Die Type of Die

4-sided 0.6 2.5 6.25
6-sided 0.3 3.5 12.25
8-sided 0.1 4.5 20.25

Average 3 9.45

The Variance of the Hypothetical Means is the second moment
minus the square of the (overall) mean = 9:45 32 = :45. Note

18In situations where the types of risks are parametrized by a continuous distribution, as
for example in the Gamma-Poisson frequency process, one will take an integral rather
than a sum.
19According to the dictionary, a priori means “relating to or derived by reasoning from
self-evident propositions.” This usage applies here since we can derive the probabilities
from the statement of the problem. After we observe rolls of the die, we may calculate
new probabilities that recognize both the a priori values and the observations. This is
covered in detail in section 4.
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that this is the variance for a single observation, i.e., one roll of
a die.

Total Variance
One can compute the total variance of the observed results

if one were to do this experiment repeatedly. One needs merely
compute the chance of each possible outcome.

In this case there is a 60% (1=4) = 15% chance that a
4-sided die will be picked and then a 1 will be rolled. Similarly,
there is a 30% (1=6) = 5% chance that a 6-sided die will be
selected and then a 1 will be rolled. There is a 10% (1=8) =
1:25% chance that an 8-sided die will be selected and then a 1
will be rolled. The total chance of a 1 is therefore:

15%+5%+1:25%= 21:25%:

A B C D E F G

Probability Probability Probability A Priori Square of
Roll due to due to due to Probability Column A Column A
of Die 4-sided die 6-sided die 8-sided die = B+C+D Column E Column E

1 0.15 0.05 0.0125 0.2125 0.2125 0.2125
2 0.15 0.05 0.0125 0.2125 0.4250 0.8500
3 0.15 0.05 0.0125 0.2125 0.6375 1.9125
4 0.15 0.05 0.0125 0.2125 0.8500 3.4000
5 0.05 0.0125 0.0625 0.3125 1.5625
6 0.05 0.0125 0.0625 0.3750 2.2500
7 0.0125 0.0125 0.0875 0.6125
8 0.0125 0.0125 0.1000 0.8000

Sum 0.6 0.3 0.1 1 3 11.6

The mean is 3 (the same as computed above) and the sec-
ond moment is 11.6. Therefore, the total variance is 11:6 32

= 2:6. Note that Expected Value of the Process Variance+
Variance of the Hypothetical Means = 2:15 + :45 = 2:6 = Total
Variance. Thus the total variance has been split into two pieces.
This is true in general.
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Expected Value of the Process Variance

+Variance of the Hypothetical Means=Total Variance

(3.1.1)

While the two pieces of the total variance seem similar, the order
of operations in their computation is different. In the case of the
Expected Value of the Process Variance, EPV, first one separately
computes the process variance for each of the types of risks
and then one takes the expected value over all types of risks.
Symbolically, the EPV= Eµ[Var[X µ]].

In the case of the Variance of the Hypothetical Means, VHM,
first one computes the expected value for each type of risk and
then one takes their variance over all types of risks. Symbolically,
the VHM=Varµ[E[X µ]].

Multiple Die Rolls
So far we have computed variances in the case of a single roll

of a die. One can also compute variances when one is rolling
more than one die.20 There are a number of somewhat different
situations which lead to different variances, which lead in turn
to different credibilities.

Example 3.1.3: Each actuary attending a CAS Meeting rolls two
multi-sided dice. One die is 4-sided and the other is 6-sided.
Each actuary rolls his two dice and reports the sum. What is the
expected variance of the results reported by the actuaries?

[Solution: The variance is the sum of that for a 4-sided and
6-sided die. Variance = (15=12)+ (35=12) = 50=12 = 4:167:]

One has to distinguish the situation in example 3.1.3 where
the types of dice rolled are known, from one where each actuary
is selecting dice at random. The latter introduces an additional
source of random variation, as shown in the following exercise.

20These dice examples can help one to think about insurance situations where one has
more than one observation or insureds of different sizes.
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Example 3.1.4: Each actuary attending a CAS Meeting indepen-
dently selects two multi-sided dice. For each actuary his two
multi-sided dice are selected independently of each other, with
each die having a 60% chance of being 4-sided, a 30% chance
of being 6-sided, and a 10% chance of being 8-sided. Each actu-
ary rolls his two dice and reports the sum. What is the expected
variance of the results reported by the actuaries?

[Solution: The total variance is the sum of the EPV and VHM.
For each actuary let his two dice be A and B. Let the parameter
(number of sides) for A be µ and that for B be Ã. Note that A
only depends on µ, while B only depends on Ã, since the two dice
were selected independently. Then EPV= Eµ,Ã[Var[A+B µ,Ã]]
= Eµ,Ã [Var[A µ, Ã]] + Eµ,Ã [Var[B µ, Ã] ] = Eµ [Var[A µ]] +
EÃ[Var[B Ã]] = 2:15 + 2:15 = (2)(2:15) = 4:30: The VHM=
Varµ,Ã [E[A + B µ, Ã]] = Varµ,Ã[E[A µ, Ã] + E[B µ,Ã]] =
Varµ[E[A µ]]+VarÃ[E[B Ã]] = (2)(:45) = :90: Where we have
used the fact that E[A µ] and E[B Ã] are independent and thus
theirvariancesadd.Total variance=EPV+VHM=4:3+:9=5:2:]

Example 3.1.4 is subtly different from a situation where the
two dice selected by a given actuary are always of the same type,
as in example 3.1.5.

Example 3.1.5: Each actuary attending a CAS Meeting selects
two multi-sided dice both of the same type. For each actuary,
his multi-sided dice have a 60% chance of being 4-sided, a 30%
chance of being 6-sided, and a 10% chance of being 8-sided.
Each actuary rolls his dice and reports the sum. What is the
expected variance of the results reported by the actuaries?

[Solution: The total variance is the sum of the EPV and VHM.
For each actuary let his two die rolls be A and B. Let the
parameter (number of sides) for his dice be µ, the same
for both dice. Then EPV = Eµ[Var[A+B µ]] = Eµ[Var[A µ]]+
Eµ[Var[B µ]] = Eµ[Var[A µ]] + Eµ[Var[B µ]] = 2:15 + 2:15 =
(2)(2:15)=4:30. The VHM=Varµ[E[A+B µ]]= Varµ[2E[A µ]]
= (22)Varµ[E[A µ]] = (4)(:45) = 1:80. Where we have used the
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fact that E[A µ] and E[B µ] are the same. So, Total Variance
= EPV+VHM= 4:3+1:8 = 6:1. Alternately, Total Variance =
(N)(EPV for one observation)+(N2)(VHM for one observation)
= (2)(2:15)+ (22)(:45) = 6:1.]

Note that example 3.1.5 is the same mathematically as if each
actuary chose a single die and reported the sum of rolling his die
twice. Contrast this with previous example 3.1.4 in which each
actuary chose two dice, with the type of each die independent of
the other.

In example 3.1.5: Total Variance = (2)(EPV single die roll)
+(22)(VHM single die roll).

The VHM has increased in proportion to N2, the square of
the number of observations, while the EPV goes up only as N:

Total Variance =N(EPV for one observation)

+ (N2)(VHM for one observation) (3.1.2)

This is the assumption behind the Bühlmann Credibility for-
mula: Z =N=(N +K). The Bühlmann Credibility parameter K
is the ratio of the EPV to the VHM for a single die. The formula
automatically adjusts the credibility for the number of observa-
tions N.

Total Variance=EPV+VHM
One can demonstrate that in general:

Var[X] = Eµ[Var[X µ]] +Varµ[E[X µ]]

First one can rewrite the EPV: Eµ[Var[X µ]] = Eµ[E[X
2 µ]

E[X µ]2]= Eµ[E[X
2 µ]] Eµ[E[X µ]2]= E[X2] Eµ[E[X µ]2]:

Second,onecan rewrite theVHM:Varµ[E[X µ]]=Eµ[E[X µ]2]
Eµ[E[X µ]]2 = Eµ[E[X µ]2] E[X]2 = Eµ[E[X µ]2] E[X]2:

Putting together the first two steps:EPV+VHM=Eµ[Var[X µ]]
+ Varµ[E[X µ]]= E[X2] Eµ[E[X µ]2]+Eµ[E[X µ]2] E[X]2

= E[X2] E[X]2 = Var[X] = Total Variance of X.
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In the case of the single die: 2:15+ :45 = (11:6 9:45)+
(9:45 9) = 11:6 9 = 2:6: In order to split the total variance
of 2.6 into two pieces we’ve added and subtracted the expected
value of the squares of the hypothetical means: 9.45.

A Series of Examples
The following information will be used in a series of examples

involving the frequency, severity, and pure premium:

Bernoulli (Annual)
Portion of Risks Frequency Gamma Severity

Type in this Type Distribution21 Distribution22

1 50% p= 40% ®= 4, ¸= :01
2 30% p= 70% ®= 3, ¸= :01
3 20% p= 80% ®= 2, ¸= :01

We assume that the types are homogeneous; i.e., every insured
of a given type has the same frequency and severity process.
Assume that for an individual insured, frequency and severity
are independent.23

We will show how to compute the Expected Value of the
Process Variance and the Variance of the Hypothetical Means in
each case. In general, the simplest case involves the frequency,
followed by the severity, with the pure premium being the most
complex case.

Expected Value of the Process Variance, Frequency Example
For type 1, the process variance of the Bernoulli frequency is

pq= (:4)(1 :4) = :24. Similarly, for type 2 the process variance

21With a Bernoulli frequency distribution, the probability of exactly one claim is p and
the probability of no claims is (1 p). The mean of the distribution is p and the variance
is pq where q= (1 p).
22For the Gamma distribution, the mean is ®=¸ and the variance is ®=¸2. See the Ap-
pendix on claim frequency and severity distributions.
23Across types, the frequency and severity are not independent. In this example, types
with higher average frequency have lower average severity.
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for the frequency is (:7)(1 :7) = :21. For type 3 the process
variance for the frequency is (:8)(1 :8) = :16.

The expected value of the process variance is the weighted
average of the process variances for the individual types, us-
ing the a priori probabilities as the weights. The EPV of the
frequency = (50%)(:24)+ (30%)(:21)+ (20%)(:16) = :215.

Note that to compute the EPV one first computes variances
and then computes the expected value. In contrast, in order to
compute the VHM, one first computes expected values and then
computes the variance.

Variance of the Hypothetical Mean Frequencies
For type 1, the mean of the Bernoulli frequency is p= :4.

Similarly for type 2 the mean frequency is .7. For type 3 the
mean frequency is .8.

The variance of the hypothetical mean frequencies is com-
puted the same way any other variance is. First one computes
the first moment: (50%)(:4)+ (30%)(:7)+ (20%)(:8) = :57. Then
one computes the second moment: (50%)(:42)+ (30%)(:72)+
(20%)(:82) = :355. Then the VHM= :355 :572 = :0301.

Expected Value of the Process Variance, Severity Example
The computation of the EPV for severity is similar to that

for frequency with one important difference. One has to weight
together the process variances of the severities for the individ-
ual types using the chance that a claim came from each type.24

The chance that a claim came from an individual of a given
type is proportional to the product of the a priori chance of
an insured being of that type and the mean frequency for that
type.

24Each claim is one observation of the severity process. The denominator for severity is
number of claims. In contrast, the denominator for frequency (as well as pure premiums)
is exposures.
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For type 1, the process variance of the Gamma severity is
®=¸2 = 4=:012 = 40,000. Similarly, for type 2 the process vari-
ance for the severity is 3=:012 = 30,000. For type 3 the process
variance for the severity is 2=:012 = 20,000.

The mean frequencies are: .4, .7, and .8. The a priori
chances of each type are: 50%, 30% and 20%. Thus the
weights to use to compute the EPV of the severity are
(:4)(50%) = :2, (:7)(30%) = :21, and (:8)(20%) = :16. The sum
of the weights is :2+ :21+ :16 = :57. Thus the probability that
a claim came from each class is: .351, .368, and .281. (For
example, :2=:57 = :351.) The expected value of the process
variance of the severity is the weighted average of the pro-
cess variances for the individual types, using these weights.25

The EPV of the severity26 = (:2)(40,000) + (:21)(30,000) +
(:16)(20,000) =(:2+ :21+ :16) = 30,702.

This computation can be organized in the form of a spread-
sheet:

A B C D E F G H

Probability
Weights that a Claim Gamma

A Priori Mean = Col. B Came from Parameters Process
Class Probability Frequency Col. C this Class ® ¸ Variance

1 50% 0.4 0.20 0.351 4 0.01 40,000
2 30% 0.7 0.21 0.368 3 0.01 30,000
3 20% 0.8 0.16 0.281 2 0.01 20,000

Average 0.57 1.000 30,702

25Note that while in this case with discrete possibilities we take a sum, in the continuous
case we would take an integral.
26Note that this result differs from what one would get by using the a priori prob-
abilities as weights. The latter incorrect method would result in: (50%)(40,000)+
(30%)(30,000)+ (20%)(20,000) = 33,000 = 30,702:
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Variance of the Hypothetical Mean Severities

In computing the moments one again has to use for each in-
dividual type the chance that a claim came from that type.27

For type 1, the mean of the Gamma severity is ®=¸= 4=:01 =
400. Similarly for type 2 the mean severity is 3=:01 = 300. For
type 3 the mean severity is 2=:01 = 200.

The mean frequencies are: .4, .7, and .8. The a priori chances
of each type are: 50%, 30% and 20%. Thus the weights to
use to compute the moments of the severity are (:4)(50%) =
:2, (:7)(30%) = :21, and (:8)(20%) = :16.

The variance of the hypothetical mean severities is computed
the same way any other variance is. First one computes the first
moment: (:2)(400)+ (:21)(300)+ (:16)(200) =(:2+ :21+ :16) =
307:02. Then one computes the second moment: (:2)(4002)+
(:21)(3002)+ (:16)(2002) =(:2+ :21+ :16) = 100,526. Then the
VHM of the severity = 100,526 307:022 = 6,265. This com-
putation can be organized in the form of a spreadsheet:28

A B C D E F G H

Weights Gamma Square
A Priori Mean = Col. B Parameters Mean of Mean

Class Probability Frequency Col. C ® ¸ Severity Severity

1 50% 0.4 0.20 4 0.01 400 160,000
2 30% 0.7 0.21 3 0.01 300 90,000
3 20% 0.8 0.16 2 0.01 200 40,000

Average 0.57 307.02 100,526

27Each claim is one observation of the severity process. The denominator for severity is
number of claims. In contrast, the denominator for frequency (as well as pure premiums)
is exposures.
28After Column D, one could inset another column normalizing the weights by dividing
them each by the sum of Column D. In the spreadsheet shown, one has to remember to
divide by the sum of Column D when computing each of the moments.
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Then the variance of the hypothetical mean severities =
100,526 307:022 = 6,265.

Expected Value of the Process Variance, Pure Premium Example

The computation of the EPV for the pure premiums is similar
to that for frequency. However, it is more complicated to compute
each process variance of the pure premiums.

For type 1, the mean of the Bernoulli frequency is p= :4,
and the variance of the Bernoulli frequency is pq= (:4)(1 :4)
= :24. For type 1, the mean of the Gamma severity is ®=¸=
4=:01 = 400, and the variance of the Gamma severity is ®=¸2 =
4=:012 = 40,000. Thus since frequency and severity are assumed
to be independent, the process variance of the pure premium
= (Mean Frequency)(Variance of Severity) + (Mean Severity)2

(Variance of Frequency) = (:4)(40,000)+ (400)2(:24) = 54,400.

Similarly for type 2 the process variance of the pure pre-
mium= (:7)(30,000)+ (300)2(:21) = 39,900. For type 3 the pro-
cess variance of the pure premium = (:8)(20,000)+ (200)2(:16)
= 22,400.

The expected value of the process variance is the weighted
average of the process variances for the individual types, using
the a priori probabilities as the weights. The EPV of the pure
premium= (50%)(54,400)+ (30%)(39,900)+ (20%)(22,400) =
43,650. This computation can be organized in the form of a
spreadsheet:

A Priori Mean Variance of Mean Variance of Process
Class Probability Frequency Frequency Severity Severity Variance

1 50% 0.4 0.24 400 40,000 54,400
2 30% 0.7 0.21 300 30,000 39,900
3 20% 0.8 0.16 200 20,000 22,400

Average 43,650
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Variance of the Hypothetical Mean Pure Premiums
The computation of the VHM for the pure premiums is similar

to that for frequency. One has to first compute the mean pure
premium for each type.

For type 1, the mean of the Bernoulli frequency is p= :4,
and the mean of the Gamma severity is ®=¸= 4=:01 = 400.
Thus since frequency and severity are assumed to be inde-
pendent, the mean pure premium= (Mean Frequency)(Mean
Severity) = (:4)(400) = 160. For type 2 , the mean pure premium
= (:7)(300) = 210. For type 3, the mean pure premium29=
(:8)(200) = 160.

One computes the first and second moments of the mean pure
premiums as follows:

Square of
A Priori Mean Mean Mean Pure Pure

Class Probability Frequency Severity Premium Premium

1 50% 0.4 400 160 25,600
2 30% 0.7 300 210 44,100
3 20% 0.8 200 160 25,600

Average 175 31,150

Thus the variance of the hypothetical mean pure premiums
= 31,150 1752 = 525.

Estimating the Variance of the Hypothetical Means in the Case
of Poisson Frequencies
In real-world applications involving Poisson frequencies it

is commonly the case that one estimates the Total Variance

29Note that in this example it turns out that the mean pure premium for type 3 happens
to equal that for type 1, even though the two types have different mean frequencies and
severities. The mean pure premiums tend to be similar when, as in this example, high
frequency is associated with low severity.
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and the Expected Value of the Process Variance and then es-
timates the Variance of the Hypothetical Means via: VHM=
Total Variance EPV.

For example, assume that one observes that the claim count
distribution is as follows for a large group of insureds:

Total Claim Count: 0 1 2 3 4 5 > 5

Percentage of Insureds: 60.0% 24.0% 9.8% 3.9% 1.6% 0.7% 0%

One can estimate the total mean as .652 and the total variance
as: 1:414 :6522 = :989.

A B C D

Number of A Priori Square of
Claims Probability Col. A Col. B Col. A Col. B

0 0.60000 0.00000 0.00000
1 0.24000 0.24000 0.24000
2 0.09800 0.19600 0.39200
3 0.03900 0.11700 0.35100
4 0.01600 0.06400 0.25600
5 0.00700 0.03500 0.17500

Sum 1 0.652 1.41400

Assume in addition that the claim count, X, for each individual
insured has a Poisson distribution that does not change over time.
In other words, each insured’s frequency process is given by
a Poisson with parameter µ, with µ varying over the group of
insureds. Then since the Poisson has its variance equal to its
mean, the process variance for each insured is µ; i.e., Var[X µ] =
µ. Thus the expected value of the process variance is estimated
as follows: Eµ[Var[X µ]] = Eµ[µ] = overall mean = :652.
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Thus we estimate the Variance of the Hypothetical Means as:

Total Variance EPV= :989 :652 = :337:

3.1. Exercises

Use the following information for the next two questions:

There are three types of risks. Assume 60% of the risks are
of Type A, 25% of the risks are of Type B, and 15% of the risks
are of Type C. Each risk has either one or zero claims per year.

A Priori Chance
Type of Risk Chance of a Claim of Type of Risk

A 20% 60%
B 30% 25%
C 40% 15%

3.1.1. What is the Expected Value of the Process Variance?

3.1.2. What is the Variance of the Hypothetical Means?

Use the following information for the next two questions:

An insured population consists of 9% youthful drivers and
91% adult drivers. Based on experience, we have derived the fol-
lowing probabilities that an individual driver will have n claims
in a year’s time:

n Youthful Adult

0 .80 0.90
1 .15 0.08
2 .04 0.02
3 .01 0.00

3.1.3. What is the Expected Value of the Process Variance?
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3.1.4. What is the Variance of the Hypothetical Means?

The following information pertains to the next three questions:

The claim count distribution is as follows for a large sample
of insureds:

Total Claim Count 0 1 2 3 4 > 4

Percentage of Insureds 55% 30% 10% 4% 1% 0%

Assume the claim count for each individual insured has a
Poisson distribution that does not change over time.

3.1.5. What is the Expected Value of the Process Variance?

3.1.6. What is the Total Variance?

3.1.7. What is the Variance of the Hypothetical Means?

3.1.8. The hypothetical mean frequencies of the members of
a class of risks are distributed uniformly on the interval
(0,10]. The Exponential probability density function for
severity, f(x), is defined below, with the r parameter be-
ing different for different individuals. r is distributed on
(0,2] by the function g(r).

f(x) = (1=r)exp( x=r) x 0

g(r) = r=2 0 r 2

The frequency and severity are independently distributed.
What is the variance of the hypothetical mean pure pre-
miums for this class of risks?

Use the following information for the next six questions:

Two six-sided dice, A1 and A2, are used to determine the
number of claims. Each side of both dice are marked with either
a 0 or a 1, where 0 represents no claim and 1 represents a claim.
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The probability of a claim for each die is:

Die Probability of Claim

A1 2=6
A2 3=6

In addition, there are two spinners, B1 and B2, representing
claim severity. Each spinner has two areas marked 20 and 50.
The probabilities for each claim size are:

Claim Size
Spinner 20 50

B1 .60 .40
B2 .20 .80

A single observation consists of selecting a die randomly from
A1 and A2 and a spinner randomly from B1 and B2, rolling
the selected die, and if there is a claim spinning the selected
spinner.

3.1.9. Determine the Expected Value of the Process Variance
for the frequency.

3.1.10. Determine the Variance of the Hypothetical Mean fre-
quencies.

3.1.11. Determine the Expected Value of the Process Variance
for the severity.

3.1.12. Determine the Variance of the Hypothetical Mean sever-
ities.

3.1.13. Determine the Expected Value of the Process Variance
for the pure premium.
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3.1.14. Determine the Variance of the Hypothetical Mean pure
premiums.

Use the following information for the next six questions:

For an individual insured, frequency and severity are inde-
pendent.
For an individual insured, frequency is given by a Poisson

Distribution.
For an individual insured, severity is given by an Exponential

Distribution.

Each type is homogeneous; i.e., every insured of a given type
has the same frequency process and severity process.

Portion of Insureds
Type in this Type Mean Frequency Mean Severity

1 40% 6 100
2 35% 7 125
3 25% 9 200

3.1.15. What is the Expected Value of the Process Variance for
the frequency?

3.1.16. What is the Variance of the Hypothetical Mean frequen-
cies?

3.1.17. What is the Expected Value of the Process Variance for
the severity?

3.1.18. What is the Variance of the Hypothetical Mean severi-
ties?

3.1.19. What is the Expected Value of the Process Variance for
the pure premium?

3.1.20. What is the Variance of the Hypothetical Mean pure pre-
miums?
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Use the following information for the next two questions:

The probability of y successes in five trials is given by a bino-
mial distribution with parameters 5 and p. The prior distribution
of p is uniform on [0,1].

3.1.21. What is the Expected Value of the Process Variance?

3.1.22. What is the Variance of the Hypothetical Means?

3.2. Bühlmann Credibility

Let’s continue along with the simple example involving multi-
sided dice:

There are a total of 100 multi-sided dice of which 60 are 4-
sided, 30 are 6-sided and 10 are 8-sided. The multi-sided dice
with 4 sides have 1, 2, 3 and 4 on them. The multi-sided dice
with the usual 6 sides have numbers 1 through 6 on them. The
multi-sided dice with 8 sides have numbers 1 through 8 on them.
For a given die each side has an equal chance of being rolled;
i.e., the die is fair.

Your friend has picked at random a multi-sided die. He then
rolled the die and told you the result. You are to estimate the
result when he rolls that same die again.

Using BühlmannCredibility, the new estimate=Z(observation)
+(1 Z)(prior mean).

In this example the prior mean is 3. This is the a pri-
ori expected value if selecting a die at random and rolling
it: :6(2:5)+ :3(3:5)+ :1(4:5) = 3:00. However, since your friend
told you additional information about the die he selected, i.e.,
the value of the first roll, you can come up with a better estimate
for the value of the second roll using Bühlmann Credibility.

The prior mean, or a priori expected value, serves as the “other
information” to which we apply the complement of credibility.
To the extent that our observed data is not credible, we would

PREPUBLICATION



8-54 CREDIBILITY Ch. 8

rely on the prior mean for our estimate. The prior mean reflects
what we know about the whole population of dice.

The Bühlmann Credibility Parameter is calculated as K =
EPV=VHM:

K = Expected Value of Process Variance=
Variance of Hypothetical Means, (3.2.1)

where the Expected Value of the Process Variance and the Vari-
ance of the Hypothetical Means are each calculated for a single
observation of the risk process.

In this case30 K = EPV=VHM= 2:15=:45 = 4:778 = 43=9.

Then for N observations, the Bühlmann Credibility is:

Z =N=(N +K) (3.2.2)

In this case for one observation, Z = 1=(1+4:778) = :1731 =
9=52 = :45=(:45+2:15). Thus in this case if we observe a roll
of a 5, then the new estimate is: (:1731)(5)+ (1 :1731)(3) =
3:3462. The Bühlmann Credibility estimate is a linear function
of the observation: :1731 (observation)+2:4807.

Observation 1 2 3 4 5 6 7 8

New Estimate 2.6538 2.8269 3 3.1731 3.3462 3.5193 3.6924 3.8655

Note that if N=1, then Z=1=(1+K)=VHM=(VHM+EPV)
=VHM=Total Variance.

Number of Observations
It makes sense to assign more credibility to more rolls of the

selected die, since as we gather more information we should be
able to get a better idea of which type of die has been cho-
sen. If one has N observations of the risk process, one assigns
Bühlmann Credibility of Z =N=(N +K). For example, with K =

30The EPV and the VHM were calculated in Section 3.1.
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GRAPH 2

BÜHLMANN CREDIBILITY

4:778, for three observations we have Z = 3=(3+4:778) = :386.
For the Bühlmann Credibility formula as N , Z 1, but
Bühlmann Credibility never quite reaches 100%. In this exam-
ple with K = 4:778:

Number of
Observations 1 2 3 4 5 10 25 100 1,000 10,000

Credibility 17.3% 29.5% 38.6% 45.6% 51.1% 67.7% 84.0% 95.4% 99.5% 99.95%

Graph 2 shows the Bühlmann Credibility. Note that unlike
Classical Credibility, Z never reaches 1.00.

If we add up N independent rolls of the same die, the process
variances add. So if ´2 is the expected value of the process vari-
ance of a single die, then N´2 is the expected value of the process
variance of the sum of N identical dice. The process variance of
one 6-sided die is 35/12, while the process variance of the sum
of ten 6-sided dice is 350/12.

In contrast if ¿2 is the variance of the hypothetical means of
one die roll, then the variance of the hypothetical means of the
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sum of N rolls of the same die is N2¿2. This follows from the fact
that each of the means is multiplied byN, and that multiplying by
a constant multiplies the variance by the square of that constant.

Thus as N increases, the variance of the hypothetical means of
the sum goes up as N2 while the process variance goes up only
as N. Based on the case with one roll, we expect the credibility to
be given by Z =VHM=Total Variance = VHM=(VHM+EPV) =
N2¿2=(N2¿2 +N´2) =N=(N + ´2=¿2) =N=(N +K), where K =
´2=¿2 = EPV=VHM, with EPV and VHM each for a single die.

In general one computes the EPV and VHM for a single
observation and then plugs into the formula for Bühlmann
Credibility the number of observations N. If one is estimating
claim frequencies or pure premiums then N is in exposures.
If one is estimating claim severities then N is in number of
claims. (N is in the units of whatever is in the denominator of
the quantity one is estimating.31)

A Series of Examples
In section 3.1, the following information was used in a series

of examples involving the frequency, severity, and pure premium:

Portion of Risks Bernoulli (Annual) Gamma Severity
Type in this Type Frequency Distribution Distribution

1 50% p= 40% ®= 4, ¸= :01
2 30% p= 70% ®= 3, ¸= :01
3 20% p= 80% ®= 2, ¸= :01

We assume that the types are homogeneous; i.e., every insured
of a given type has the same frequency and severity process.
Assume that for an individual insured, frequency and severity
are independent.

31Claim frequency = claims=exposures. Claim severity = losses=claims. Pure Premium
= loss=exposures.
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Using the Expected Value of the Process Variance and the
Variance of the Hypothetical Means computed in the previous
section, one can compute the Bühlmann Credibility Parameter in
each case.

Suppose that an insured is picked at random and we do not
know what type he is.32 For this randomly selected insured dur-
ing 4 years one observes 3 claims for a total33 of $450. Then one
can use Bühlmann Credibility to predict the future frequency,
severity, or pure premium of this insured.

Frequency Example
As computed in section 3.1, the EPV of the frequency = :215,

while the variance of the hypothetical mean frequencies= :0301.
Thus the Bühlmann Credibility parameter is: K = EPV=VHM =
:215=:0301 = 7:14.

Thus 4 years of experience are given a credibility of 4=
(4+K) = 4=11:14=35:9%. The observed frequency is 3=4= :75.
The a priori mean frequency is .57. Thus the estimate of the fu-
ture frequency for this insured is (:359)(:75)+ (1 :359)(:57) =
:635.

Severity Example
As computed in section 3.1, the EPV of the severity=30,702,

while the variance of the hypothetical mean severities= 6,265.
Thus the Bühlmann Credibility parameter is K = EPV=VHM =
30,702=6,265 = 4:90.

Thus 3 observed claims34 are given a credibility of 3=(3+K)
= 3=7:9 = 38:0%. The observed severity is $450=3 = $150. The

32The latter is very important. If one knew which type the insured was, one would use the
expected value for that type to estimate the future frequency, severity, or pure premium.
33Unlike the Bayesian Analysis case to be covered subsequently, even if one were given
the separate claim amounts, the Bühlmann Credibility estimate of severity only makes
use of the sum of the claim amounts.
34Note that the number of observed claims is used to determine the Bühlmann Credibility
of the severity.
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a priori mean severity is $307. Thus the estimate of the fu-
ture severity for this insured is (:380)(150)+ (1 :380)(307) =
$247:3.

Pure Premium Example
As computed in section 3.1, the EPV of the pure premium=

43,650, while the variance of the hypothetical mean pure
premiums = 525. Thus the Bühlmann Credibility parameter is
K =EPV=VHM= 43,650=525 = 83:1.

Thus 4 years of experience are given a credibility of 4=
(4+K) = 4=87:1 = 4:6%. The observed pure premium is $450=
4 = $112:5. The a priori mean pure premium is $175. Thus
the estimate of the future pure premium for this insured is:
(:046)(112:5)+ (1 :046)(175) = $172.

Note that this estimate of the future pure premium is not equal
to the product of our previous estimates of the future frequency
and severity. (:635)($247:3) = $157 = $172. In general one does
not get the same result if one uses credibility to make separate
estimates of the frequency and severity instead of directly esti-
mating the pure premium.

Assumptions Underlying Z =N=(N +K)
There are a number of important assumptions underlying the

formula Z =N=(N +K) where K = EPV=VHM. While these as-
sumptions generally hold in this chapter, they hold in many,
but far from every, real-world application.35 These assumptions
are:

1. The complement of credibility is given to the overall
mean.

2. The credibility is determined as the slope of the weighted
least squares line to the Bayesian Estimates.

35See for example, Howard Mahler’s discussion of Glenn Meyers’ “An Analysis of
Experience Rating,” PCAS, 1987.
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3. The risk parameters and risk process do not shift over
time.36

4. The expected value of the process variance of the sum of
N observations increases as N. Therefore the expected
value of the process variance of the average of N obser-
vations decreases as 1=N.

5. The variance of the hypothetical means of the sum of N
observations increases as N2. Therefore the variance of
the hypothetical means of the average of N observations
is independent of N.

In addition one must be careful that an insured has been
picked at random, that we observe that insured and then we at-
tempt to make an estimate of the future observation of that same
insured. If instead one goes back and chooses a new insured at
random, then the information contained in the observation has
been lost.

3.2. Exercises

3.2.1. The Expected Value of the Process Variance is 100. The
Variance of the Hypothetical Means is 8. How much
Bühlmann Credibility is assigned to 20 observations of
this risk process?

3.2.2. If 5 observations are assigned 70% Bühlmann Credibil-
ity, what is the value of the Bühlmann Credibility param-
eter K?

3.2.3. Your friend picked at random one of three multi-sided
dice. He then rolled the die and told you the result. You
are to estimate the result when he rolls that same die
again. One of the three multi-sided dice has 4 sides (with

36In the Philbrick Target Shooting Example discussed in a subsequent section, we assume
the targets are fixed and that the skill of the marksmen does not change over time.
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1, 2, 3 and 4 on them), the second die has the usual
6 sides (numbered 1 through 6), and the last die has
8 sides (with numbers 1 through 8). For a given die
each side has an equal chance of being rolled, i.e.
the die is fair. Assume the first roll was a five. Use
Bühlmann Credibility to estimate the next roll of the
same die.

Hint: The mean of a die with S sides is: (S+1)=2.
The variance of a die with S sides is: (S2 1)=12.

Use the following information for the next two questions:

There are three large urns, each filled with so many balls that
you can treat it as if there are an infinite number. Urn 1 contains
balls with “zero” written on them. Urn 2 has balls with “one”
written on them. The final Urn 3 is filled with 50% balls with
“zero” and 50% balls with “one.” An urn is chosen at random
and five balls are selected.

3.2.4. If all five balls have “zero” written on them, use
Bühlmann Credibility to estimate the expected value of
another ball picked from that urn.

3.2.5. If three balls have “zero” written on them and two balls
have “one” written on them, use Bühlmann Credibility to
estimate the expected value of another ball picked from
that urn.

3.2.6. There are two types of urns, each with many balls labeled
$1,000 and $2,000.

A Priori
Type of chance of This Percentage of Percentage of
Urn Type of Urn $1,000 Balls $2,000 Balls

I 80% 90% 10%
II 20% 70% 30%
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An urn is selected at random, and you observe a total
of $8,000 on 5 balls drawn from that urn at random.
Using Bühlmann Credibility, what is estimated value of
the next ball drawn from that urn?

3.2.7. The aggregate loss distributions for three risks for one
exposure period are as follows:

Aggregate Losses
Risk $0 $100 $500

A 0.90 0.07 0.03
B 0.50 0.30 0.20
C 0.30 0.33 0.37

A risk is selected at random and is observed to have
$500 of aggregate losses in the first exposure period.
Determine the Bühlmann Credibility estimate of the ex-
pected value of the aggregate losses for the same risk’s
second exposure period.

3.2.8. A die is selected at random from an urn that contains
four 6-sided dice with the following characteristics:

Number Number of Faces
on Face Die A Die B Die C Die D

1 3 1 1 1
2 1 3 1 1
3 1 1 3 1
4 1 1 1 3

The first five rolls of the selected die yielded the
following in sequential order: 2, 3, 1, 2, and 4. Using
Bühlmann Credibility, what is the expected value of the
next roll of the same die?
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Use the following information for the following seven questions:

There are three types of drivers with the following character-
istics:

Portion of Drivers Poisson Annual Pareto Claim
Type of This Type Claim Frequency Severity

Good 60% 5% ®= 5, ¸= 10,000
Bad 30% 10% ®= 4, ¸= 10,000
Ugly 10% 20% ®= 3, ¸= 10,000

For any individual driver, frequency and severity are indepen-
dent.

3.2.9. A driver is observed to have over a five-year period a
single claim. Use Bühlmann Credibility to predict this
driver’s future annual claim frequency.

3.2.10. What is the expected value of the process variance of the
claim severities (for the observation of a single claim)?

3.2.11. What is the variance of the hypothetical mean severities
(for the observation of a single claim)?

3.2.12. Over several years, for an individual driver you observe a
single claim of size $25,000. Use Bühlmann Credibility
to estimate this driver’s future average claim severity.

3.2.13. What is the expected value of the process variance of
the pure premiums (for the observation of a single ex-
posure)?

3.2.14. What is the variance of the hypothetical mean pure pre-
miums (for the observation of a single exposure)?

3.2.15. A driver is observed to have over a five-year period a
total of $25,000 in losses. Use Bühlmann Credibility to
predict this driver’s future pure premium.

See the Appendix on claim frequency and severity distributions.
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3.2.16. There are two classes of insureds in a given population.
Each insured has either no claims or exactly one claim in
one experience period. For each insured the distribution
of the number of claims is binomial. The probability of
a claim in one experience period is 0.20 for Class 1 in-
sureds and 0.30 for Class 2. The population consists of
40% Class 1 insureds and 60% for Class 2. An insured is
selected at random without knowing the insured’s class.
What credibility would be given to this insured’s ex-
perience for five experience periods using Bühlmann’s
Credibility Formula?

Use the following information for the next two questions:

Number of Claims Size of Loss
Class Mean Process Variance Mean Variance

A .1667 .1389 4 20
B .8333 .1389 2 5

Each class is homogeneous with all members of the class hav-
ing the same mean and process variance. Frequency and severity
are independently distributed. Classes A and B have the same
number of risks. A risk is randomly selected from one of the
two classes and four observations are made of the risk.

3.2.17. Determine the value for the Bühlmann Credibility, Z,
that can be applied to the observed pure premium.

3.2.18. The pure premium calculated from the four observations
is 0.25. Determine the Bühlmann Credibility estimate for
the risk’s pure premium.

3.2.19. You are given the following:

X is a random variable with mean m and variance v.

m is a random variable with mean 2 and variance 4.
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v is a random variable with mean 8 and variance 32.

Determine the value of the Bühlmann Credibility factor
Z, after three observations of X. (m and v are constant
during the observation periods.)

3.3. Target Shooting Example

In the classic paper by Stephen Philbrick37 there is an ex-
cellent target shooting example that illustrates the ideas of
Bühlmann Credibility. Assume there are four marksmen each
shooting at his own target. Each marksman’s shots are assumed
to be distributed around his target, marked by one of the letters
A, B, C, and D, with an expected mean equal to the location of
his target. Each marksman is shooting at a different target.

If the targets are arranged as in Figure 1, the resulting shots of
each marksman would tend to cluster around his own target. The
shots of each marksman have been distinguished by a different
symbol. So for example the shots of marksman B are shown as
triangles. We see that in some cases one would have a hard time
deciding which marksman had made a particular shot if we did
not have the convenient labels.

The point E represents the average of the four targets A, B,
C, and D. Thus E is the grand mean.38 If we did not know which
marksman was shooting we would estimate that the shot would
be at E; the a priori estimate is E.

Once we observe a shot from an unknown marksman,39 we
could be asked to estimate the location of the next shot from

37“An Examination of Credibility Concepts,” PCAS, 1981.
38In this example, each of the marksmen is equally likely; that is, they fire the same
number of shots. Thus we weight each target equally. As was seen previously, in general
one would take a weighted average using the not necessarily equal a priori probabilities
as the weights.
39Thus the shot does not have one of the convenient labels attached to it. This is analogous
to the situation in Auto Insurance, where the drivers in a classification are presumed not
to be wearing little labels telling us who are the safer and less safe drivers in the class.
We rely on the observed experience to help estimate that.
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FIGURE 1

the same marksman. Using Bühlmann Credibility our estimate
would be between the observation and the a priori mean of E.
The larger the credibility assigned to the observation, the closer
the estimate is to the observation. The smaller the credibility
assigned to the data, the closer the estimate is to E.

There are a number of features of this target shooting example
that control how much Bühlmann Credibility is assigned to our
observation. We have assumed that the marksmen are not perfect;
they do not always hit their target. The amount of spread of their
shots around their targets can be measured by the variance. The
average spread over the marksmen is the Expected Value of the
Process Variance (EPV). The better the marksmen, the smaller
the EPV and the more tightly clustered around the targets the
shots will be.

The worse the marksmen, the larger the EPV and the less
tightly the shots are spread. The better the marksmen, the more
information contained in a shot. The worse the marksmen, the
more random noise contained in the observation of the location
of a shot. Thus when the marksmen are good, we expect to give
more weight to an observation (all other things being equal) than
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FIGURE 2

when the marksmen are bad. Thus the better the marksmen, the
higher the credibility:

Expected Value Credibility
Clustering of the Information Assigned to an

Marksmen of Shots Process Variance Content Observation

Good Tight Small High Larger
Bad Loose Large Low Smaller

The smaller the Expected Value of the Process Variance the
larger the credibility. This is illustrated by Figure 2. It is assumed
in Figure 2 that each marksman is better40 than was the case in
Figure 1. The EPV is smaller and we assign more credibility to
the observation. This makes sense, since in Figure 2 it is a lot
easier to tell which marksman is likely to have made a particular
shot based solely on its location.

Another feature that determines how much credibility to give
an observation is how far apart the four targets are placed. As
we move the targets further apart (all other things being equal) it
is easier to distinguish the shots of the different marksmen. Each

40Alternatively, the marksmen could be shooting from closer to the targets.
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FIGURE 3

target is a hypothetical mean of one of the marksmen’s shots.
The spread of the targets can be quantified as the Variance of the
Hypothetical Means.

Variance of the Information Credibility Assigned
Targets Hypothetical Means Content to an Observation

Closer Small Low Smaller
Further Apart Large High Larger

As illustrated in Figure 3, the further apart the targets the more
credibility we would assign to our observation. The larger the
VHM the larger the credibility. It is easier to distinguish which
marksman made a shot based solely on its location in Figure 3
than in Figure 1.
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The third feature that one can vary is the number of shots
observed from the same unknown marksman. The more shots
we observe, the more information we have and thus the more
credibility we would assign to the average of the observations.

Each of the three features discussed is reflected in the formula
for Bühlmann Credibility Z =N=(N +K) =N(VHM)= N(VHM)
+EPV . Thus, as the EPV increases, Z decreases; as VHM in-
creases, Z increases; and as N increases, Z increases.

Feature of Target Mathematical Bühlmann
Shooting Example Quantification Credibility

Better Marksmen Smaller EPV Larger
Targets Further Apart Larger VHM Larger
More Shots Larger N Larger

Expected Value of the Process Variance vs. Variance of the
Hypothetical Means
There are two separate reasons why the observed shots vary.

First, the marksmen are not perfect. In other words the Expected
Value of the Process Variance is positive. Even if all the targets
were in the same place, there would still be a variance in the
observed results. This component of the total variance due to the
imperfection of the marksmen is quantified by the EPV.

Second, the targets are spread apart. In other words, the Vari-
ance of the Hypothetical Means is positive. Even if every marks-
man were perfect, there would still be a variance in the observed
results, when the marksmen shoot at different targets. This com-
ponent of the total variance due to the spread of the targets is
quantified by the VHM.

One needs to understand the distinction between these two
sources of variance in the observed results. Also one has to know
that the total variance of the observed shots is a sum of these two
components: Total Variance = EPV+VHM.
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Bühlmann Credibility is a Relative Concept
In Philbrick’s target shooting example, we are comparing two

estimates of the location of the next shot from the same marks-
man. One estimate is the average of the observations; the other
estimate is the average of the targets, the a priori mean.

When the marksmen are better, there is less random fluctua-
tion in the shots and the average of the observations is a better
estimate, relative to the a priori mean. In this case, the weight Z
applied to the average of the observations is larger, while (1 Z)
applied to the a priori mean is smaller.

As the targets get closer together, there is less variation of
the hypothetical means, and the a priori mean becomes a better
estimate, relative to the average of the observations. In this case,
the weight Z applied to the average of the observations is smaller,
while the complement (1 Z) applied to the a priori mean is
larger.

Bühlmann Credibility measures the usefulness of one estima-
tor, the average of the observations, relative to another estimator,
the a priori mean. If Z = 50%, then the two estimators are equally
good or equally bad. In general, Bühlmann Credibility is a rel-
ative measure of the value of the information contained in the
observation versus that in the a priori mean.

A One-Dimensional Target Shooting Example
Assume a one-dimensional example of Philbrick’s target

shooting model such that the marksmen only miss to the left
or right. Assume:

There are four marksmen.

The targets for the marksmen are at the points on the number
line: 10, 20, 30, and 40.

The accuracy of each marksman follows a normal distribution
with mean equal to his target value and with standard deviation
of 12.
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Assume a single shot at 18. To use Bühlmann Credibility we need
to calculate the Expected Value of the Process Variance and the
Variance of the Hypothetical Means. The process variance for ev-
ery marksman is assumed to be the same and equal to 122 = 144.
Thus the EPV = 144. The overall mean is 25 and the variance is
(1=4)(152 +52 +52 +152) = 125. Thus the Bühlmann Credibil-
ity parameter is K =EPV=VHM= 144=125 = 1:152. The credi-
bility of a single observation is Z = 1=(1+1:152) = 46:5%. Thus
if one observes a single shot at 18, then the Bühlmann Credibility
estimate of the next shot is (18)(46:5%)+ (25)(53:5%) = 21:7.

More Shots
What if instead of a single shot at 18 one observed three shots

at 18, 26 and 4 from the same unknown marksman?

As calculated above K = 1:152. The credibility of 3 obser-
vations is Z = 3=(3+1:152) = 72:3%. The larger number of ob-
servations has increased the credibility. The average of the ob-
servations is (18+26+4)=3 = 16. The a priori mean is 25.
Thus the Bühlmann Credibility estimate of the next shot is:
(16)(72:3%)+ (25)(27:7%) = 18:5.

Moving the Targets
Assume that the targets were further apart. Assume:

There are four marksmen.

The targets for the marksmen are at the points on the number
line: 20, 40, 60, and 80.

The accuracy of each marksman follows a normal distribution
with mean equal to his target value and with standard deviation
of 12.

Then each shot has more informational content about which
marksman produced it. Assume we observe three shots from an
unknown marksman at: 38, 46 and 24. The EPV is still 144 while
the VHM is now (4)(125) = 500, so the Bühlmann Credibility
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Parameter K = EPV=VHM= 144=500 = :288. Thus the credibil-
ity assigned to 3 shots is 3=3:288 = 91:2%, larger than before.
The larger VHM has increased the credibility.41 The average of
the observations is (38+46+24)=3 = 36. The a priori mean is
50. Thus the Bühlmann Credibility estimate of the next shot is:
(36)(91:2%)+ (50)(8:8%) = 37:2.

Altering the Skill of the Marksmen
Assume that the marksmen are more skilled.42 Assume:

There are four marksmen.

The targets for the marksmen are at the points on the number
line: 10, 20, 30, and 40.

The accuracy of each marksman follows a normal distribution
with mean equal to his target value and with standard deviation
of 6.

With a smaller process variance, each shot has more informa-
tional content about which marksman produced it. Assume we
observe three shots from an unknown marksman at: 18, 26 and
4. The EPV is 62 = 36 while the VHM is 125, so the Bühlmann
Credibility K =EPV=VHM= 36=125 = :288. Thus the credibil-
ity assigned to 3 shots is 3=3:288 = 91:2%, more than in the
original example. The smaller EPV has increased the credibil-
ity.43 The average of the observations is (18+26+4)=3 = 16.
The a priori mean is 25. Thus the Bühlmann Credibility estimate
of the next shot is: (16)(91:2%)+ (25)(8:8%) = 16:8.

Limiting Situations and Bühlmann Credibility
As the number of observations approaches infinity, the cred-

ibility approaches one. In the target shooting example, as the

41If instead one had moved the targets closer together, then the credibility assigned to a
single shot would have been less. A smaller VHM leads to less credibility.
42Alternatively, assume the marksmen are shooting from closer to the targets.
43If instead one had less skilled marksmen, then the credibility assigned to a single shot
would have been less. A larger EPV leads to less credibility.
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number of shots approaches infinity, our Bühlmann Credibility
estimate approaches the mean of the observations.

On the other hand, if we have no observations, then the esti-
mate is the a priori mean. We give the a priori mean a weight of
1, so 1 Z = 1 or Z = 0.

Bühlmann Credibility is given by Z =N=(N +K). In the
usual situations where one has a finite number of observations,
0<N < , one will have 0< Z < 1 provided 0<K < . The
Bühlmann Credibility is only zero or unity in unusual situa-
tions.

The Bühlmann Credibility parameter K = EPV=VHM. So
K = 0 if EPV = 0 or VHM= . On the other hand K is infi-
nite if EPV = or VHM= 0.

The Expected Value of the Process Variance is zero only if
one has certainty of results.44 In the case of the Philbrick Target
Shooting Example, if all the marksmen were absolutely perfect,
then the expected value of the process variance would be zero.
In that situation we assign the observation a credibility of unity;
our new estimate is the observation.

The Variance of the Hypothetical Means is infinite if one has
little or no knowledge and therefore has a large variation in hy-
potheses.45 In the case of the Philbrick Target Shooting Exam-
ple, as the targets get further and further apart, the variance of
the hypothetical means approaches infinity. We assign the obser-
vations more and more weight as the targets get further apart.
If one target were in Alaska, another in California, another in
Maine and the fourth in Florida, we would give the observation
virtually 100% credibility. In the limit, our new estimate is the
observation; the credibility is one.

44For example, one could assume that it is certain that the sun will rise tomorrow; there
has been no variation of results, the sun has risen every day of which you are aware.
45For example, an ancient Greek philosopher might have hypothesized that the universe
was more than 3,000 years old with all such ages equally likely.
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However, in most applications of Bühlmann Credibility the
Expected Value of the Process Variance is positive and the Vari-
ance of the Hypothetical Means is finite, so that K > 0.

The Expected Value of the Process Variance can be infinite
only if the process variance is infinite for at least one of the types
of risks. If in an example involving claim severity, one assumed
a Pareto distribution with ® 2, then one would have infinite
process variance. In the Philbrick Target Shooting Example, a
marksman would have to be infinitely terrible in order to have
an infinite process variance. As the marksmen get worse and
worse, we give the observation less and less weight. In the limit
where the location of the shot is independent of the location of
the target we give the observation no weight; the credibility is
zero.

The Variance of the Hypothetical Means is zero only if all the
types of risks have the same mean. For example, in the Philbrick
Target Shooting Example, if all the targets are at the same lo-
cation (or alternatively each of the marksmen is shooting at the
same target) then the VHM= 0. As the targets get closer and
closer to each other, we give the observation less and less weight.
In the limit, we give the observation no weight; the credibility is
zero. In the limit, all the weight is given to the single target.

However, in the usual applications of Bühlmann Credibility
there is variation in the hypotheses, and there is a finite expected
value of process variance, and therefore K is finite.

Assuming 0<K < and 0<N < , then 0< Z < 1. Thus
in ordinary circumstances the Bühlmann Credibility is strictly
between zero and one.

3.3. Exercises

3.3.1. In which of the following should credibility be expected
to increase?

1. Larger quantity of observations.
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2. Increase in the prior mean.

3. Increase in the variance of hypothetical means.

3.3.2. There are three marksmen, each of whose shots are Nor-
mally Distributed (in one dimension) with means and stan-
dard deviations:

Risk Mean Standard Deviation

A 10 3
B 20 5
C 30 15

A marksman is chosen at random. You observe two
shots at 10 and 14. Using Bühlmann Credibility estimate
the next shot from the same marksman.

Use the following information to answer the next two questions:

Assume you have two shooters, each of whose shots is given
by a (one dimensional) Normal distribution:

Shooter Mean Variance

A +1 1
B 1 25

Assume a priori that each shooter is equally likely

3.3.3. You observe a single shot at +4. Use Bühlmann Credibil-
ity to estimate the location of the next shot.

3.3.4. You observed three shots at 2, 0, 1. Use Bühlmann Cred-
ibility to estimate the location of the next shot.

4. BAYESIAN ANALYSIS

Bayesian Analysis is another technique to update a prior hy-
pothesis based on observations, closely related to the use of
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Bühlmann Credibility. In fact, the use of Bühlmann Credibility
is the least squares linear approximation to Bayesian Analysis.46

First, some preliminary mathematical ideas related to Bayesian
Analysis will be discussed.

4.1. Mathematical Preliminaries

Conditional Distributions

Example 4.1.1: Assume that 14% of actuarial students take exam
seminars and that 8% of actuarial students both take exam sem-
inars and pass their exam. What is the chance of a student who
has taken an exam seminar passing his/her exam?

[Solution: 8%=14%= 57%. (Assume 1,000 total students, of
whom 140 take exam seminars. Of these 140 students, 80 pass,
for a pass rate of 57%.)]

This is a simple example of a conditional probability.

The conditional probability of an event A given another event
B is defined as:

P[A B] = P[A and B]=P[B] (4.1.1)

In the simple example, A= student passes exam , B = student
takes exam seminar ,P[A andB]=8%,P[B]=14%.Thus P[A B]
= P[A and B]=P[B] = 8%=14%= 57%.

Theorem of Total Probability

Example 4.1.2: Assume that the numbers of students taking an
exam by exam center are as follows: Chicago 3,500, Los Angeles
2,000, New York 4,500. The number of students from each exam
center passing the exam are: Chicago 2,625, Los Angeles 1,200,
New York 3,060. What is the overall passing percentage?

[Solution: (2,625 + 1,200 + 3,060)=(3,500 + 2,000 + 4,500) =
6,885=10,000 = 68:85%.]

46A proof can be found in Bühlmann, “Experience Rating and Credibility” or Klugman,
et al., Loss Models: From Data to Decisions.

PREPUBLICATION



8-76 CREDIBILITY Ch. 8

If one has a set of mutually disjoint events Ai, then one can
write the marginal distribution function P[B] in terms of the
conditional distributions P[B Ai] and the probabilities P[Ai]:

P[B] =
i

P[B Ai]P[Ai] (4.1.2)

This theorem follows from i P[B Ai]P[Ai] = i P[B and Ai] =
P[B], provided that the Ai are disjoint events that cover all pos-
sibilities.

Thus one can compute probabilities of events either directly
or by summing a product of terms.

Example 4.1.3: Assume that the percentages of students taking
an exam by exam center are as follows: Chicago 35%, Los Ange-
les 20%, New York 45%. The percentages of students from each
exam center passing the exam are: Chicago 75%, Los Angeles
60%, New York 68%. What is the overall passing percentage?

[Solution: i P[B Ai]P[Ai] = (75%) (35%) + (60%)(20%) +
(68%)(45%) = 68:85%:]

Note that example 4.1.3 is mathematically the same as exam-
ple 4.1.2. This is a concrete example of the Theorem of Total
Probability, Equation 4.1.2.

Conditional Expectation

In general, in order to compute a conditional expectation, we
take the weighted average over all the possibilities x:

E[X B] =
x

xP[X = x B] (4.1.3)

Example 4.1.4: Let G be the result of rolling a green 6-sided
die. Let R be the result of rolling a red 6-sided die. G and R are
independent of each other. Let M be the maximum of G and R.
What is the expectation of the conditional distribution of M if
G = 3?
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[Solution: The conditional distribution of M if G = 3 is: f(3) =
3=6, f(4) = 1=6, f(5) = 1=6, and f(6) = 1=6. (Note that if G= 3,
then M = 3 if R = 1, 2, or 3. So, f(3) = 3=6:) Thus the mean
of the conditional distribution of M if G = 3 is: (3)(3=6)+
(4)(1=6)+ (5)(1=6)+ (6)(1=6) = 4:]

4.1. Exercises

4.1.1. Assume that 5% of men are colorblind, while .25% of
women are colorblind. A colorblind person is picked out
of a population made up 10% of men and 90% of women.
What is the chance the colorblind person is a man?

Use the following information for the next six questions:

A large set of urns contain many black and red balls. There
are four types of urns each with differing percentages of black
balls. Each type of urn has a differing chance of being picked.

A Priori Percentage of
Type of Urn Probability Black Balls

I 40% 5%
II 30% 8%
III 20% 13%
IV 10% 18%

4.1.2. An urn is picked and a ball is selected from that urn.
What is the chance that the ball is black?

4.1.3. An urn is picked and a ball is selected from that urn.
If the ball is black, what is the chance that Urn I was
picked?

4.1.4. An urn is picked and a ball is selected from that urn.
If the ball is black, what is the chance that Urn II was
picked?
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4.1.5. An urn is picked and a ball is selected from that urn.
If the ball is black, what is the chance that Urn III was
picked?

4.1.6. An urn is picked and a ball is selected from that urn.
If the ball is black, what is the chance that Urn IV was
picked?

4.1.7. An urn is picked and a ball is selected from that urn. If
the ball is black, what is the chance that the next ball
picked from that same urn will be black?

Use the following information for the next two questions:

V and X are each given by the result of rolling a 6-sided die.
V and X are independent of each other. Y =V+X.

4.1.8. What is the probability that X = 5 if Y 9?

4.1.9. What is the expected value of X if Y 9?

Use the following information for the next two questions:

Percentage of Percent of
City Total Drivers Drivers Accident-Free

Boston 40% 80%
Springfield 25% 85%
Worcester 20% 90%
Pittsfield 15% 95%

4.1.10. A driver is picked at random. If the driver is accident-
free, what is the chance the driver is from Boston?

4.1.11. A driver is picked at random. If the driver has had an
accident, what is the chance the driver is from Pittsfield?

4.1.12. On a multiple choice exam, each question has 5 possi-
ble answers, exactly one of which is correct. On those
questions for which he is not certain of the answer, Stu
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Dent’s strategy for taking the exam is to answer at ran-
dom from the 5 possible answers. Assume he correctly
answers the questions for which he knows the answers.
If Stu Dent knows the answers to 62% of the questions,
what is the probability that he knew the answer to a
question he answered correctly?

4.2. Bayesian Analysis

Take the following simple example. Assume there are two
types of risks, each with Bernoulli claim frequencies. One type
of risk has a 30% chance of a claim (and a 70% chance for no
claims.) The second type of risk has a 50% chance of having a
claim. Of the universe of risks, 3=4 are of the first type with a
30% chance of a claim, while 1=4 are of the second type with a
50% chance of having a claim.

A Priori Probability Chance of a Claim
that a Occurring for a

Type of Risk Risk is of this Type Risk of this Type

1 3=4 30%
2 1=4 50%

If a risk is chosen at random, then the chance of having a
claim is (3=4)(30%)+ (1=4)(50%) = 35%. In this simple exam-
ple, there are two possible outcomes: either we observe 1 claim
or no claims. Thus the chance of no claims is 65%.

Assume we pick a risk at random and observe no claim. Then
what is the chance that we have risk Type 1? By the defini-
tion of the conditional probability we have: P(Type = 1 n= 0)
= P(Type = 1 and n= 0)=P(n= 0). However, P(Type = 1 and
n = 0) = P(n = 0 Type = 1)P(Type = 1) = (:7)(:75). Therefore,
P(Type = 1 n = 0) = P(n = 0 Type = 1)P(Type = 1)=P(n = 0)
= (:7)(:75)=:65 = :8077.
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This is a special case of Bayes’ Theorem:

P(A B) = P(B A)P(A)=P(B)

P(Risk Type Obser:) = P(Obser: Risk Type) (4.2.1)

P(Risk Type)=P(Obser:)

Example 4.2.1: Assume we pick a risk at random and observe
no claim. Then what is the chance that we have risk Type 2?

[Solution: P(Type = 2 n= 0) = P(n= 0 Type = 2)P(Type = 2)
=P(n= 0) = (:5)(:25)=:65 = :1923:]

Of course with only two types of risks the chance of a risk
being Type 2 is unity minus the chance of being Type 1. The
posterior probability that the selected risk is Type 1 is .8077 and
the posterior probability that it is Type 2 is .1923.

Posterior Estimates
Now not only do we have probabilities posterior to an ob-

servation, but we can use these to estimate the chance of
a claim if the same risk is observed again. For example,
if we observe no claim the estimated claim frequency for
the same risk is: (posterior prob. Type 1)(claim freq. Type 1)+
(posterior prob. Type 2)(claim freq. Type 2) = (:8077)(30%)+
(:1923)(50%) = 33:85%.

Note that the posterior estimate is a weighted average of
the hypothetical means for the different types of risks. Thus the
posterior estimate of 33.85% is in the range of the hypotheses,
30% to 50%. This is true in general for Bayesian analysis.

The result of Bayesian Analysis is always within the range
of hypotheses.

This is not necessarily true for the results of applying Credi-
bility.

Example 4.2.2: What if a risk is chosen at random and one claim
is observed. What is the posterior estimate of the chance of a
claim from this same risk?
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[Solution: (:6429)(:3)+ (:3571)(:5) = 37:14%

A B C D E F

A Priori Prob. Weight = Posterior
Chance of Chance Product Chance of Mean

Type of This Type of the of Columns This Type Annual
Risk of Risk Observation B & C of Risk Freq.

1 0.75 0.3 0.225 64.29%47 0.30
2 0.25 0.5 0.125 35.71% 0.50

Overall 0.350 1.000 37.14%

For example, P(Type = 1 n= 1) = P(Type = 1 and n= 1)=
P(n= 1) = (:75)(:3)=:35 = :643, P(Type = 2 n= 1) = P(Type =
2 and n= 1)=P(n= 1) = (:25)(:5)=:35 = :357:]

Note how the estimate posterior to the observation of one
claim is 37.14%, greater than the a priori estimate of 35%. The
observation has let us infer that it is more likely that the risk is
of the high frequency type than it was prior to the observation.
Thus we infer that the future chance of a claim from this risk is
higher than it was prior to the observation. Similarly, the estimate
posterior to the observation of no claim is 33.85%, less than the
a priori estimate of 35%.

We had a 65% chance of observing no claim and a 35%
chance of observing a claim. Weighting together the two pos-
terior estimates: (65%)(33:85%)+ (35%)(37:14%) = 35%. The
weighted average of the posterior estimates is equal to the
overall a priori mean. This is referred to as “the estimates
being in balance.” If Di are the possible outcomes, then the
Bayesian estimates are E[X Di]. Then i P(Di)E[X Di] =
E[X] = the a priori mean.

i

P Di E[X Di] = E[X] (4.2.2)

47Note that :6429 = :225=:350 and :3571 = :125=:350. The a priori chance of the obser-
vation is .350. Thus the values in column E are the resluts of applying Bayes Theorem,
equation 4.2.1
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The estimates that result from Bayesian Analysis are always
in balance:

The sum of the product of the a priori chance of each out-
come times its posterior Bayesian estimate is equal to the a
priori mean.

Multi-Sided Dice Example
Let’s illustrate Bayesian Analysis with a simple example in-

volving multi-sided dice:

Assume that there are a total of 100 multi-sided dice of which
60 are 4-sided, 30 are 6-sided and 10 are 8-sided. The multi-sided
dice with 4 sides have 1, 2, 3 and 4 on them. The multi-sided
dice with the usual 6 sides have numbers 1 through 6 on them.
The multi-sided dice with 8 sides have numbers 1 through 8 on
them. For a given die each side has an equal chance of being
rolled; i.e., the die is fair.

Your friend has picked at random a multi-sided die. (You do
not know what sided-die he has picked.) He then rolled the die
and told you the result. You are to estimate the result when he
rolls that same die again.

If the result is a 3 then the estimate of the next roll of the
same die is 2.853:

A B C D E F

A Priori Prob. Weight = Posterior
Chance of Chance Product Chance of Mean

Type of This Type of the of Columns This Type Die
Die of Die Observation B & C of Die Roll

4-sided 0.600 0.250 0.1500 70.6% 2.5
6-sided 0.300 0.167 0.0500 23.5% 3.5
8-sided 0.100 0.125 0.0125 5.9% 4.5

Overall 0.2125 1.000 2.853

Example 4.2.3: If instead a 6 is rolled, what is the estimate of
the next roll of the same die?
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[Solution: The estimate of the next roll of the same die is 3.700:

A B C D E F

A Priori Prob. Weight = Posterior
Chance of Chance Product Chance of Mean

Type of This Type of the of Columns This Type Die
Die of Die Observation B & C of Die Roll

4-sided 0.600 0.000 0.0000 0.0% 2.5
6-sided 0.300 0.167 0.0500 80.0% 3.5
8-sided 0.100 0.125 0.0125 20.0% 4.5

Overall 0.0625 1.000 3.700

For this example we get the following set of estimates corre-
sponding to each possible observation:

Observation 1 2 3 4 5 6 7 8

Bayesian Estimate 2.853 2.853 2.853 2.853 3.7 3.7 4.5 4.5

Note that while in this simple example the posterior estimates
are the same for a number of different observations, this is not
usually the case.]

Relation of Bayesian Analysis and Bühlmann Credibility
As discussed in section 3.2 on Bühlmann Credibility, in the

multi-sided dice example K =EPV=VHM= 2:15=:45 = 4:778 =
43=9. For one observation, Z = 1=(1+4:778) = :1731 = 9=52 =
:45=(:45+2:15).

The Bühlmann Credibility estimate is a linear function of the
observation:

Observation 1 2 3 4 5 6 7 8

New Estimate 2.6538 2.8269 3 3.1731 3.3462 3.5193 3.6924 3.8655
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The above results of applying Bühlmann Credibility differ
from those obtained for Bayesian Analysis.

Observation 1 2 3 4 5 6 7 8

Bühlmann
Credibility 2.6538 2.8269 3 3.1731 3.3462 3.5193 3.6924 3.86552
Estimate

Bayesian
Analysis 2.853 2.853 2.853 2.853 3.7 3.7 4.5 4.5
Estimate

We note that in this case the line formed by the Bühlmann
Credibility estimates seems to approximate the Bayesian Analy-
sis Estimates as shown in Graph 3. In general it turns out that the
Bühlmann Credibility Estimates are the weighted least squares
line fit to the Bayesian Estimates.

GRAPH 3

MULTI-SIDED DIE EXAMPLE
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4.2. Exercises

Use the following information for the next seven questions:

There are three types of risks. Assume 60% of the risks are
of Type A, 25% of the risks are of Type B, and 15% of the risks
are of Type C. Each risk has either one or zero claims per year.
A risk is selected at random.

A Priori Chance
Type of Risk of Type of Risk Chance of a Claim

A 60% 20%
B 25% 30%
C 15% 40%

4.2.1. What is the overall mean annual claim frequency?

4.2.2. You observe no claim in a year. What is the probability
that the risk you are observing is of Type A?

4.2.3. You observe no claim in a year. What is the probability
that the risk you are observing is of Type B?

4.2.4. You observe no claim in a year. What is the probability
that the risk you are observing is of Type C?

4.2.5. You observe no claim in a year. What is the expected
annual claim frequency from the same risk?

4.2.6. You observe one claim in a year. What is the expected
annual claim frequency from the same risk?
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4.2.7. You observe a single risk over five years. You observe
2 claims in 5 years. What is the expected annual claim
frequency from the same risk?

4.2.8. Let X1 be the outcome of a single trial and let E[X2 X1]
be the expected value of the outcome of a second trial.
You are given the following information:

Bayesian Estimate
Outcome = T P(X1 = T) for E[X2 X1 = T]

1 5/8 1.4
4 2/8 3.6
16 1/8 —

Determine the Bayesian estimate for E[X2 X1 = 16].

Use the following information for the next two questions:

There are two types of urns, each with many balls labeled
$1,000 and $2,000.

Type of A Priori Chance of Percentage of Percentage of
Urn This Type of Urn $1,000 Balls $2,000 Balls

I 80% 90% 10%
II 20% 70% 30%

4.2.9. You pick an Urn at random and pick one ball. If the ball
is $2,000, what is the expected value of the next ball
picked from that same urn?

4.2.10. You pick an Urn at random (80% chance it is of Type
I) and pick three balls, returning each ball to the Urn
before the next pick. If two of the balls were $1,000 and
one of the balls was $2,000, what is the expected value
of the next ball picked from that same urn?
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4.2.11. You are given the following information:

There are three types of risks

The types are homogeneous, every risk of a given type
has the same Poisson frequency process:

Portion of Average (Annual)
Type Risks in This Type Claim Frequency

1 70% .4
2 20% .6
3 10% .8

A risk is picked at random and we do not know what
type it is. For this randomly selected risk, during one year
there are 3 claims. Use Bayesian Analysis to predict the
future claim frequency of this same risk.

Use the following information for the next two questions:

There are three marksmen, each of whose shots are Normally
Distributed (in one dimension) with means and standard devia-
tions:

Risk Mean Standard Deviation

A 10 3
B 20 5
C 30 15

4.2.12. A marksman is chosen at random. If you observe two
shots at 10 and 14, what is the chance that it was marks-
man B?

4.2.13. A marksman is chosen at random. If you observe two
shots at 10 and 14, what is the Bayesian Estimate of the
next shot from the same marksman?
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4.3. Continuous Prior and Posterior Distributions

So far in this section on Bayesian analysis our examples in-
cluded discrete probability distributions. Now we’ll look at con-
tinuous distributions.

Let random variables X and Y have the joint p.d.f. (prob-
ability density function) f(x,y). The marginal p.d.f. for X is
fX(x) = f(x,y)dy and the marginal p.d.f. for Y is fY(y) =

f(x,y)dx:48 The conditional p.d.f. for Y given X is:

fY(y x) =
f(x,y)
fX(x)

(4.3.1)

Note the correspondence between this formula and formula
(4.1.1): P[A B] = P[A and B]=P[B]. Formula (4.3.1) applies to
both continuous and discrete p.d.f.s, or a combination of the
two.

In insurance applications it is common for one of the random
variables, call it X, to be a discrete random variable and a second
variable, µ, to be continuous. X may be the number of claims.49

The other random variable, µ, is a parameter of the distribution
of X. The conditional p.d.f. of X given µ is denoted fX(x µ) and
the p.d.f. for µ is fµ(µ). The joint p.d.f. for X and µ is:

f(x,µ) = fX(x µ)fµ(µ) (4.3.2)

The p.d.f. fµ(µ) is the prior distribution of µ. It may represent our
initial guess about the distribution of some characteristic within
a population, for example expected claim frequency.

If we select a risk at random from the population and observe
the number of claims, x, then we can update our estimate of µ
for this risk. Using formula (4.3.1) and replacing the joint p.d.f.

48If one of the random variables, say Y, is discrete, then the integral is replaced with a
summation and the marginal p.d.f. for X becomes: fX (x) = i

f(x,yi).
49If X represents claim sizes, then X is usually continuously distributed. Examples are
given in the Appendix.
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of X and µ with (4.3.2) produces:

fµ(µ X = x) = fX(x µ)fµ(µ)=fX(x) (4.3.3)

fµ(µ X = x) is the posterior distribution of µ for the selected
risk. We have used information about the risk to adjust our esti-
mate of the distribution of µ. Equation 4.4.3 is just another form
of Bayes Theorem, equation 4.2.1.

Example 4.3.1: The probability of exactly one claim during
a year for any insured in a population is µ. The probability
of no claims is (1 µ). The probability of a claim, µ, varies
within the population with a p.d.f. given by a uniform distri-
bution:

fµ(µ) = 1 if 0 µ 1, 0 otherwise:

An insured, Bob, is selected at random from the population.
Bob is observed to have a claim during the next year, i.e. X = 1.
Calculate the posterior density fµ(µ X = 1) for Bob.

[Solution: Calculate the marginal p.d.f. for X evaluated at
X = 1 : fX(1) =

1
0 f(1,µ)dµ =

1
0 fX(1 µ)fµ(µ)dµ. Since fX(1 µ)

= µ and fµ(µ) = 1 over [0,1], then fX(1) =
1
0 µdµ = 1=2. So

fµ(µ X = 1) = fX(X = 1 µ)fµ(µ)=fX(1) = (µ)(1)=(1=2) = 2µ:]

Note that in this example the distribution has shifted from
being uniform over the interval [0,1] to one that rises linearly
from 0 at the left endpoint to 2 at the right endpoint. The fact
that Bob had a claim has shifted the weight of the p.d.f. of µ to
the right.

Knowing the conditional p.d.f. allows the calculation of the
conditional expectation:

E[X Y] = xfX(x y)dx (4.3.4)

PREPUBLICATION



8-90 CREDIBILITY Ch. 8

And, the expectation of X is:

E[X] = EY[EX[X Y]] = xfX(x y)dx fY(y)dy

(4.3.5)

Example 4.3.2: Assuming the information from Example 4.3.1,
calculate the following:

1. The expectation for the number of claims in a year for
an insured selected at random from the population.

2. The expectation for the number of claims in a year for
an insured who was randomly selected from the pop-
ulation and then had one claim during an observation
year.

[Solution: (1) The distribution of X, the number of claims, is
discrete given µ. EX[X µ] = (1)(µ)+ (0)(1 µ) = µ. Since fµ(µ)
= 1 for 0< µ < 1, E[X] = Eµ[EX[X µ]] = Eµ[µ] =

1
0 µfµ(µ)dµ =

1
0 µdµ = 1=2.

(2) As in (1), EX[X µ] = µ. But from example 4.3.1, the
posterior p.d.f. of µ given that X = 1 is fµ(µ X = 1) = 2µ. So,
E[X] = Eµ[EX[X µ]] = Eµ[µ] =

1
0 µ(2µ)dµ = 2=3:]

Bayesian Interval Estimates
By the use of Bayes Theorem one obtains an entire posterior

distribution. Rather than just using the mean of that posterior
distribution in order to get a point estimate, one can use the
posterior density function to estimate the posterior chance that
the quantity of interest is in a given interval. This is illustrated
in the next example.

Example 4.3.3: Assume the information from example 4.3.1.
Given that Bob had one claim in one year, what is the poste-
rior estimate that he has a µ parameter less than .2?
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[Solution: From example 4.3.1, the posterior density function for
µ is: fµ(µ X = 1) = 2µ.

The posterior chance that µ is in the interval [0, :2] is the
integral from 0 to .2 of the posterior density:

:2

0

2µdµ = µ2
p=:2

p=0

= :22 = :04:]

The idea of a continuous distribution of types of risks is devel-
oped for the particular case of the Gamma-Poisson conjugate
prior in Section 5.

4.3. Exercises

For the next two problems, assume the following information:

The probability of exactly one claim during a year for any
insured in a population is µ. The probability of no claims is
(1 µ). The probability of a claim, µ, varies within the population
with a p.d.f. given by a uniform distribution:

fµ(µ) = 1 if 0 µ 1, 0 otherwise:

An insured, Bob, is selected at random from the population.

4.3.1. Bob is observed for two years after being randomly se-
lected from the population and has a claim in each year.
Calculate the posterior density function of µ for Bob.

4.3.2. Bob is observed for three years after being randomly se-
lected from the population and has a claim in each year.
Calculate the posterior density function of µ for Bob.

Use the following information for the next two questions:

The probability of y successes in n trials is given by a Binomial
distribution with parameters n and p.

The prior distribution of p is uniform on [0,1].

One success was observed in three trials.
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4.3.3. What is the Bayesian estimate for the probability that the
unknown parameter p is in the interval [.3, .4]?

4.3.4. What is the probability that a success will occur on the
fourth trial?

4.3.5. A number x is randomly selected from a uniform distri-
bution on the interval [0, 1]. Three independent Bernoulli
trials are performed with probability of success x on each
trial. All three are successes. What is the posterior proba-
bility that x is less than 0.9?

4.3.6. You are given the following:

The probability that a single insured will produce 0
claims during the next exposure period is e µ.

µ varies by insured and follows a distribution with den-
sity function

f(µ) = 36µe 6µ, 0< µ < :

Determine the probability that a randomly selected insured
will produce 0 claims during the next exposure period.

4.3.7. Let N be the random variable that represents the number
of claims observed in a one-year period. N is Poisson dis-
tributed with a probability density function with parameter
µ:

P[N = n µ] = e µµn=n!, n= 0,1,2, : : :

The probability of observing no claims in a year is less
than .450. Which of the following describe possible prob-
ability distributions for µ?

1. µ is uniformly distributed on (0, 2).

2. The probability density function of µ is f(µ) = e µ for
µ > 0.

3. P[µ = 1] = 1 and P[µ = 1] = 0.

PREPUBLICATION



CONJUGATE PRIORS 8-93

5. CONJUGATE PRIORS

Conjugate prior distributions have elegant mathematical prop-
erties that make them valuable in actuarial applications. The
Gamma-Poisson is the most important of these for casualty ac-
tuarial work. A study of the Gamma-Poisson model is valuable
to the understanding of Bayesian analysis and Bühlmann Credi-
bility.50

5.1. Gamma Function and Distribution

The quantity x® 1e x is finite for x 0 and ® 1. Since it
declines quickly to zero as x approaches infinity, its integral from
zero to infinity exists. This is the much studied and tabulated
(complete) Gamma Function.51

¡ (®) =
t=0

t® 1e tdt= ¸®

t=0

t® 1e ¸tdt for ® 0, ¸ 0:

(5.1.1)
It can be proven that:52 ¡ (®) = (® 1)¡ (® 1).

For integral values of ®, ¡ (®) = (® 1)!, and ¡ (1) = 1,
¡ (2) = 1! = 1, ¡ (3) = 2! = 2, ¡ (4) = 3! = 6, ¡ (5) = 4! = 24, etc.

Integrals involving e x and powers of x can be written in terms
of the Gamma function:

t=0

t® 1e ¸tdt= ¡ (®)¸ ®: (5.1.2)

Equation 5.1.2 is very useful for working with anything involv-
ing the Gamma distribution, for example the Gamma-Poisson
process as will be seen below. (It follows from the definition of
the Gamma function and a change of variables.) The probability

50This is a special case of a general result for conjugate priors of members of “linear
exponential families.” This general result is beyond the scope of this chapter.
51See for example, Handbook of Mathematical Functions, Milton Abramowitz, et. al.,
National Bureau of Standards, 1964.
52Use integration by parts: udv = uv vdu with u= t® 1 and dv = e tdt:
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density of the Gamma Distribution is: f(x) = ¸®x® 1e ¸x=¡ (®).
Since the probability density function must integrate to unity,
we must have the above relationship. This is a useful way to
remember Equation 5.1.2.

Example 5.1.1: In terms of its parameters, ® and ¸, what is the
mean of a Gamma distribution?

[Solution: The mean is the expected value of x.

0

xf(x)dx=
0

xx® 1e ¸xdx(¸®=¡ (®))

=
0

x®e ¸xdx(¸®=¡ (®))= ¡ (®+1)=¸a+1 ¸®=¡ (®)

= ¡ (®+1)=¡ (®) =¸= ®=¸:]

Example 5.1.2: In terms of its parameters, ® and ¸, what is the
nth moment of a Gamma distribution?

[Solution: The nth moment is the expected value of xn.

0

xnf(x)dx=
0

xnx® 1e ¸xdx(¸®=¡ (®))

=
0

x®+n 1e ¸xdx(¸®=¡ (®)) = ¡ (®+n)=¸®+n ¸®=¡ (®)

= ¡ (®+ n)=¡ (®) =¸n = (®+ n 1)(®+n 2) : : : (®)=¸n:]

5.1. Exercises

5.1.1. What is the value of the integral from zero to infinity of
x5e 8x?

5.1.2. What is the density at x= 8 of a Gamma distribution with
®= 3 and ¸= :10?
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5.1.3. Using the results of example 5.1.2, show that the variance
of the Gamma distribution is ®=¸2.

5.1.4. If ®= 3:0 and ¸= 1:5, what are the mean and variance of
the Gamma distribution?

5.2. The Gamma-Poisson Model

The Gamma-Poisson model has two components: (1) a Pois-
son distribution which models the number of claims for an in-
sured with a given claims frequency, and (2) a Gamma dis-
tribution to model the distribution of claim frequencies within
a population of insureds. As in previous sections the goal is
to use observations about an insured to infer future expecta-
tions.

Poisson Distribution

We’ll assume that the number of claims for an insured is
Poisson distributed and that the average number of claims in
a year is ¹. The probability of having n claims in a year is given
by:

P[n ¹] = ¹ne ¹=n!: (5.2.1)

¹ is the mean annual number of claims, i.e. E[n] = ¹. Any par-
ticular insured within the population is assumed to have a ¹ that
remains constant over the time period of interest. However, the
estimation of ¹ is the challenge since ¹’s may vary from risk to
risk. You do not know ¹ for a risk selected at random.

Example 5.2.1: The number of claims has a Poisson distribution
with parameter ¹= 2. Calculate the separate probabilities of ex-
actly 0, 1, and 2 claims. Calculate the mean and variance of the
distribution.

[Solution: f(n) = ¹ne ¹=n!. Since ¹= 2:0, f(0) = 20e 2=0! =
:135, f(1) = 21e 2=1! = :271, and f(2) = 22e 2=2! = :271. For
the Poisson distribution, mean = variance = ¹= 2:0:]

PREPUBLICATION



8-96 CREDIBILITY Ch. 8

GRAPH 4

GAMMA DISTRIBUTION

Prior Gamma Distribution
The mean claim frequencies for insureds within the popu-

lation are assumed to be Gamma distributed with probability
density function:

f(¹) = ¸®¹® 1e ¸¹=¡ (®), for ¹ > 0 and ®,¸ > 0:
(5.2.2)

The random variable is ¹ and the parameters that determine
the shape and scale of the distribution are ® and ¸. The mean of
the distribution is ®=¸. So, the average claims frequency across
all insureds in the population is ®=¸. The variance is ®=¸2. f(¹)
defines the prior distribution of the mean claim frequencies.

Let’s consider a particular case of the Gamma p.d.f. with pa-
rameters ®= 3, and ¸= 1:5. The p.d.f. for ¹ is:

f(¹) = 1:53¹3 1e 1:5¹=¡ (3) = 1:6875¹2e 1:5¹, for ¹ > 0:

This p.d.f. is shown in Graph 4.

Gamma-Poisson Mixed Distribution
Suppose that an insured is selected at random from the pop-

ulation of insureds. What is the distribution of the number of
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claims for the insured? Or, equivalently, what is the probability
that you will see exactly n claims in the next time period?

The probability of exactly n claims for an insured with mean
claim frequency ¹ is P[n ¹] = ¹ne ¹=n!. But, ¹ varies across
the population. We need to calculate a weighted average of the
P[n ¹]’s. What weight should we use? Use the p.d.f. (5.2.2),
the relative weights of the ¹’s within the population. After ap-
plying weight f(¹), then we sum over all insureds by taking the
integral.

The number of claims for an insured selected at random from
the population has aGamma-Poisson mixed distribution defined
by the p.d.f.:

g(n) =

0

P[n ¹]f(¹)d¹

=

0

(¹ne ¹=n!)f(¹)d¹=

0

(¹ne ¹=n!)(¸®¹® 1e ¸¹=¡ (®))d¹

(5.2.3a)

= (¸®=n!¡ (®))

0

¹n+® 1e (¸+1)¹d¹

= ¸®=n!¡ (®) ¡ (n+®)(¸+1) (n+®) 53

= ¡ (n+®)=n!¡ (®) ¸=(¸+1) ® 1=(¸+1) n (5.2.3b)

= (n+® 1)!=n!(® 1)! ¸=(¸+1) ® 1 ¸=(¸+1) n

=
n+® 1

n
p®(1 p)n (5.2.3c)

Note that we have substituted p for ¸=(¸+1) in (5.2.3c).

53In this derivation we used equation (5.1.2): ¡ (®)¸ ® =
0
t® 1e ¸tdt. Through sub-

stitution of t for (¸+1)¹, it can be shown that
0
¹n+® 1e (¸+1)¹d¹= ¡ (n+®)

(¸+1) (n+®).
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Thus the prior mixed distribution is in the form of the Neg-
ative Binomial distribution with k = ® and p= ¸=(¸+1):

n+ k 1

n
pk(1 p)n (5.2.3d)

The Negative Binomial distribution evaluated at n is the prob-
ability of seeing exactly n claims in the next year for an insured
selected at random from the population. The mean of the nega-
tive binomial is k(1 p)=p and the variance is k(1 p)=p2. (See
the Appendix.) In terms of ® and ¸, the mean is ®=¸ and the
variance is ®(¸+1)=¸2.

Example 5.2.2: The number of claims has a Negative Binomial
distribution with parameters k = ® and p= ¸=(¸+1). Assume
®= 3:0 and ¸= 1:5. Calculate the separate probabilities of ex-
actly 0, 1, and 2 claims. Also calculate the mean and variance of
the distribution.

[Solution: First, p= ¸=(¸+1) = 1:5=(1:5+1) = :60 and k = ®=
3:0. Next f(n) = (n+® 1)!=(n!(® 1)!) p®(1 p)n = (n+
3 1)!=(n!(3 1)!) (:63)(1 :6)n. So, f(0) = (0+2)!=(0!(2)!)
:63(:4)0 = :216, f(1) = (1+2)!=(1!(2)!) :63(:4)1 = :259, and
f(2) = (2+2)!=(2!(2)!) :63(:4)2 = :207. The mean = k(1 p)=
p= ®=¸= 2:0 and variance = k(1 p)=p2 = ®(¸+1)=¸2 = 3(1:5
+1)=1:52 = 3:33:]

Compare example 5.2.2 with example 5.2.1. Even though the
two distributions have the same mean 2.0, the variance of the
Negative Binomial is larger.54 The uncertainty introduced by the
random selection of an insured from the population has increased
the variance.

5.2. Exercises

5.2.1. For an insurance portfolio the distribution of the num-
ber of claims a particular policyholder makes in a year

54For Negative Binomial, variance>mean. For Poisson, variance = mean. For Binomial,
variance<mean.
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is Poisson with mean ¹. The ¹-values of the policyholders
follow the Gamma distribution, with parameters ®= 4,
and ¸= 9. Determine the probability that a policyholder
chosen at random will experience 5 claims over the next
year.

5.2.2. The number of claims X for a given insured follows a
Poisson distribution, P[X = x] = µxe µ=x!. Over the popu-
lation of insureds the expected annual mean of the Poisson
distribution follows the distribution f(µ) = 9µe 3µ over the
interval (0, ). An insured is selected from the population
at random.What are the mean and variance for the number
of claims for the selected insured?

5.2.3. Assume that random variable X is distributed according to
a Negative Binomial with parameters k = 2 and p= 0:6.
What is the probability that the observed value of X is
greater than 2?

5.2.4. Assume the following information:

1. the claim count N for an individual insured has a Pois-
son distribution with mean ¸; and

2. ¸ is uniformly distributed between 1 and 3.

Find the probability that a randomly selected insured will
have no claims.

5.2.5. Prove each of the following:

1. For the Binomial distribution, the mean is greater than
or equal to the variance.

2. For the Negative Binomial, the mean is less than or
equal to the variance.

If the means are equal for a Binomial distribution, Poisson
distribution, and a Negative Binomial distribution, rank
the variances by size for the three distributions.
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5.3. Bayesian Analysis on the Gamma-Poisson Model

The Gamma p.d.f. f(¹) defined in section 5.2 is the prior
distribution for the mean annual claims frequency ¹ for a risk
selected at random from the population. But, the p.d.f. can be
updated using Bayesian analysis after observing the insured. The
distribution of ¹ subsequent to observations is referred to as the
posterior distribution, as opposed to the prior distribution.

Suppose that the insured generates C claims during a one-year
observation period. We want to calculate the posterior distribu-
tion for ¹ given this information: f(¹ n=C). Bayes Theorem
stated in terms of probability density functions is:55

f(¹ n=C) = P[C ¹]f(¹)=P(C) (5.3.1)

We have all of the pieces on the right hand side. They are for-
mulas (5.2.1), (5.2.2), and (5.2.3b). Putting them all together:

f(¹ n= C) = [¹Ce ¹=C!][¸®¹® 1e ¸¹=¡ (®)]=

[ ¡ (C+®)=C!¡ (®) ¸=(¸+1) ® 1=(¸+1) C]

Through cancellations and combining terms, this can be simpli-
fied to:

f(¹ n=C) = (¸+1)®+C¹®+C 1e (¸+1)¹=¡ (®+C)

(5.3.2)

Substituting ® = ®+C and ¸ = ¸+1, yields:

f(¹ n= C) = ¸ ® ¹® 1e ¸ ¹=¡ (® ) (5.3.3)

This is the posterior distribution for ¹ and it is also a Gamma
distribution.

The fact that the posterior distribution is of the same form
as the prior distribution is why the Gamma is called a Conju-
gate Prior Distribution for the Poisson.

55See Section 3.3.
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Example 5.3.1: The distribution of annual claims frequencies ¹
within a population of insureds is Gamma with parameters ®=
3:0 and ¸= 1:5. An insured is selected at random.

1. What is the expected value of ¹?

2. If the insured is observed to have a total of 0 claims dur-
ing a one-year observation period, what is the expected
value of ¹ for the insured?

3. The insured is observed to have a total of 5 claims during
a one-year observation period, what is the expected value
of ¹ for the insured?

[Solution: (1) E[¹] = ®=¸= 3:0=1:5 = 2:0. (2) E[¹ 0 claims in
one year] = (®+0)=(¸+1) = (3+0)=(1:5+1) = 1:2. (3) E[¹ 5
claims in one year] = (®+5)=(¸+1) = (3+5)=(1:5+1) = 3:2:]

In example 5.3.1, prior to any observations of the insured, our
estimate of the expected claim frequency ¹ is just the population
average 2.0 claims per year. If we observe 0 claims in one-year,
then we lower our estimate to 1.2 claims per year. On the other
hand, if we observe 5 claims in one year, we raise our estimate
to 3.2.

Although the distribution of ¹ remains Gamma as more in-
formation is gathered about the risk, the shape of the distribution
changes. Graph 5 shows as in example 5.3.1, (1) a prior distribu-
tion with ®= 3:0 and ¸= 1:5, (2) the posterior distribution after
observing 0 claims in one-year, and (3) the posterior distribution
after observing 5 claims in one-year.

Multiple Years of Observation
Suppose we now observe the insured for two years and see

C1 claims in the first year and C2 claims in the second year.
What is the new posterior distribution? The posterior distribu-
tion f(¹ n= C1) after the first observation year becomes the
new prior distribution at the start of the second observation year.
After observing C2 claims during the second year, the posterior
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GRAPH 5

GAMMA DISTRIBUTION

distribution is again a Gamma distribution, but with parameters
® = ® +C2 = ®+C1 +C2 and ¸ = ¸ +1 = ¸+1+1. Contin-
uing the observations for a total of Y years and total observed
claims of C =C1 +C2 + +CY produces a final posterior dis-
tribution that is still Gamma but with parameters:

®̂= ®+C

ˆ̧ = ¸+Y

The mean of the posterior distribution is (®+C)=(¸+Y). This is
E[¹ C claims in Y years] and the expected value of the annual
claims frequency for the insured.

Thus for the Gamma-Poisson the posterior density function
is also a Gamma. This posterior Gamma has a first parameter
equal to the prior first parameter plus the number of claims
observed. The second parameter equals the prior second pa-
rameter plus the number of exposures (usually years) observed.

Example 5.3.2: The distribution of annual claims frequencies
¹ within a population of insureds is Gamma with parameters
®= 3:0 and ¸= 1:5. An insured is selected at random and then
observed for two years. The insured has two claims during the
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first year and four claims during the second year. What are the
parameters of the posterior Gamma distribution for this risk?

[Solution: C = 2+4 = 6 and Y = 2, so ®̂= 3+6 = 9 and ˆ̧ =
1:5+2 = 3:5.]

Predictive Distribution
The distribution of the number of claims for the selected in-

sured still follows a Negative Binomial. That’s because the pos-
terior distribution is still Gamma. But, in formula (5.2.3c) ® is
replaced by ®+C and p is replaced p= (¸+Y)=(¸+1+Y). This
posterior mixed distribution is referred at the predictive distri-
bution.

Example 5.3.3: The distribution of annual claims frequencies ¹
within a population of insureds is Gamma with parameters ®=
3:0 and ¸= 1:5. An insured is selected at random.

1. Prior to any observations of the insured, what is the prob-
ability that the insured will have two or more claims in
a year?

Suppose that the insured is observed to have two claims dur-
ing the first year and four claims during the second year.

2. What is the probability that the insured will have two or
more claims in a year?

[Solution: (1) With ®= 3:0 and ¸= 1:5, the parameters for the
Negative Binomial distribution are k = 3 and p= 1:5=(1:5+1) =
:6. (See formula (5.2.3d).) Then,

P[0 claims] =
2

0
:63:40 = :216 and

P[1 claim] =
3

1
:63:41 = :2592:

So, P[2 or more claims] = 1 :216 :2592 = :5248.
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(2) The new parameters for the Gamma posterior distribution
are ®̂= 3+6 = 9 and ˆ̧ = 1:5+2 = 3:5. The parameters for the
predictive Negative Binomial distribution are k = ®̂= 9 and p=
3:5=(1+3:5) = :778. Using formula (5.2.3d),

P[0 claims] =
8

0
:7789:2220 = :104 and

P[1 claim] =
9

1
:7789:2221 = :209:

So, P[2 or more claims] = 1 :104 :209 = :687. The fact that
we observed 6 claims in two years has raised our estimate of
the probability of having two or more claims in a year versus
our estimate for someone randomly selected from the population
without any additional information.]

The Gamma-Poisson is one example of conjugate prior dis-
tributions. There are many other conjugate priors. Examples in-
clude the Beta-Bernoulli for frequency and the Normal-Normal
for severity.

Figure 4 shows the relationships between the Gamma Prior,
Gamma Posterior, Negative Binomial mixed distribution, and
Negative Binomial predictive distribution for the Gamma-Poisson
frequency process.

5.3. Exercises

5.3.1. The number of claims is distributed according to a
Gamma-Poisson mixed distribution. The prior Gamma has
parameters ®= 4 and ¸= 2. Over a three-year period, 5
claims were observed. Calculate the parameters ® and ¸
of the posterior Gamma distribution.

5.3.2. Let the likelihood of a claim be given by a Poisson dis-
tribution with parameter µ. The prior density function of
µ is given by f(µ) = 32µ2e 4µ. You observe 1 claim in 2
years. What is the posterior density function of µ?
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FIGURE 4

GAMMA-POISSON FREQUENCY PROCESS

Poisson parameters of individuals making up the entire portfolio are distributed
via a Gamma Distribution with parameters ® and ¸ : f(x) = ¸®x® 1e ¸x=¡ (®).
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5.3.3. The number of claims X for a given insured follows a
Poisson distribution, P[X = x] = µxe µ=x!. The expected
annual mean of the Poisson distribution over the popula-
tion of insureds follows the distribution f(µ) = e µ over
the interval (0, ). An insured is selected from the popu-
lation at random. Over the last year this particular insured
had no claims. What is the posterior density function of µ
for the selected insured?

5.3.4. An automobile insurer entering a new territory assumes
that each individual car’s claim count has a Poisson dis-
tribution with parameter ¹ and that ¹ is the same for all
cars in the territory for the homogeneous class of busi-
ness that it writes. The insurer also assumes that ¹ has a
gamma distribution with probability density function

f(¹) = ¸®¹® 1e ¸¹=¡ (®)

Initially, the parameters of the gamma distribution are as-
sumed to be ®= 50 and ¸= 500. During the subsequent
two-year period the insurer covered 750 and 1100 cars
for the first and second years, respectively. The insurer
incurred 65 and 112 claims in the first and second years,
respectively. What is the coefficient of variation of the
posterior gamma distribution? (The coefficient of varia-
tion is the standard deviation divided by the mean.)

5.3.5. The likelihood of a claim is given by a Poisson distribution
with parameter µ. The prior density function of µ is given
by f(µ) = 32µ2e 4µ. A risk is selected from a population
and you observe 1 claim in 2 years. What is the probability
that the mean claim frequency for this risk falls in the
interval [1, 2]? (Your answer can be left in integral form.)

5.3.6. You are given the following:

You are trying to estimate the average number of claims
per exposure, ¹, for a group of insureds.

Number of claims follows a Poisson distribution.
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Prior to the first year of coverage, ¹ is assumed to have
the Gamma distribution f(¹) = 1000150¹149e 1000¹=
¡ (150), ¹ > 0.

In the first year, 300 claims are observed on 1,500 ex-
posures.

In the second year, 525 claims are observed on 2,500
exposures.

After two years, what is the Bayesian probability estimate
of E[¹]?

5.4. Bühlmann Credibility in the Gamma-Poisson Model

As in section 5.3, an insured is selected at random from a
population with a Gamma distribution of average annual fre-
quencies. Using Bühlmann Credibility we want to estimate the
expected annual claims frequency. To do this, we need to calcu-
late the Expected Value of the Process Variance (EPV) and the
Variance of the Hypothetical Means (VHM).

Expected Value of the Process Variance
The means ¹ in the population are distributed according to

the Gamma distribution shown in (5.2.2) with parameters ® and
¸. The mean of the Gamma is ®=¸, so E[¹] = ®=¸. For the Pois-
son distribution, the means and process variances are equal. So,
EPV= E[Process Variance] = E[Mean] = E[¹] = ®=¸.

Variance of the Hypothetical Means
The means ¹ in the population are distributed according to the

Gamma distribution shown in (5.2.2) with parameters ® and ¸.
The variance of the Gamma is ®=¸2. The ¹’s are the hypothetical
means, so VHM= ®=¸2.

Bühlmann Credibility Parameter
Now we have the K parameter for Bühlmann Credibility

in the Gamma-Poisson model: K = EPV=VHM= (®=¸)=(®=¸2)
= ¸.
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Calculating the Credibility Weighted Estimate
An insured is selected at random from a population of in-

sureds whose average annual claims frequencies follow a Gamma
distribution with parameters ® and ¸. Over the next Y years the
insured is observed to have N claims. The credibility-weighted
estimate of the average annual claims frequency for the insured
is calculated as follows:

1. The observed annual claims frequency is N=Y.

2. The credibility of the Y years of observations is: Z =
Y=(Y+K) = Y=(Y+¸).

3. The prior hypothesis of the claims frequency is the mean
of ¹ over the population: E[¹] = ®=¸.

4. The credibility weighted estimate is:

Z(N=Y)+ (1 Z)(®=¸)

= Y=(Y+¸) (N=Y)+ (1 Y=(Y+¸) )(®=¸)

= N=(Y+¸) + ¸=(Y+¸) (®=¸) =
®+N
¸+Y

(5.4.1)

This is exactly equal to the mean of the posterior Gamma
distribution. For the Gamma-Poisson, the estimates from using
Bayesian Analysis and Bühlmann Credibility are equal.56

Example 5.4.1: An insured is selected at random from a popula-
tion whose average annual claims frequency follows a Gamma
distribution with ®= 3:0 and ¸= 1:5. (The insured’s number of
claims is Poisson distributed.) If the insured is observed to have
9 claims during the next three years, calculate the Bühlmann
Credibility weighted estimate of the insured’s average annual
frequency.

56This is a special case of a general result for conjugate priors of members of “linear
exponential families.” This general result is beyond the scope of this chapter. In general,
the estimates from Bayesian Analysis and Bühlmann Credibility may not be equal.
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[Solution: This can be calculated directly from formula (5.4.1):
E[¹ 9 claims in 3 years] = (3 + 9)=(1:5 + 3) = 2:67. Alterna-
tively if we want to go through all of the steps, EPV = 3:0=1:5,
VHM= 3:0=1:52 = 1:333, K = 2=1:333 = 1:5, and Z = 3=(3+
1:5) = 2=3. The prior estimate of the average annual frequency
is 3:0=1:5 = 2. The observed estimate is 9=3 = 3. The credibility
weighted estimate is (2=3)(3)+ (1=3)(2) = 2:67.]

5.4. Exercises

5.4.1. An insured is selected at random from a population whose
average annual claims frequency follows a Gamma distri-
bution with ®= 2:0 and ¸= 8:0. The distribution of the
number of claims for each insured is Poisson. If the in-
sured is observed to have 4 claims during the next four
years, calculate the Bühlmann Credibility weighted esti-
mate of the insured’s average annual claims frequency.

5.4.2. You are given the following:

A portfolio consists of 1,000 identical and independent
risks.

The number of claims for each risk follows a Poisson
distribution with mean µ.

Prior to the latest exposure period, µ is assumed to have
a gamma distribution, with parameters ®= 250 and ¸=
2000.

During the latest exposure period, the following loss ex-
perience is observed:

Number of Claims Number of Risks

0 906
1 89
2 4
3 1

1,000
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Determine the mean of the posterior distribution of µ.

5.4.3. You are given the following:

Number of claims follows a Poisson distribution with
parameter ¹.

Prior to the first year of coverage, ¹ is assumed to have
the Gamma distribution f(¹) = 1000150¹149e 1000¹=
¡ (150), ¹ > 0.

In the first year, 300 claims are observed on 1,500 ex-
posures.

In the second year, 525 claims are observed on 2,500
exposures.

After two years, what is the Bühlmann probability estimate of
E[¹]?

Use the following information for the next three questions:

Each insured has its accident frequency given by a Poisson
Process with mean µ. For a portfolio of insureds, µ is distributed
uniformly on the interval from 0 to 10.

5.4.4. What is the Expected Value of the Process Variance?

5.4.5. What is the Variance of the Hypothetical Means?

5.4.6. An individual insured from this portfolio is observed to
have 7 accidents in a single year. Use Bühlmann Cred-
ibility to estimate the future accident frequency of that
insured.

6. PRACTICAL ISSUES

This last section covers miscellaneous topics that are impor-
tant in the application of credibility theory.

6.1. Examples of Choices for the Complement of Credibility

In the Bühlmann Credibility model, observations are made of
a risk or group of risks selected from a population. Some char-
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acteristic of the risk, for example frequency, is to be estimated.
If the observed frequency of the risk is not fully credible, then
it is credibility weighted against the frequency estimate for the
whole population.

This is the basic principle underlying experience rating plans
that are widely used in calculating insurance premiums for com-
mercial risks. The actual loss experience for an individual in-
sured is used to adjust a “manual rate.” (The “manual rate” is
the rate from the insurance company’s rate manual.) If the in-
sured’s experience has little or no credibility, then the insurance
company will charge the insured the “manual rate” for the next
time period. But, to the extent that the insured’s prior experience
is credible, the rate will be adjusted downward if the insured has
better experience that the average risk to which the rate applies.
Or, the rate will be adjusted upward if the insured has worse than
average experience.

Credibility theory is used in a variety of situations. In practice,
the actuary often uses judgment in the selection of a complement
of credibility. The selected complement of credibility should be
relatively stable and relevant to the random variable to be esti-
mated.57

Example 6.1.1: The Richmond Rodents, your hometown’s semi-
professional baseball team, recruited a new pitcher, Roger
Rocket, at the start of the season. In the first two games of a
fifty game season, Roger had three hits in four at bats, a .750
batting average.

You have been asked to forecast Roger’s batting average over
the whole fifty game season. What complements of credibility
would you consider using to make a credibility weighted fore-
cast?

[Solution: Some complements of credibility you might consider
include: Roger’s batting average in high school, the total batting

57See Boor, “The Complement of Credibility,” PCAS LXXXIII, 1996.
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average of the Rodent’s pitching staff over the last few years, or
last season’s batting average for all pitchers in the league.]

The following table lists a quantity to be estimated and a
potential complement of credibility:

Value to be Estimated Potential Complement of Credibility

New rate for Carpenters’ workers
compensation insurance

Last year’s rate for Carpenters’
workers compensation insurance58

Percentage increase for automobile
rates in Wyoming

Weighted average of the inflation
rates for automobile repair costs and

medical care

Percentage change in rate for a rating
territory in Virginia

Percent that the average statewide rate
will change in Virginia

Rate to charge a specific Carpenter
contracting business for workers

compensation insurance

The average workers compensation
insurance rate for Carpenters

In each case, the complement of credibility should be a rea-
sonable estimate of the quantity of interest.

6.2. Impacts of Differences of Credibility Parameters

Relatively small differences of credibility formula param-
eters generally do not have big impacts on credibility esti-
mates. In Graph 6 we show three credibility curves. The mid-
dle curve is a Bühlmann credibility formula Z = n=(n+5,000)
where 5,000 was substituted for the K parameter. The bottom
curve shows the results of increasing the K parameter by 25%
to K = 1:25 5,000 = 6,250. The top curve shows a smaller
K value with K = :75 5,000 = 3,750. Note that changing the
Bühlmann credibility parameter by 25% has a relatively insignif-
icant impact on the credibility.

58As with all complements of credibility, last year’s rate may need to be adjusted for
changes since then. For example, one might adjust it by the average rate change for all
classes.
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GRAPH 6

DIFFERENCE IN K PARAMETER

In practice, it is not necessary to precisely determine the best
credibility formula parameters.59 In fact, a good estimate is really
the best that one can do.60 Similar comments apply to Classical
Credibility.

6.2. Exercises

6.2.1. The rate for workers compensation insurance for carpen-
ters is currently $18.00 (per $100 of payroll.) The average
rate over all classes is indicated to decrease 10%. The in-
dicated rate for carpenters based on recent data is $15.00.
This recent data corresponds to $3 million of expected
losses. Calculate the proposed rate for carpenters in each
following case:

1. Using Bühlmann credibility parameter K = $5 million:

2. Using Bühlmann credibility parameter K = $10 million:

3. Using $60 million of expected losses as the Standard
for Full Credibility.

59Estimating K within a factor of two is usually sufficient. See Mahler’s “An Actuarial
Note on Credibility Parameters,” PCAS LXXIII, 1986.
60Sometimes an actuary will judgmentally select K. Note that K is the volume of data
that will be given 50% credibility by the Bühlmann credibility formula.
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GRAPH 7

CLASSICAL VS. BÜHLMANN CREDIBILITY

6.3. Comparison of Classical and Bühlmann Credibility

Although the formulas look very different, Classical Credibil-
ity and Bühlmann Credibility can produce very similar results as
seen in Graph 7.

The most significant difference between the two models is
that Bühlmann Credibility never reaches Z = 1:00 which is an
asymptote of the curve. Either model can be effective at improv-
ing the stability and accuracy of estimates.

Classical Credibility and Bühlmann Credibility formulas will
produce approximately the same credibility weights if the full
credibility standard for Classical Credibility, n0, is about 7 to 8
times larger than the Bühlmann Credibility parameter K.61

Three estimation models were presented in this chapter: (1)
Classical Credibility, (2) Bühlmann Credibility, and (3) Bayesian
Analysis. For a particular application, the actuary can choose the
model appropriate to the goals and data. If the goal is to generate

61This assumes that the Bühlmann Credibility formula is stated in terms of the number of
claims. If it is not, then a conversion needs to be made. Suppose the Bühlmann Credibility
formula is E=(E+K) where E is earned premium. Further, assume that $2,000 in earned
premium is expected to generate one claim on average. Then, setting the full credibility
standard n0 equal to 7 or 8 times K=2,000 produces similar credibility weights.
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the most accurate insurance rates, with least squares as the mea-
sure of fit, then Bühlmann Credibility may be the best choice.
Bühlmann Credibility forms the basis of most experience rating
plans. It is often used to calculate class rates in a classification
plan. The use of Bühlmann Credibility requires an estimate of
the EPV and VHM.

Classical Credibility might be used if estimates for the EPV
and VHM are unknown or difficult to calculate. Classical Cred-
ibility is often used in the calculation of overall rate increases.
Often it is simpler to work with. Bayesian Analysis may be an
option if the actuary has a reasonable estimate of the prior dis-
tribution. However, Bayesian Analysis may be complicated to
apply and the most difficult of the methods to explain to nonac-
tuaries.

6.4. The Importance of Capping Results

Credibility is a linear process, and thus extreme cases can
present difficulties requiring special attention. A properly chosen
cap may not only add stability, but may even make the method-
ology more accurate by eliminating extremes. A class rating plan
may have hundreds, if not thousands, of classifications. Credi-
bility weighting can smooth out the fluctuations as rates or rela-
tivities are determined for each class, but with so many different
classes, there will be extreme situations.

Suppose one is using a Classical Credibility model and that a
full credibility standard has been selected so that the observations
should be within 10% of the expected mean 95% of the time.
This also means that 5% of the time the estimates will be more
than 10% away from the expected mean. If there are 500 classes,
then 25 classes on average will fall outside of the range, and some
of these may be extreme.

In Classical Credibility, we assume the normal approximation.
In practice this may not be a good assumption, particularly for
situations where there is a limited volume of data. Insurance
claim severities tend to be skewed to the right—in some cases
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highly skewed.62 This is particularly true for some types of lia-
bility insurance and insurance providing fire coverage for highly
valued property. A few large claims can result in very large pure
premiums or high loss ratios. As the next section explains, this
problem can be addressed by capping individual claims, but there
is still the chance that several of these claims can occur during
the same time period. Plus, even a capped loss can have a large
impact if the volume of data is limited.

Credibility theory assumes that the underlying loss process is
random and that events are independent. This may not always
be true in the data you are working with. For example, weather
events may produce a rash of claims. A spell of bitter cold can
lead to many fire losses as people use less safe methods to heat
their houses. Or, a couple of days of icy streets can produce
many collision losses. The actuary can try to segregate out these
special events, but it is not always possible to identify these and
make appropriate adjustments.

Capping results is a good supplement to the credibility weight-
ing process and makes the estimates more reliable. Users of the
estimates may be more willing to accept them knowing that one
or two events did not unduly affect the results.

6.4. Exercises

6.4.1. The workers compensation expected loss for crop dusting
(via airplane) is $20 per $100 of payroll. Angel’s Crop
Dusting had $300,000 of payroll and one claim for $4
million over the experience period. Predict Angel’s fu-
ture expected losses per $100 of payroll in each of the
following cases:

1. You use the losses as reported and a Bühlmann credi-
bility parameter of $80,000 in expected losses.

62There is a significant probability that large claims will occur. The means for such
distributions can be much larger than the medians.
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2. You use the losses limited to $200,000 per claim and
a Bühlmann credibility parameter of $50,000 in lim-
ited expected losses. Assume that limiting losses to
$200,000 per claim reduces them on average to 95%
of unlimited losses.

6.5. Capping Data Used in Estimation

A technique commonly used in conjunction with credibility
weighting is to cap large losses. Capping large losses can reduce
the variance of observed incurred losses allowing more credibil-
ity to be assigned to the observations.

Suppose an actuary is calculating automobile insurance rates
in a state. The rates will vary by geographic territory within the
state. To limit the impact of individual large losses on territorial
rates, each individual loss is capped at a selected amount, say
$100,000. If a loss is larger than $100,000, then $100,000 is
substituted for the actual amount. So, only the first $100,000 of
any loss is included in a territory’s loss data. The amounts above
$100,000 can be pooled and prorated across all territories in the
state.

The Classical Credibility standard for full credibility is shown
in formula (2.5.4):

nF = n0(1+ (¾S=¹S)
2)

nF is the expected number of claims required for a weight of
100% to be assigned to the data. Capping large losses reduces
nF by reducing the size of the coefficient of variation of the
severity, CVS = ¾S=¹S.

Example 6.5.1: Assume that claim losses can occur in three sizes
in the following proportions:

Size of Loss Proportion of Losses

$1,000 80%
$20,000 15%
$100,000 5%
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1. Calculate the coefficient of variation, CVS = ¾S=¹S, for
the severity of uncapped losses.

2. Calculate the coefficient of variation for severity if losses
are capped at $50,000.

[Solution: (1) Uncapped losses: ¹S = :80(1,000)+ :15(20,000)
+:05(100,000)=8,800. And, ¾S =[:80(1,000)

2+ :15(20,000)2+
:05(100,000)2 8,8002]1=2 =21,985. So, CVS=¾S=¹S=21,985=
8,800 = 2:50.

(2) Capped losses:¹S= :80(1,000)+:15(20,000)+:05(50,000)
= 6,300. Note that 100,000 has been replaced by 50,000 in the
calculation. And, ¾S=[:80(1,000)

2+:15(20,000)2+:05(50,000)2

6,3002]1=2 = 12,088. So, CVS = ¾S=¹S = 12,088=6,300 = 1:92:]

Using the results of example 6.5.1, the full credibility standard
for uncapped losses is: nF = n0(1+ (2:5)

2) = n0(7:25). The full
credibility standard capping losses at $50,000 is: nF = n0(1+
(1:92)2) = n0(4:69). Comparing these values we note that cap-
ping at $50,000 reduced the number of claims required for full
credibility by 35%.

Although Classical Credibility has been used as the setting
to demonstrate capping, capping is also valuable when using a
Bühlmann Credibility model. The process variance is reduced
through capping which in turn usually lowers the K parameter.
(Usually the Expected Value of the Process Variance is reduced
more by capping than is the Variance of the Hypothetical Means.)

6.6. Estimating Credibility Parameters in Practice

This section discusses a few methods to estimate credibility
parameters, but first it should be mentioned that judgment fre-
quently plays a large role in the selection of credibility parame-
ters.

The selection of credibility parameters requires a balancing
of responsiveness versus stability. Larger credibility weights put

PREPUBLICATION



PRACTICAL ISSUES 8-119

more weight on the observations, which means that the current
data has a larger impact on the estimate. The estimates are more
responsive to current data. But, this comes at the expense of
less stability in the estimates. Credibility parameters often are
selected to reflect the actuary’s desired balance between respon-
siveness and stability.

Classical Credibility
With Classical Credibility, P and k values must be chosen

where P is the probability that observation X is within k per-
cent of the mean ¹. Bigger P’s and smaller k’s mean more
stability but smaller credibility for the observations. A com-
mon choice for these values is P = 90% and k = 5%, but there
is no a priori reason why these choices are better than oth-
ers.

When estimating the expected pure premium or loss ratio, the
coefficient of variation of the severity distribution is needed to
calculate the full credibility standard (see formula (2.5.4)). In
practice this can be estimated from empirical data as demon-
strated in the following example.

Example 6.6.1: A sample of 100 claims was distributed as fol-
lows:

Size of Claim Number of Claims

$1,000 85
$5,000 10
$10,000 3
$25,000 2

Estimate the coefficient of variation of the claims severity
based on this empirical distribution.

[Solution: The sample mean is: ¹̂= :85(1,000)+ :10(5,000)+
:03(10,000)+ :02(25,000) = 2,150. The sample standard de-
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viation is: ¾̂ = [1=(100 1)][85(1,000 2,150)2 +10(5,000
2,150)2 +3(10,000 2,150)2 +2(25,000 2,150)2] 1=2 = 3,791
where we are dividing by (n 1) to calculate an unbiased esti-
mate. The coefficient of variation is CVS = ¾̂=¹̂= 3,791=2,150 =
1:76:]

With P = 90% and k = 5%, the full credibility standard for
frequency is n0 = 1082 claims. The full credibility standard
for the pure premium is nF = n0(1+CV

2
S ) = 1,082(1+1:76

2) =
4,434 with the coefficient of variation from example 6.6.1.

Bühlmann Credibility—Estimate EPV and VHM from Data

One way to estimate the K parameter in the formula Z =
N=(N +K) is to compute the numerator and denominator of K
from empirical data.

Suppose that there are M risks in a population and that they
are similar in size. Assume that we tracked the annual frequency
year by year for Y years for each of the risks. The frequencies
are:

X11 X12 : : : X1Y

X21 X22 : : : X2Y

...
...

...

XM1 XM2 : : : XMY

Each row is a different risk and each column is a different year.
So, Xij represents the frequency for the i

th risk and jth year.

Our goal is to estimate the expected frequency for any risk
selected at random from the population. The credibility Z =
N=(N +K) will be assigned to the risk’s observed frequency
where N represents the number of years of observations. The
complement of credibility will be assigned to the mean frequency
for the population.
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The following table lists estimators:

Symbol Estimator

Mean Frequency for Risk i X̄i (1=Y)
Y

j=1
Xij

Mean Frequency for
Population

X̄ (1=M)
M

i=1
X̄i

Process Variance for Risk i ¾̂2i [1=(Y 1)]
Y

j=1

(Xij X̄i)
2

Expected Value of Process
Variance

EPV (1=M)
M

i=1
¾̂2i

Variance of the Hypothetical
Means

VHM [1=(M 1)]
M

i=1
(X̄i X̄)2 EPV=Y

The estimator for the Expected Value of the Process Vari-
ance is just an average of the usual estimators for each risk’s
process variance. The estimator for the Variance of the Hypo-
thetical Means may not be intuitive, but we will use this result
without a rigorous derivation.63 After making the computations
in the above table, we can set K =EPV=VHM. If the sample
VHM is zero or negative, then the credibility can be assigned a
value of 0.

The process variance of risk i, ¾̂2i , is the estimated process
variance of the annual frequency for risk i. Since we have ob-
served the frequency for Y years, we are able to estimate the
variance in the annual frequency.

Example 6.6.2: There are two auto drivers in a particular rating
class. The first driver was observed to have 2 claims in the first
year, 0 in the second, 0 in the third, 1 in the fourth, and 0 in the
fifth. The second driver had the following sequence of claims in
years 1 through 5: 1, 1, 2, 0, 2. Estimate each of the values in
the prior table.

63See Klugman, et al., Loss Models: From Data to Decisions for a more thorough and
rigorous treatment of the estimation of Bühlmann credibility parameters.
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[Solution: For driver #1, X̄1 = (2+0+0+1+0)=5 = :6 and ¾̂
2
1

= [(2 :6)2 + (0 :6)2 + (0 :6)2 + (1 :6)2 + (0 :6)2]=(5 1)
= :80. For driver #2, X̄2 = (1+1+2+0+2)=5 = 1:2 and ¾̂

2
2

= [(1 1:2)2 + (1 1:2)2 + (2 1:2)2 + (0 1:2)2 + (2 1:2)2]=
(5 1) = :70.

The population mean annual frequency is estimated to be
X̄ = (X̄1 + X̄2)=2 = (:6+1:2)=2 = :90. The expected value of the
process variance is EPV = (¾̂21 + ¾̂

2
2)=2 = (:8+ :7)=2 = :75. The

variance of the hypothetical means is VHM= [(X̄1 X̄)2 + (X̄2
X̄)2]=(2 1) EPV=5 = [(:6 :9)2 + (1:2 :9)2]=1 :75=5

= :03:]

The K parameter for the data in example 6.6.2 is K =
EPV=VHM= :75=:03 = 25. The credibility that we would assign
five years of experience is Z = 5=(5+25) = 1=6. Thus the esti-
mated future claim frequency for the first driver is (1=6)(:6)+
(5=6)(:9) = :85. Similarly, the estimated future claim frequency
for the second driver is (1=6)(1:2)+ (5=6)(:9) = :95. While in
most practical applications there would be more than two drivers,
this technique would apply in the same manner. When there are
different sizes of insureds, for example commercial automobile
fleets, the techniques are modified somewhat, but this is beyond
the scope of this chapter.64

In practice there are many techniques used to estimate K. This
was just one example of how to do so. It dealt with the simpler
situation where every insured is of the same size.

Bühlmann Credibility—Estimate K from Best Fit to Data
Experience rating adjusts a policyholder’s premium to reflect

the policyholder’s prior loss experience. If the policyholder has
generated few insurance losses, then experience rating applies a
credit to adjust the premium downward. And, if the policyholder
has had worse than average loss experience, then debits increase

64See Klugman, et al., Loss Models: From Data to Decisions.
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future premiums. A credibility formula of the form Z =N=
(N +K) is usually used to weight the policyholder’s experi-
ence.65

One can estimate K by seeing which values of K would have
worked well in the past. The goal is for each policyholder to
have the same expected loss ratio after the application of expe-
rience rating. Let LRi be the loss ratio for policyholder i where
in the denominator we use the premiums after the application of
experience rating.66 Let LRAVE be the average loss ratio for all
policyholders. Then, define D(K) to be:

D(K) =
all i

(LRi LRAVE)
2

The sum of the squares of the differences is a function of K,
the credibility parameter that was used in the experience rating.
The goal is to find a K that minimizes D(K). This requires re-
computing the premium that each policyholder would have been
charged under a different K value. This generates new LRi’s
that are then put into the formula above and D(K ) is computed.
Using techniques from numerical analysis, a K̂ that minimizes
D(K) can be found.67

Another approach to calculating credibility parameters is lin-
ear regression analysis of a policyholder’s current frequency,
pure premium, etc. compared to prior experience. Suppose that
we want to estimate next year’s results based on the current
year’s. Then, using historical data for many policyholders we
set up our regression equation:

Observation in year Y =

m(Observation in year (Y 1))+Constant

65The credibility weighting can be more complex and involve separate credibility factors
for primary and excess losses.
66The experience modification relies on data from prior years, other than the one being
tested, as well as the value of K.
67Criteria other than least squares can be used to see which credibilities would have
worked well in the past.
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The slope m from a least squares fit to the data turns out to
be the Bühlmann credibility Z. The “Constant” term is (1 Z)
(Overall Average).68 After we have calculated the parameters in
our model using historical data, then we can estimate future re-
sults using the model and recent data. Regression models can
also be built using multiple years.

6.6. Exercises

6.6.1. Sue “Too Much Time on her Hands” Smith recorded her
commute times to work in the morning while driving her
husband’s car during the week her sports car was in the
shop. She also recorded her times for a week when she
got her car back. Here were the results:

Trial Husband’s Car Her Car

1 30 minutes 30 minutes
2 33 minutes 28 minutes
3 26 minutes 31 minutes
4 31 minutes 27 minutes
5 30 minutes 24 minutes

Using Bühlmann Credibility, Sue wants to estimate her
expected commute time to work in her sports car. Calcu-
late EPV, VHM, K, Z, and the credibility weighted esti-
mate.

The next three problems share information and should be worked
in order.

6.6.2. You observe the following experience for five insureds
during years 1, 2, and 3 combined:

68See Mahler, “A Graphical Illustration of Experience Rating Credibilities,” PCAS
LXXXV, 1998 for more information.
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Premiums (prior to
Insured experience mod) Losses Loss Ratio

1 1,000 600 60.0
2 500 200 40.0
3 2,000 1,100 55.0
4 1,500 700 46.7
5 3,000 2,200 73.3

Total 8,000 4,800 60.0

You will calculate experience modifications for these
insureds using the formulas:

Z = P=(P+K), and

M = (L=P)Z +60:0(1 Z) =60:0

where

Z = credibility, K =Bühlmann credibility parameter

P = premium, M = experience modification

L= losses, 60:0 = observed overall loss ratio:

What would the experience modifications be for each
insured if you used K = 1,000?

6.6.3. You observe the following experience for these same five
insureds during year five:

Premiums (prior to
Insured experience mod) Losses Loss Ratio

1 400 300 75.0
2 200 100 50.0
3 900 200 22.2
4 500 200 40.0
5 1,000 700 70.0

Total 3,000 1,500 50.0

PREPUBLICATION



8-126 CREDIBILITY Ch. 8

Experience modifications are calculated using the data
from years 1, 2, and 3 with various values of K.

For K = 1,000 what is the sum of the squared differ-
ences for year five between the modified loss ratios and
the overall average loss ratio?

[Note: Modified premiums are calculated by multiplying
premiums by modification factors. Modified loss ratios
use modified premiums in the denominator.]

6.6.4. For what value of K would the sum of the squared differ-
ences in the previous problem be minimized? (Suggestion:
use a computer to help you find the solution.)
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APPENDIX

FREQUENCY AND LOSS DISTRIBUTIONS

Actuaries commonly use distributions to model the number
of claims and sizes of claims. This appendix will give key facts
about the most commonly used frequency distributions and some
of the more commonly used loss distributions.

Frequency Distributions

Binomial Distribution

Support: x= 0,1,2,3 : : : ,n Parameters: 1> p > 0, n 1.
Let q= 1 p.

Probability density function: f(x) =
n

x
pxqn x

Mean = np

Variance = npq

Special Case: For n= 1 one has a Bernoulli Distribution

Poisson Distribution

Support: x= 0,1,2,3 : : : Parameters: ¸ > 0

Probability density function: f(x) = ¸xe ¸=x!

Mean = ¸

Variance = ¸

Negative Binomial Distribution

Support: x= 0,1,2,3 : : : Parameters: k 0, 0< p< 1.
Let q= 1 p

Probability density function: f(x) =
x+ k 1

x
pkqx

Mean = kq=p= k(1 p)=p
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Variance = kq=p2 = k(1 p)=p2

Special Case: For k = 1 one has a Geometric Distribution

Loss Distributions

Exponential Distribution

Support: x > 0 Parameters: ¸ > 0

Distribution Function: F(x) = 1 e ¸x

Probability density function: f(x) = ¸e ¸x

Moments: E[Xn] = (n!)=¸n

Mean = 1=¸

Variance = 1=¸2

Gamma Distribution

Support: x > 0 Parameters: ®, ¸ > 0

Distribution Function: F(x) = ¡ (®; ¸x)

Probability density function: f(x) = ¸®x® 1e ¸x=¡ (®)

Moments: E[Xn] =
n 1

i=0
(®+ i)=¸n = ¸ n¡ (®+n)=¡ (®)

Mean = ®=¸

Variance = ®=¸2

Special Case: For ®= 1 one has an Exponential Distribution

Weibull Distribution

Support: x > 0 Parameters: c, ¿ > 0

Distribution Function: F(x) = 1 exp( cx¿ )

Probability density function: f(x) = c¿x¿ 1exp( cx¿ )

Moments: E[Xn] = ¡ (1+n=¿)=cn=¿

Special Case: For ¿ = 1 one has an Exponential Distribution
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LogNormal Distribution

Support: x > 0 Parameters:
< ¹<+ , ¾ > 0

Distribution Function: F(x) = ©[ln(x) ¹=¾]

Probability density function: f(x) =
exp[ :5( ln(x) ¹ =¾)2]=
x¾ 2¼

Moments: E[Xn] = exp[n¹+ :5n2¾2]

Mean = exp(¹+ :5¾2)

Variance = exp(2¹+¾2) exp(¾2) 1

Pareto Distribution

Support: x > 0 Parameters: ®, ¸ > 0

Distribution Function: F(x) = 1 (¸=(¸+ x))® =
1 (1+ x=¸) ®

Probability density function: f(x) = (®¸®)(¸+ x) (®+1) =
(®=¸)(1+ x=¸) (®+1)

Moments: E[Xn] = ¸nn!=
n

i=1
(® i) ® > n

Mean = ¸=(® 1) ® > 1

Variance = ¸2®= (® 2)(® 1)2 ® > 2
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SOLUTIONS

Solution 2.2.1: ©(2:576) = :995, so that y = 2:576. n0 = y
2=k2 =

(2:576=:025)2 = 10,617.

Solution 2.2.2: ©(2:326) = :99 = (1+ :98)=2, so that y = 2:326.
n0 = y

2=k2 = (2:326=:075)2 = 962.

Solution 2.2.3: n0 = y
2=k2. Therefore, y = k n0 = :06 900 =

1:80. P = 2©(y) 1 = 2©(1:80) 1 = (2)(:9641) 1 = .9282.

Solution 2.2.4: For Y risks the mean is :05Y and variance is :09Y.
(The means and variances of independent variables each add.)
Thus, the 2% error bars correspond to (:02)(:05Y). The stan-
dard deviation is :3(Y:5). “94% of the time,” corresponds to 1.881
standard deviations, since ©(1:881) = 97%. Thus, we set the
error bars equal to 1.881 standard deviations: (1:881)(:3)Y:5 =
(:02)(:05Y). Therefore, Y = (1:881=:02)2(:09)=:052 = 318,434.

Comment: In terms of claims instead of exposures the full credi-
bility standard would be 318,434 :05 = 15,922 = 8,845 1:8 =
8,845 (variance/mean). If the claim frequency were Poisson, the
variance equals the mean and one would get a standard for full
credibility of 8,845 claims; in this case since the Poisson assump-
tion does not hold one must multiply by an additional term of
(:09=:05) = variance/mean. Since the variance is larger than the
mean, we need more claims to limit the fluctuations than would
be the case with a Poisson frequency.

Solution 2.2.5: Let x be the number of respondents and let p
be the true percentage of yes respondents in the total popu-
lation. The result of the poll is a Binomial Distribution with
variance xp(1 p). Thus the variance of the average is (1=x2)
times this or p(1 p)=x. Using the Normal Approximation, 95%
probability corresponds to 1:96 standard deviations of the
mean of p. Thus we want (:07)(p) = (1:96) (p(1 p)=x). x=
(1:96)( (1 p)=p)=:07: x= 784((1=p) 1). As p gets smaller
x approaches infinity. However, we assume p :2 so that x
784(5 1) = 3,136.
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Comment: The 3,136 respondents are similar to 3,136 expo-
sures. If one has at least a 20% chance of a yes response,
then the expected number of yeses is at least (3,136)(:2) =
627. This is similar in concept to 627 expected claims. The
general form of the standard for full credibility is in terms
of expected claims: (¾2f=¹f)(y

2=k2). In this case, k = :07, P =
95% and y = 1:960. ¾2f=¹f = npq=(np) = q. Thus the stan-
dard for full credibility in terms of expected claims would
be: q(1:960=:07)2 = 784q. In terms of exposures it would be:
784q=p= 784(1=p 1). For p between .2 and .8, this expression
is maximized when p= :2 and is then 784(5 1) = 3,136 expo-
sures.

Solution 2.2.6: For frequency, the general formula for the Stan-
dard for Full Credibility is: (¾2f=¹f) y

2=k2 . Assuming y and k
(not the parameter of a Negative Binomial, but rather the toler-
ance around the true mean frequency) are fixed, then the Stan-
dard for Full Credibility is proportional to the ratio of the vari-
ance to the mean. For the Poisson this ratio is one. For a Negative
Binomial with parameters p and k, this ratio is: (kq=p2)=(kq=p) =
1=p. Thus the second Standard is 1=p= 1=:7 = 1:429 times the
first standard.

Comment: The Negative Binomial has a larger variance than
the Poisson, so there is more random fluctuation, and there-
fore the standard for Full Credibility is larger. For the Poisson
¾2f=¹f = 1. For the Negative Binomial the variance is greater
than the mean, so ¾2f=¹f > 1. Thus for the Negative Binomial
the Standard for Full Credibility is larger than the Poisson case,
all else equal.

Solution 2.2.7: Since the full credibility standard is inversely pro-
portional to the square of k: n0 = y

2=k2, X=Y = (10%=5%)2 = 4.
Alternately, one can compute the values of X and Y assuming
one is dealing with the standard for Frequency. For k = 5% and
P = 90%: ©(1:645) = :95 = (1+ :90)=2, so that y = 1:645, n0 =
y2=k2 = (1:645=:05)2 = 1,082 = X. For k = 10% and P = 90%:
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©(1:645) = :95 = (1+ :90)=2, so that y = 1:645, n0 = y
2=k2 =

(1:645=:10)2 = 271 = Y. Thus X=Y = 1,082=271 = 4.

Comment: As the requirement gets less strict, for example
k=10% rather than 5%, the number of claims needed for Full
Credibility decreases. If one is dealing with the standard for pure
premiums rather than frequency, then both X and Y have an extra
factor of (1+CV2), which doesn’t effect X=Y.

Solution 2.3.1: y = 1:645 since ©(1:645) = :95. n0 = (y=k)
2 =

(1:645=:01)2 = 27060. For severity, the Standard For Full Cred-
ibility is: n0CV

2 = (27,060)(6,000,000=1,0002) = (27,060)(6) =
162,360.

Solution 2.3.2: n0CV
2
S =Full Credibility Standard for Severity.

n0 is the same for both risks A and B. Since the means of the
severity of A and B are the same, but the standard deviation of
severity for B is twice as large as A’s, then CV2S (B) = 4CV

2
S (A).

This implies that n0CVS(B) = 4n0CVS(A) = 4N.

Solution 2.4.1: ¾2PP=¹F¾
2
S+¹

2
S¾
2
F=(13)(200,000)+(300)

2(37)
= 5,930,000.

Solution 2.4.2: Frequency is Bernoulli with p= 2=3, with mean
= 2=3 and variance = (2=3)(1=3) = 2=9. Mean severity = 7:1,
variance of severity = 72:1 7:12 = 21:69. Thus, ¾2PP = ¹F¾

2
S +

¹2S¾
2
F = (2=3)(21:69)+ (7:1

2)(2=9) = 25.66.

For the severity the mean and the variance are computed as
follows:

Square of
Probability Size of Claim Size of Claim

20% 2 4
50% 5 25
30% 14 196

Mean 7.1 72.1
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Solution 2.4.3: The average Pure Premium is 106. The sec-
ond moment of the Pure Premium is 16,940. Therefore, the
variance = 16,940 1062 = 5,704.

Situation Probability Pure Premium Square of P.P.

1 claim @ 50 60.0% 50 2,500
1 claim @ 200 20.0% 200 40,000
2 claims @ 50 each 7.2% 100 10,000
2 claims: 1 @ 50 & 1 @ 150 9.6% 200 40,000
2 claims @ 150 each 3.2% 300 90,000

Overall 100.0% 106 16,940

For example, the chance of 2 claims with one of size 50 and
one of size 150 is the chance of having two claims times the
chance given two claims that one will be 50 and the other 150 =
(:2)(2)(:6)(:4) = 9:6%. In that case the pure premium is 50+
150 = 200. One takes the weighted average over all the possibil-
ities.

Comment: Note that the frequency and severity are not indepen-
dent.

Solution 2.4.4: Since the frequency and severity are indepen-
dent, the process variance of the Pure Premium= (mean fre-
quency)(variance of severity)+ (mean severity)2 (variance of fre-
quency)= .25 [(variance of severity)+ (mean severity)2]=
.25 (2nd moment of the severity)

= (:25=5,000)
5000

0
x2dx

= (:25=5,000)(5,000)3=3 = 2,083,333:

Solution 2.4.5: The mean severity = exp(¹+ :5¾2) = exp(4:32) =
75:19. Thus the mean aggregate losses is (8,200)(75:19) =
616,547. The second moment of the severity = exp(2¹+2¾2) =
exp(9:28) = 10,721. Thus since the frequency is Poisson and in-
dependent of the severity the variance of the aggregate losses
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= ¹F (2nd moment of the severity)= (8,200)(10,721) = 87.91
million.

Solution 2.4.6: For a Poisson frequency, with independent fre-
quency and severity, the variance of the aggregate losses =
¹F (2nd moment of the severity) = (0:5)(1,000) = 500.

Solution 2.4.7: Since we have a Poisson Frequency, the Pro-
cess Variance for each type of claim is given by the mean fre-
quency times the second moment of the severity. For exam-
ple, for Claim Type Z, the second moment of the severity is
(1,5002 +2,000,000) = 4,250,000. Thus, for Claim Type Z the
process variance of the pure premium is: (:01)(4,250,000) =
42,500. Then the process variances for each type of claim add
to get the total variance, 103,570.

Type Square Variance Process
of Mean Mean of Mean of Variance

Claim Frequency Severity Severity Severity of P.P.

W 0.02 200 40,000 2,500 850
X 0.03 1,000 1,000,000 1,000,000 60,000
Y 0.04 100 10,000 0 400
Z 0.01 1,500 2,250,000 2,000,000 42,500

Sum 103,750

Solution 2.5.1: For a LogNormal, the mean severity = exp(¹+
:5¾2) = exp(4:32) = 75:19. The second moment of the sever-
ity = exp(2¹+2¾2) = exp(9:28) = 10,721. Thus 1+CV2 = sec-
ond moment divided by square of the mean = 10,721=75:192 =
1:896. (Note that for the LogNormal Distribution: 1+CV2 =
exp(¾2) = exp(:82) = 1:8965:) y = 1:645 since ©(1:645) = :95
= (1+ :90)=2. Therefore, n0 = y

2=k2 = (1:645=:025)2 = 4,330.
Therefore, nF = n0(1+CV

2) = (4,330)(1:896) = 8,210 claims.

Solution 2.5.2: Square of Coefficient of Variation = (2 million)=
(1,0002) = 2. The Normal distribution has a 99.5% chance of
being less than 2.575. Thus y = 2:575. k = 10%. Therefore, in
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terms of number of claims the full credibility standard is =
y2(1+CV2)=k2 = (2:5752)(1+2)=10%2 = 1989 claims. This is
equivalent to 1989=:04 = 49,725 policies.

Solution 2.5.3: The severity has a mean of 16.67 and a second
moment of 416.67:

50

0
xf(x)dx= :0008

50

0
(50x x2)dx

= :0008(25x2 x3=3)
50

0

= 16:67

50

0
x2f(x)dx= :0008

50

0
(50x2 x3)dx

= :0008(50x3=3 x4=4)
50

0

= 416:67

1+CV2 = E[X2]=E2[X] = 416:67=16:672 = 1:5:

The standard for Full Credibility for the pure premiums for
k = 2:5% is, therefore, nF = n0(1+CV

2) = (5,000)(1:5) = 7,500.
For k=9% we need to multiply by (2:5=9)2 since the full credibil-
ity standard is inversely proportional to k2. 7,500(2:5=9)2 = 579.

Solution 2.5.4: We have y = 2:576 since ©(2:576) = :995. There-
fore, n0 = (y=k)

2 = (2:576=:10)2 = 663. nF = n0(1+CV
2), there-

fore, CV = (nF=n0) 1 = (2,000=663) 1 = 1.42.

Solution 2.5.5: We have y = 1:960 since ©(1:960) = :975. There-
fore, n0 = (y=k)

2 = (1:960=:20)2 = 96. The mean severity is
(10)(:5)+ (20)(:3)+ (50)(:2) = 21. The variance of the sever-
ity is: (112)(:5)+ (12)(:3)+ (292)(:2) = 229. Thus, the coefficient
of variation squared = 229=212 = :519. nF = n0(1+CV

2) =
96(1:519) = 146.

Solution 2.5.6: The Poisson assumption does not apply so we
use formula [2.5.5]: nF = (y

2=k2)(¾2f=¹f +¾
2
s =¹

2
s ). We have y =
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1:960 since ©(1:960) = :975. Therefore, (y=k)2 = (1:960=:20)2 =
96. The mean severity is (10)(:5)+ (20)(:3)+ (50)(:2) = 21. The
variance of the severity is: (112)(:5)+ (12)(:3)+ (292)(:2) = 229.
Therefore, ¾2s =¹

2
s = 229=21

2 = :519. The variance of the fre-
quency is twice the mean, so ¾2f=¹f = 2. The answer is: nF =
(96)(2+ :519) = 242. Because of the greater variance in fre-
quency relative to the mean, more claims are required for the
Negative Binomial frequency than the Poisson frequency in the
previous problem.

Solution 2.5.7: ©(2:327) = :99, so y = 2:327. For frequency, the
standard for full credibility is (2:327=:025)2 = 8,664. On the
other hand, the Standard for Full Credibility for the pure
premium: ©(1:645) = :95, so y = 1:645. Thus, 8,664 = nF =
(y2=k2)(1+CV2) = (1:6452=k2)(1+3:52) = 35:85=k2. Thus, k =
(35:85=8,664) = .064.

Solution 2.5.8: The mean of the severity distribution is 100,000
=2 = 50,000. The Second Moment of the Severity Distribu-
tion is the integral from 0 to 100,000 of x2f(x), which
is 100,0003=3(100,000). Thus, the variance is 100,0002=3
50,0002 = 833,333,333. Thus, the square of the coefficient of
variation is 833,333,333=50,0002 = 1=3. k = 5% (within 5%)
and since P = :95, y = 1:960 since ©(1:960) = (1+P)=2 = :975.

The Standard for Full Credibility Pure Premium = (y=k)2

(1+CV2) = (1:96=:05)2 (1+1=3) = 1537 (4=3) = 2,049 claims.

Solution 2.5.9: nF = (y=k)
2(1+CV2). If the CV goes from 2 to

4, and k doubles then the Standard for Full Credibility is multi-
plied by (1+42)=(1+22) =22 = (17=5)=4. Thus, the Standard
for Full Credibility is altered to: (1,200)(17=5)=4 = 1,020.

Solution 2.6.1: Z = (300=2,000) = 38.7%.

Solution 2.6.2: Since the credibility is proportional to the square
root of the number of claims, we get (36%)( 10) = 114%. How-
ever, the credibility is limited to 100%.
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Solution 2.6.3: Z = (803=2,500) = :567. Observed average cost
per claim is 9,771,000=803 = 12,168. Thus the estimated sever-
ity = (:567)(12,168)+ (1 :567)(10,300) = $11,359.

Solution 2.6.4: The expected number of claims is (:06)(2,000) =
120. Z = (120=3,300) = 19:1%.

Comment: The Standard for Full Credibility could be given in
terms of house-years rather than claims: for 3,300=:06 = 55,000
house-years one expects 3,300 claims.

The credibility for 2,000 house years is: (2,000=55,000) =
19:1%.

Solution 2.6.5: ©(2:17) = :985, so that y = 2:17. n0 = y
2=k2 =

(2:17=:04)2 = 2,943. For the Gamma Distribution, the mean
is ®=¸, while the variance is ®=¸2. Thus the coefficient of
variation is (variance:5)=mean = ®=¸2 :5=®=¸= 1=®:5. So for
the given Gamma with ®= 1:5: (1+CV2) = 1+1=1:5 = 1:667.
nF = n0(1+CV

2) = (2,943)(1:667) = 4,905. Z = (150=4,905)
= 17:5%.

Solution 2.6.6: The credibility Z = (600=5,400) = 1=3. Thus
the new estimate is: (1=3)(1,200)+ (1 1=3)(1,000) = $1,067.

Solution 2.6.7: (1 + P)=2 = (1:96)=2 = :98. Thus, y = 2:054
since ©(2:054) = :98. The standard for full credibility is:
(y2=k2)(1+CV2) = (2:054=:10)2 (1+ :62) = 574 claims. Thus,
we assign credibility of Z = (213=574) = 60.9%.

Solution 2.6.8: k = :05 and P = :90. y = 1:645, since ©(1:645) =
:95 = (1+P)=2. n0 = y

2=k2 = (1:645=:05)2 = 1,082. The mean
of the severity distribution is 100,000. The second moment of
the severity is the integral of x2=200,000 from 0 to 200,000,
which is 200,0002=3. Thus, the variance is 3,333,333,333.
The square of the coefficient of variation is variance/mean2 =
3,333,333,333=100,0002 = :3333. Thus, nF = n0(1+CV

2) =
(1,082)(1:333) = 1,443. For 1,082 claims Z = (1,082=1,443) =
(3=4) = .866.
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Solution 2.6.9: Z = (10,000=17,500) = 75:6%. Thus, the new
estimate = (25 million)(:756)+ (20 million)(1 :756) = $23.78
million.

Solution 2.6.10: Z = (n=standard for full credibility) =
(n=2,000). Setting the credibility equal to .6: :6 = (n=2,000).

Therefore, n= (:62)(2,000) = 720 claims.

Solution 2.6.11: We are given k = 5% and P = 90%, therefore,
we have y = 1:645 since ©(1:645) = :95 = (1+P)=2. There-
fore, n0 = (y=k)

2 = (1:645=:05)2 = 1,082. The partial credibility
is given by the square root rule: Z = (500=1,082) = .68.

Solution 3.1.1:

Type of A Priori Process
Risk Probability Variance

A 0.60 0.16
B 0.25 0.21
C 0.15 0.24

Average 0.1845

For a Bernoulli the process variance is pq. For example, for
Risk Type B, the process variance = (:3)(:7) = :21:

Solution 3.1.2:

Type of A Priori Square of
Risk Probability Mean Mean

A 0.60 0.2 0.04
B 0.25 0.3 0.09
C 0.15 0.4 0.16

Average 0.2550 0.0705

Thus, the Variance of the Hypothetical Means = :0705 :2552 =
.0055.
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Solution 3.1.3:

Number Probability Square of
of Claims for Youthful n n

0 0.80 0 0
1 0.15 1 1
2 0.04 2 4
3 0.01 3 9

Average 0.2600 0.4000

Thus, the process variance for the Youthful drivers is :4 :262 =
:3324.

Number Probability Square of
Claims for Adult n n

0 0.90 0 0
1 0.08 1 1
2 0.02 2 4
3 0.00 3 9

Average 0.1200 0.1600

Thus, the process variance for the Adult drivers is :16 :122 =
:1456.

Thus, the Expected Value of the Process Variance = (:1456)
(91%)+ (:3324)(9%) = .162.

Solution 3.1.4:

Type of A Priori Square of
Driver Probability Mean Mean

Youthful 0.0900 0.2600 0.06760
Adult 0.9100 0.1200 0.01440

Average 0.1326 0.01919
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Thus, the Variance of the Hypothetical Means = :01919
:13262 = .00161.

Solution 3.1.5:

A B C D
Number A Priori Col. A Times Square of Col. A.
of Claims Probability Col. B. Times Col. B

0 0.55000 0.00000 0.00000
1 0.30000 0.30000 0.30000
2 0.10000 0.20000 0.40000
3 0.04000 0.12000 0.36000
4 0.01000 0.04000 0.16000

Sum 1 0.6600 1.22000

Each insured’s frequency process is given by a Poisson with
parameter µ, with µ varying over the group of insureds. Then the
process variance for each insured is µ. Thus the expected value
of the process variance is estimated as follows:

Eµ[Var[X µ]] = Eµ[µ] = overall mean = .66:

Solution 3.1.6: Consulting the table in the prior solution, the
mean number of claims is .66. The second moment of the distri-
bution of the number of claims is 1.22. So, the Total Variance for
the distribution of the number of claims is: 1:220 :6602 = .784.

Solution 3.1.7: Using the solutions to the previous questions,
we estimate the Variance of the Hypothetical Means as: Total
Variance EPV= :784 :66 = .124.

Solution 3.1.8: Let m be the mean claim frequency for an in-
sured. Then h(m) = 1=10 on [0, 10]. The mean severity for a risk
is r, since that is the mean for the given exponential distribu-
tion. Therefore, for a given insured the mean pure premium is
mr. The first moment of the hypothetical mean pure premiums
is (since the frequency and severity distributions are indepen-
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dent):
m=10

m=0

r=2

r=0
mrg(r)h(m)drdm=

m=10

m=0
m=10dm

r=2

r=0
r(r=2)dr

= (5)(4=3) = 6:667

The second moment of the hypothetical mean pure premiums
is (since the frequency and severity distributions are indepen-
dent):

m=10

m=0

r=2

r=0
m2r2g(r)h(m)drdm=

m=10

m=0
m2=10dm

r=2

r=0
r2(r=2)dr

= (100=3)(2) = 66:667

Therefore, the variance of the hypothetical mean pure premi-
ums is 66:667 6:6672 = 22.22.

Comment: Note that when frequency and severity are indepen-
dent, the second moment of their product is equal to the product
of their second moments. The same is not true for variances.

Solution 3.1.9: For a Bernoulli the process variance is pq=
p(1 p). For example for Die A1, the process variance =
(2=6)(1 2=6) = 2=9 = :2222.

Type of Bernoulli A Priori Process
Die Parameter Probability Variance

A1 0.3333 0.50 0.2222
A2 0.5000 0.50 0.2500

Average 0.2361

Solution 3.1.10:

Type of A Priori Square of
Die Probability Mean Mean

A1 0.50 0.33333 0.11111
A2 0.50 0.50000 0.25000

Average 0.41667 0.18056
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Thus, the Variance of the Hypothetical Means= :18056 :416672

= .00695.

Solution 3.1.11: For spinner B1 the first moment is (20)(:6)+
(50)(:4) = 32 and the second moment is (202)(:6)+ (502)(:4) =
1,240. Thus the process variance is 1,240 322 = 216. For spin-
ner B2 the first moment is (20)(:2)+ (50)(:8) = 44 and the second
moment is (202)(:2)+ (502)(:8) = 2,080. Thus the process vari-
ance is 2,080 442 = 144. Therefore, the expected value of the
process variance = (1=2)(216)+ (1=2)(144) = 180.

Type of A Priori Second Process
Spinner Probability Mean Moment Variance

B1 0.50 32 1,240 216
B2 0.50 44 2,080 144

Average 180

Solution 3.1.12:

Type of A Priori Square of
Spinner Probability Mean Mean

B1 0.50 32 1,024
B2 0.50 44 1,936

Average 38 1,480

Thus, the Variance of the Hypothetical Means=1,480 382 =36.

Comment: Note that the spinners are chosen independently of
the dice, so frequency and severity are independent across risk
types. Thus, one can ignore the frequency process in this and
the prior question. One can not do so when for example low
frequency is associated with low severity.

Solution 3.1.13: For each possible pair of die and spinner use the
formula: variance of p:p:= ¹f¾

2
s +¹

2
s ¾
2
f .

PREPUBLICATION



8-148 CREDIBILITY Ch. 8

Die A Priori Process
and Chance Mean Variance Mean Variance Variance

Spinner of Risk Freq. of Freq. Severity of Sev. of P.P.

A1, B1 0.250 0.333 0.222 32 216 299.6
A1, B2 0.250 0.333 0.222 44 144 478.2
A2, B1 0.250 0.500 0.250 32 216 364.0
A2, B2 0.250 0.500 0.250 44 144 556.0

Mean 424.4

Solution 3.1.14:

Die A Priori Mean Square of
and Chance of Mean Mean Pure Mean

Spinner Risk Freq. Severity Premium P.P.

A1, B1 0.250 0.333 32 10.667 113.778
A1, B2 0.250 0.333 44 14.667 215.111
A2, B1 0.250 0.500 32 16.000 256.000
A2, B2 0.250 0.500 44 22.000 484.000

Mean 15.833 267.222

Thus, the Variance of the Hypothetical Means = 267:222
15:8332 = 16.53.

Solution 3.1.15: For the Poisson the process variance is the equal
to the mean. The expected value of the process variance is the
weighted average of the process variances for the individual
types, using the a priori probabilities as the weights. The EPV
of the frequency = (40%)(6)+ (35%)(7)+ (25%)(9) = 7:10.

A Priori Poisson Process
Type Probability Parameter Variance

1 40% 6 6
2 35% 7 7
3 25% 9 9

Average 7.10
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Solution 3.1.16: One computes the first and 2nd moments of the
mean frequencies as follows:

A Priori Poisson Mean Square of
Type Probability Parameter Frequency Mean Freq.

1 40% 6 6 36
2 35% 7 7 49
3 25% 9 9 81

Average 7.10 51.80

Then the variance of the hypothetical mean frequencies= 51:80
7:102 = 1.39.

Comment: Using the solution to this question and the previous
question, as explained in the next section, the Bühlmann Credi-
bility parameter for frequency is K =EPV=VHM= 7:10=1:39 =
5:11. The Bühlmann Credibility applied to the observation of the
frequency for E exposures would be: Z = E=(E+5:11).

Solution 3.1.17: One has to weight together the process variances
of the severities for the individual types using the chance that a
claim came from each type. The chance that a claim came from
an individual type is proportional to the product of the a priori
chance of an insured being of that type and the mean frequency
for that type.

As per the Appendix, parameterize the Exponential with mean
1=¸. For type 1, the process variance of the Exponential severity
is 1=¸2 = 1=:012 = 10,000. (For the Exponential Distribution, the
variance is the square of the mean.) Similarly for type 2 the
process variance for the severity is 1=:0082 = 15,625. For type 3
the process variance for the severity is 1=:0052 = 40,000.

The mean frequencies are: 6, 7, and 9. The a priori chances
of each type are: 40%, 35% and 25%. Thus, the weights to use
to compute the EPV of the severity are (6)(40%), (7)(35%),
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(9)(25%) = 2:4, 2.45, 2.25. The expected value of the process
variance of the severity is the weighted average of the pro-
cess variances for the individual types, using these weights.
The EPV of the severity= (2:4)(10,000) + (2:45)(15,625) +
(2:25)(40,000) =(2:4+2:45+2:25) = 21,448.

A B C D E F

A Priori Mean Weights= Exponential Process
Type Probability Frequency Col. B Col. C Parameter ¸ Variance

1 40% 6 2.40 0.01 10,000
2 35% 7 2.45 0.008 15,625
3 25% 9 2.25 0.005 40,000

Average 7.10 21,448

Solution 3.1.18: In computing the moments one has to use for
each individual type the chance that a claim came from that
type. The chance that a claim came from an individual type
is proportional to the product of the a priori chance of an
insured being of that type and the mean frequency for that
type. Thus, the weights to use to compute the moments of the
mean severities are: (6)(40%), (7)(35%), (9)(25%) = 2:4, 2.45,
2.25.

A B C D E F

Square of
A Priori Mean Weights= Mean Mean

Type Probability Frequency Col. B Col. C Severity Severity

1 40% 6 2.40 100 10,000
2 35% 7 2.45 125 15,625
3 25% 9 2.25 200 40,000

Average 7.10 140.32 21,448

Then the variance of the hypothetical mean severities = 21,448
140:322 = 1,758.

PREPUBLICATION



SOLUTIONS 8-151

Comment: Using the solution to this question and the previous
question, as explained in the next section, the Bühlmann Credi-
bility parameter for severity is K =EPV=VHM= 21,448=1,758
= 12:20. The Bühlmann Credibility applied to the observation
of the mean severity for N claims would be: Z =N=(N +12:20).

Solution 3.1.19: For type 1 the mean frequency is 6 and the vari-
ance of the frequency is also 6. As per the Appendix, param-
eterize the Exponential with mean 1=¸. For type 1 the mean
severity is 100. For type 1, the variance of the Exponential
severity is 1=¸2 = 1=:012 = 10,000. (For the Exponential Dis-
tribution, the variance is the square of the mean.) Thus, since
frequency and severity are assumed to be independent, the pro-
cess variance of the pure premium=(Mean Frequency)(Variance
of Severity) + (Mean Severity)2 (Variance of Frequency) =
(6)(10,000)+ (100)2(6) = 120,000. Similarly for type 2 the pro-
cess variance of the pure premium = (7)(15,625)+ (125)2(7) =
218,750. For type 3 the process variance of the pure premium
= (9)(40,000)+ (200)2(9) = 720,000. The expected value of the
process variance is the weighted average of the process vari-
ances for the individual types, using the a priori probabilities as
the weights. The EPV of the pure premium = (40%)(120,000)+
(35%)(218,750)+ (25%)(720,000) = 304,562.

Variance Variance
A Priori Mean of Mean of Process

Type Probability Frequency Frequency Severity Severity Variance

1 40% 6 6 100 10,000 120,000
2 35% 7 7 125 15,625 218,750
3 25% 9 9 200 40,000 720,000

Average 304,562

Solution 3.1.20: One has to first compute the mean pure premium
for each type. Since frequency and severity are assumed to be
independent, the mean pure premium=(Mean Frequency)(Mean
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Severity). Then one computes the first and second moments of
the mean pure premiums as follows:

A Priori Mean Mean Mean Pure Square of
Type Probability Frequency Severity Premium Pure Premium

1 40% 6 100 600 360,000
2 35% 7 125 875 765,625
3 25% 9 200 1,800 3,240,000

Average 996.25 1,221,969

Then the variance of the hypothetical mean pure premiums =
1,221,969 996:252 = 229,455.

Comment: Using the solution to this question and the previous
question, as explained in the next section, the Bühlmann Cred-
ibility parameter for the pure premium is K = EPV=VHM=
304,562=229,455 = 1:33. The Bühlmann Credibility applied to
the observation of the pure premium for E exposures would be:
Z = E=(E+1:33).

Solution 3.1.21: The process variance for a binomial distribution
is npq= 5p(1 p). EPV = 1

0 5p(1 p)dp= (5p2=2 5p3=3) 10
= 5=6.

Solution 3.1.22: The mean for the binomial is ¹= np= 5p.
VHM= E[¹2] (E[¹])2. The first moment is E[5p] = 1

0 5pdp=
5=2. The second moment is E[(5p)2] = 1

0 (5p)
2dp= 25=3. So,

VHM= E[(5p)2] (E[5p])2 = 25=3 25=4 = 25=12.

Solution 3.2.1: The Bühlmann Credibility parameter is: K =
(The Expected Value of the Process Variance)=(The Variance
of the Hypothetical Means) = 100=8 = 12:5. Z =N=(N +K) =
20=(20+12:5) = 61.5%.

Solution 3.2.2: Z =N=(N +K), therefore, K =N(1=Z) N =
5(1=:7) 5 = 2.14.
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Solution 3.2.3:

A Priori Square of
Chance of Mean Mean

Type of This Type Process Die Die
Die of Die Variance Roll Roll

4-sided 0.333 1.250 2.5 6.25
6-sided 0.333 2.917 3.5 12.25
8-sided 0.333 5.250 4.5 20.25

Overall 3.1389 3.50 12.91667

The variance of the hypothetical means = 12:91667 3:52 =
:6667. K = EPV/VHM= 3:1389=:6667 = 4:71. Z = (1=1+4:71)
= :175. The a priori estimate is 3.5 and the observation is 5, so
the new estimate is (:175)(5)+ (:825)(3:5) = 3.76.

Solution 3.2.4: Expected Value of the Process Variance= .0833.

Variance of the Hypothetical Means= :4167 :52 = :1667.

Mean for Square of
Type of A Priori This Mean of Process
Urn Probability Type Urn This Type Urn Variance

1 0.3333 0 0 0
2 0.3333 1 1 0.00000
3 0.3333 0.5 0.25 0.25000

Average 0.5 0.4167 0.0833

K =EPV=VHM= :0833=:1667 = :5 Thus for N = 5, Z = 5=
(5+ :5) = 90:9%. The observed mean is 0 and the a priori mean
is .5, therefore, the new estimate= (0)(:909)+ (:5)(1 :909)
= .0455.

Solution 3.2.5: As computed in the solution to the previous ques-
tion, for 5 observations Z = 90:9% and the a priori mean is
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.5. Since the observed mean is 2=5 = :4, the new estimate is:
(:4)(:909)+ (:5)(1 :909) = .4091.

Solution 3.2.6: For example, the second moment of Urn II is
(:7)(1,0002)+ (:3)(2,0002) = 1,900,000. The process variance of
Urn II = 1,900,000 1,3002 = 210,000.

Type of A Priori Square of Second Process
Urn Probability Mean Mean Moment Variance

I 0.8000 1,100 1,210,000 1,300,000 90,000
II 0.2000 1,300 1,690,000 1,900,000 210,000

Average 1,140 1,306,000 114,000

Thus, the expected value of the process variance=114,000, and
the variance of the hypothetical means is: 1,306,000 1,1402 =
6,400.

Thus, the Bühlmann Credibility parameter is K =EPV=VHM
= 114,000=6,400 = 17:8. Thus for 5 observations Z = 5=
(5+17:8) = 21:9%. The prior mean is $1,140 and the observa-
tion is 8,000=5 = $1,600.

Thus the new estimate is: (:219)(1,600)+ (1 :219)(1,140) =
$1,241.

Solution 3.2.7: For Risk A the mean is (:07)(100)+ (:03)(500) =
22 and the second moment is (:07)(1002)+ (:03)(5002) =
8,200. Thus, the process variance for Risk A is 8,200 222 =
7,716. Similarly for Risk B the mean is 130 and the second
moment is 53,000. Thus, the process variance for Risk B is
53,000 1302 = 36,100. For Risk C the mean is 218 and the
second moment is 95,800. Thus, the process variance for Risk C
is 95,800 2182 = 48,276. Thus, the expected value of the pro-
cess variance = (1=3)(7,716)+ (1=3)(36,100)+ (1=3)(48,276) =
30,697.
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A Priori Square of
Risk Chance of Risk Mean Mean

A 0.333 22 484
B 0.333 130 16,900
C 0.333 218 47,524

Mean 123.33 21,636

Thus, the Variance of the Hypothetical Means=21,636 123:332

= 6,426.

Therefore, the Bühlmann Credibility Parameter for pure pre-
mium= K =EPV=VHM= 30,697=6,426 = 4:78. Thus, the cred-
ibility for 1 observation is 1=(1+K) = 1=5:78 = :173. The a pri-
ori mean is 123.33. The observation is 500. Thus, the estimated
aggregate losses are: (:173)(500)+ (1 :173)(123:33) = 188.5.

Solution 3.2.8: For Die A the mean is (1+1+1+2+3+4)=6 =
2 and the second moment is (1+1+1+4+9+16)=6 = 5:3333.
Thus the process variance for Die A is 5:3333 22 = 1:3333.
Similarly for Die B the mean is 2.3333 and the second moment is
6.3333. Thus, the process variance for Die B is 6:333 2:3332 =
:889. The mean of Die C is 2.6667. The process variance
for Die C is: (1 2:6667)2 + (2 2:6667)2 + (3)(3 2:6667)2 +
(4 2:6667)2 =6 = :889, the same as Die B. The mean of Die
D is 3. The process variance for Die D is: (1 3)2 + (2 3)2

+(3 3)2 + (3)(4 3)2 =6 = 1:333, the same as Die A. Thus,
the expected value of the process variance = (1=4)(1:333)+
(1=4)(:889)+ (1=4)(:889)+ (1=4)(1:333) = 1:111.

A Priori Square of
Die Chance of Die Mean Mean

A 0.250 2.0000 4.0000
B 0.250 2.3333 5.4443
C 0.250 2.6667 7.1113
D 0.250 3.0000 9.0000

Mean 2.5000 6.3889
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Thus, the Variance of the Hypothetical Means= 6:3889 2:52 =
:1389.

Therefore, the Bühlmann Credibility Parameter =K =EPV=
VHM= 1:111=:1389 = 8:0. Thus, the creibility for 5 observa-
tions is 5=(5+K) = 5=13. The a priori mean is 2.5. The ob-
served mean is (2+3+1+2+4)=5 = 2:4. Thus, the estimated
future die roll is: (5=13)(2:4)+ (1 5=13)(2:5) = 2.462.

Solution 3.2.9: For each Poisson, the process variance is the
mean. Therefore, Expected Value of the process variance=
(:6)(:05)+ (:3)(:1)+ (:1)(:2) = :08 =Overall mean frequency.
The expected value of the square of the mean frequencies is
.0085. Therefore, the Variance of the hypothetical mean fre-
quencies= :0085 :082 = :0021. Alternately, Variance of the
hypothetical mean frequencies= (:6)(:032)+ (:3)(:022)+ (:1)
(:122) = :0021. Therefore, K =EPV=VHM= :08=:0021 = 38:1.
Z = 5=(5+38:1) = 11:6%. Estimated frequency= (11:6%)(:2)+
(88:4%)(:08) = .0939.

A Priori Mean Square of
Chance of Annual Mean Poisson

Type of This Type Claim Claim Process
Driver of Driver Frequency Frequency Variance

Good 0.6 0.05 0.0025 0.05
Bad 0.3 0.1 0.0100 0.1
Ugly 0.1 0.2 0.0400 0.2

Average 0.080 0.0085 0.080

Solution 3.2.10: One needs to figure out for each type of driver
a single observation of the risk process, in other words for the
observation of a single claim, the process variance of the average
size of a claim. Process variances for the Pareto Distributions
are ¸2®= (® 1)2(® 2) , so the process variances are: 10.42,
22.22, and 75 million. The probability weights are the product of
claim frequency and the a priori frequency of each type of driver:
(.6)(.05), (.3)(.10), (.1)(.20). The probabilities that a claim came
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from each of the types of drivers are the probability weights
divided by the their sum: .375, .375, .25. Thus, the weighted av-
erage process variance of the severity is: (10:42 million)(:375)+
(22:22 million)(:375)+ (75 million)(:25) = 30.98 million.

A Priori Probability Process
Chance of Average Weight Probability Variance

Type of This Type Claim For For Claim
Driver of Driver Frequency Claim Claim Alpha Severity

Good 0.6 0.05 0.030 0.375 5 1:042 107

Bad 0.3 0.1 0.030 0.375 4 2:222 107

Ugly 0.1 0.2 0.020 0.25 3 7:500 107

Average 0.080 1.000 3.098 107

Comment: A claim is more likely to be from a Good Driver
since there are many Good Drivers. On the other hand, a claim
is more likely to be from an Ugly Driver, because each such
driver produces more claims. Thus, the probability that a claim
came from each type of driver is proportional to the product of
claim frequency and the a priori frequency of each type of driver.
The (process) variances for the Pareto Distribution follow from
the moments given in the Appendix.

Solution 3.2.11: Average severities for the Pareto Distributions
are: ¸=(® 1) = 2,500, 3,333 and 5,000. Probability weights are:
(.60)(.05), (.30)(.10), (.10)(.20). The overall average severity is
3437.5. Average of the severity squared is: (:375)(6:25 million)+
(:375)(11:11 million)+ (:25)(25 million) = 12:76 million. There-
fore, the variance of the hypothetical mean severities= (12:76
million) (3437:52) = .94 million.

A Priori Probability Square of
Chance of Average Weight Probability Average Average

Type of This Type Claim For For Claim Claim
Driver of Driver Frequency Claim Claim Alpha Severity Severity

Good 0.6 0.05 0.030 0.375 5 2,500 6:250 106

Bad 0.3 0.1 0.030 0.375 4 3,333 1:111 107

Ugly 0.1 0.2 0.020 0.250 3 5,000 2:500 107

Average 0.080 1.000 3,437.5 1:276 107
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Solution 3.2.12: Using the solutions to the previous two ques-
tions, K =EPV=VHM= 31=:94 = 32:8. Z = 1=(1+32:8) = 1=
33:8. New estimate= (1=33:8)25,000+ [1 (1=33:8)]3,437.5 =
$4,075.

Solution 3.2.13: For each type of driver one uses the formula:
variance of p:p:= ¹f¾

2
s +¹

2
s ¾
2
f . In the case of a Poisson fre-

quency ¹f = ¾
2
f and: variance of p:p:=(mean frequency)(the

second moment of the severities).

For the Pareto, the second moment= 2¸2= (® 1)(® 2) .

A B C D E F

A Priori Variance of
Chance of Expected Value P.P. Product

Type of This Type Claim of Square of of Columns
Driver of Driver Frequency Alpha Claim Sizes C & E

Good 0.6 0.05 5 1.667e+7 8:333 105

Bad 0.3 0.1 4 3.333e+7 3:333 106

Ugly 0.1 0.2 3 1.000e+8 2:000 107

Average 3.500 106

Solution 3.2.14: The overall average pure premium= (:6)(125)+
(:3)(333:3)+ (:1)(1,000) = 275. The average of the squares of the
hypothetical mean pure premiums is: (:6)(1252)+ (:3)(333:32)+
(:1)(1,0002) = 142,708. Therefore, the variance of the hypothet-
ical pure premiums= 142,708 (2752) = 67,083.

A Priori Square of
Chance of Average Average Average Average

Type of This Type Claim Claim Pure Pure
Driver of Driver Frequency Alpha Severity Premium Premium

Good 0.6 0.05 5 2,500 125.0 15,625
Bad 0.3 0.1 4 3,333 333.3 111,111
Ugly 0.1 0.2 3 5,000 1,000.0 1,000,000

Average 275.0 142,708
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Solution 3.2.15: The observed pure premium is $25,000=5 =
$5,000. Using the results of the previous two questions, K =
3,500,000=67,083 = 52. Z = 5=(5+52) = 8:8%. Estimated pure
premium= (8:8%)($5,000)+ (1 8:8%)($275) = $691.

Solution 3.2.16:

Square of
A Priori Mean for Mean of Process

Class Probability This Class This Class Variance

1 0.4000 0.2 0.04 0.16
2 0.6000 0.3 0.09 0.21

Average 0.26 0.0700 0.1900

Expected Value of the Process Variance= .19.

Variance of the Hypothetical Means= :070 :262 = :0024.

K =EPV=VHM= :19=:0024 = 79:2 Thus for N = 5, Z = 5=
(5+79:2) = 5.94%.

Solution 3.2.17: The hypothetical mean pure premiums are
(.1667)(4) and (.8333)(2); which are 2=3 and 5=3. Since the two
classes have the same number of risks the overall mean is 7=6
and the variance of the hypothetical mean pure premiums be-
tween classes is: [(2=3 7=6)2 + (5=3 7=6)2]=2 = 1=4.

Each class is homogeneous and the stated data are the pro-
cess variance for a risk from each class. For each type of risk, the
process variance of the pure premiums is given by: ¹f¾

2
s +¹

2
f¾

2
s .

For Class A, that is: (:1667)(20)+ (42)(:1389) = 5:5564. For
Class B, that is: (:8333)(5)+ (22)(:1389) = 4:7221. Since the
classes have the same number of risks, the Expected Value of
the Process Variance= (:5)(5:5564)+ (:5)(4:7221) = 5:139. Thus
K =EPV=VHM= 5:139=:25 = 20:56. Z =N=(N +K) = 4=(4+
20:56) = .163.

PREPUBLICATION



8-160 CREDIBILITY Ch. 8

Solution 3.2.18: The prior estimate is the overall mean of 7=6.
The observation is .25. Thus, the new estimate is (:163)(:25)+
(7=6)(1 :163) = 1.017.

Comment: Uses the solution of the previous question.

Solution 3.2.19: Expected Value of the Process Variance =
E[v] = 8.

Variance of the Hypothetical Means= Var[m] = 4.

K =EPV=VHM= 8=4 = 2. So, Z = 3=(3+K) = 3=(3+2) =
3=5 = .6.

Solution 3.3.1: 1. True. 2. False. 3. True.

Solution 3.3.2: The expected value of the process variance is
86.333. The variance of the hypothetical means is 466:67
202 = 66:67.

A Priori
Chance of Square

Type of This Type of Standard Process
Marksman of Marksman Mean Mean Deviation Variance

A 0.333 10 100 3 9
B 0.333 20 400 5 25
C 0.333 30 900 15 225

Average 20.000 466.667 86.333

K =EPV=VHM= 86:333=66:67 = 1:295.

Z =N=(N +K) = 2=(2+1:295) = :607. The average observa-
tion is (10+14)=2 = 12. The a priori mean=20. Thus, the new
estimate= (:607)(12)+ (1 :607)(20) = 15.14.

Solution 3.3.3: The expected value of the process variance is 13.
The variance of the hypothetical means is 1 02 = 1. Therefore,
K =EPV=VHM= 13=1 = 13. Z = 1=(1+13) = 1=14. New Esti-
mate= (4)(1=14)+ (0)(1 1=14) = 2=7 = .286.
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A Priori Process Square of
Shooter Probability Variance Mean Mean

A 0.5 1 1 1
B 0.5 25 1 1

Average 13 0 1

Solution 3.3.4: The EPV is (1=2)(1+25) = 13. The VHM is
(1=2)[(1 0)2 + ( 1 0)2] = 1. Therefore, K = EPV=VHM=
13=1 = 13. Since there are three observations, n= 3 and Z =
n=(n+K) = 3=(3+13) = 3=16. The average position of the
three shots is (1=3)(2+0+1) = 1. So, Estimate= (1)(3=16)+
(0)(1 3=16) = 3/16= .188.

Solution 4.1.1: The probability of picking a colorblind person
out of this population is (5%)(10%)+ (1=4%)(90%) = :725%.
The chance of a person being both colorblind and male is:
(5%)(10%) = :5%. Thus the (conditional) probability that the
colorblind person is a man is: :5%=:725%= 69.0%.

Solution 4.1.2: Taking a weighted average, the a priori chance of
a black ball is 8.8%.

A B C D

A Priori % Col. B
Type Probability Black Balls Col. C

I 0.4 0.05 0.020
II 0.3 0.08 0.024
III 0.2 0.13 0.026
IV 0.1 0.18 0.018

Sum 1 0.088

Solution 4.1.3: P[Urn = I Ball = Black] = P[Urn = I and Ball =
Black]=P[Ball = Black] = :020=:088 = 22.7%.
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Solution 4.1.4: P[Urn= II Ball =Black]=P[Urn= II and Ball
= Black]=P[Ball = Black] = :024=:088 = 27.3%.

Solution 4.1.5: P[Urn= III Ball =Black]=P[Urn= III and Ball
= Black]=P[Ball = Black] = :026=:088 = 29.5%.

Solution 4.1.6: P[Urn= IV Ball=Black]=P[Urn= IV and Ball
= Black]=P[Ball = Black] = :018=:088 = 20.5%.

Comment: The conditional probabilities of the four types of urns
add to unity.

Solution 4.1.7: Using the solutions to the previous problems,
one takes a weighted average using the posterior probabilities of
each type of urn: (22:7%)(:05)+ (27:3%)(:08)+ (29:5%)(:13)+
(20:5%)(:18) = .108.

Comment: This whole set of problems can be usefully organized
into a spreadsheet:

A B C D E F

Probability
A Priori % Weights= Posterior Col. C

Type Probability Black Balls Col. B Col. C Probability Col. E

I 0.4 0.05 0.0200 0.227 0.011
II 0.3 0.08 0.0240 0.273 0.022
III 0.2 0.13 0.0260 0.295 0.038
IV 0.1 0.18 0.0180 0.205 0.037

Sum 0.0880 1.000 0.108

This is a simple example of Bayesian Analysis, which is covered
in the next section.

Solution 4.1.8: There are the following 10 equally likely pos-
sibilities such that Y 9: (3,6), (4,5), (4,6), (5,4), (5,5), (5,6),
(6,3), (6,4), (6,5), (6,6). Of these, 3 have X = 5, so that
Prob[X = 5 Y 9] = Prob[X = 5 and Y 9]=Prob[Y 9] = (3=
36)=(10=36) = 3=10 = .3.
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Solution 4.1.9: There are the following 10 equally likely possibil-
ities such that X +V 9: (3,6), (4,5), (4,6), (5,4), (5,5), (5,6),
(6,3), (6,4), (6,5), (6,6). Of these one has X = 3, two have X = 4,
three have X = 5, and four have X = 6. Therefore, E[X Y 9] =
(1)(3)+ (2)(4)+ (3)(5)+ (4)(6) =10 = 5.0. For those who like
diagrams:

Conditional Density
Function

of X given that
X 1 2 3 4 5 6 Possibilities X +V 9

1 0
2 0
3 x 1 1/10
4 x x 2 2/10
5 x x x 3 3/10
6 x x x x 4 4/10

E[X Y 9] = iP[X = i Y 9] = (1)(0)+ (2)(0)+ (3)(:1)+
(4)(:2)+ (5)(:3)+ (6)(:4) = 5:0:

Solution 4.1.10: The chance that a driver accident-free is:
(40%)(80%)+(25%)(85%)+(20%)(90%)+(15%)(95%)=85:5%:
The chance that a driver is both accident-free and from Boston is
(40%)(80%) = 32%. Thus the chance this driver is from Boston
is 32%=85:5%= 37.4%.

Comment: Some may find to helpful to assume for example a
total of 100,000 drivers.

Solution 4.1.11: The chance that a driver has had an accident
is: (40%)(20%) + (25%)(15%) + (20%)(10%) + (15%)(5%) =
14:5%. The chance that a driver both has had an accident and
is from Pittsfield is (15%)(5%) = :75%. Thus, the chance this
driver is from Pittsfield is: :75%=14:5%= .052.

Comment: Note that the chances for each of the other cities are:
(40%)(20%), (25%)(15%), (20%)(10%) =14:5%. You should
confirm that the conditional probabilities for the four cities sum
to 100%.
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Solution 4.1.12: If Stu knows the answer, then the chance of ob-
serving a correct answer is 100%. If Stu doesn’t know the answer
to a question then the chance of observing a correct answer is
20%.

A B C D E

Prob.
A Priori Weight= Posterior
Chance of Chance Product Chance of

Type of This Type of the of Columns This Type
Question of Question Observation B & C of Question

Stu Knows 0.620 1.0000 0.6200 89.08%
Stu Doesn’t Know 0.380 0.2000 0.0760 10.92%

Overall 0.696 1.000

Solution 4.2.1: (20%)(60%)+(30%)(25%)+(40%)(15%)=25.5%.

Comment: Since there are only two possible outcomes, the
chance of observing no claim is: 1 :255 = :745.

Solution 4.2.2: P(Type A no claim) = P(no claim Type A)
P(Type A)=P(no claim) = (:8)(:6)=:745 = 64.43%.

Solution 4.2.3: (:7)(:25)=:745 = 23.49%.

Solution 4.2.4: (:6)(:15)=:745 = 12.08%.

Solution 4.2.5:

A B C D E F

Prob.
A Priori Weight= Posterior
Chance of Chance Product Chance of Mean

Type of This Type of the of Columns This Type Annual
Risk of Risk Observation B & C of Risk Freq.

A 0.6 0.8 0.480 64.43% 0.20
B 0.25 0.7 0.175 23.49% 0.30
C 0.15 0.6 0.090 12.08% 0.40

Overall 0.745 1.000 24.77%
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Solution 4.2.6:

A B C D E F

Prob.
A Priori Weight= Posterior
Chance of Chance Product Chance of Mean

Type of This Type of the of Columns This Type Annual
Risk of Risk Observation B & C of Risk Freq.

A 0.6 0.2 0.120 47.06% 0.20
B 0.25 0.3 0.075 29.41% 0.30
C 0.15 0.4 0.060 23.53% 0.40

Overall 0.255 1.000 27.65%

Solution 4.2.7:

A B C D E F

Prob.
A Priori Weight= Posterior
Chance of Chance Product Chance of Mean

Type of This Type of the of Columns This Type Annual
Risk of Risk Observation B & C of Risk Freq.

A 0.6 0.2048 0.123 48.78% 0.20
B 0.25 0.3087 0.077 30.64% 0.30
C 0.15 0.3456 0.052 20.58% 0.40

Overall 0.252 1.000 27.18%

For example, if one has a risk of Type B, the chance of ob-
serving 2 claims in 5 years is given by (a Binomial Distribution):
(10)(:32)(:73) = :3087.

Solution 4.2.8: Bayesian Estimates are in balance; the sum of the
product of the a priori chance of each outcome times its posterior
Bayesian estimate is equal to the a priori mean. The a priori
mean is (5=8)(1)+ (2=8)(4)+ (1=8)(16) = 3:625. Let E[X2 X1 =
16] = y. Then setting the sum of the chance of each outcome
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times its posterior mean equal to the a priori mean: (5=8)(1:4)+
(2=8)(3:6)+ (1=8)(y) = 3:625. Therefore, y = 14.8.

Solution 4.2.9:

A B C D E F

Prob.
A Priori Weight= Posterior Mean
Chance of Chance Product Chance of Draw

Type of This Type of the of Columns This Type from
Urn of Urn Observation B & C of Urn Urn

I 0.8000 0.1000 0.0800 0.5714 1100
II 0.2000 0.3000 0.0600 0.4286 1300

Overall 0.140 1.000 1186

Solution 4.2.10:

A B C D E F

Prob.
A Priori Weight= Posterior Mean
Chance of Chance Product Chance of Draw

Type of This Type of the of Columns This Type from
Urn of Urn Observation B & C of Urn Urn

I 0.8000 0.2430 0.1944 0.6879 1100
II 0.2000 0.4410 0.0882 0.3121 1300

Overall 0.283 1.000 1162

For example, the chance of picking 2 @ $1,000 and 1 @ $2,000
from Urn II is given by f(2) for a Binomial Distribution with
n= 3 and p= :7: (3)(:72)(:3) = :4410.

Solution 4.2.11: The chance of observing 3 claims for a Poisson
is e µµ3=3! Therefore, for example, the chance of observing 3
claims for a risk of type 1 is: e :4(:43)=6 = :00715.
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A B C D E F

Prob.
Weight= Posterior

Chance Product Chance of Mean
A Priori of the of Columns This Type Annual

Type Probability Observation B & C of Risk Freq.

1 70% 0.00715 0.005005 39.13% 0.4
2 20% 0.01976 0.003951 30.89% 0.6
3 10% 0.03834 0.003834 29.98% 0.8

Overall 0.012791 1.000 0.5817

Solution 4.2.12: The density for a Normal Distribution with mean
¹ and standard deviation ¾ is given by f(x)=exp( :5 (x ¹)=¾ 2)
= ¾(2¼):5 . Thus, the density function at 14 for Marksman A is
exp( :5 (14 10)=3 2)= 3(2¼):5 = :0547.

A B C D E F G H I

A Priori Prob. Posterior
Chance Chance Chance Weight= Chance
of This of the of the Chance Product of This

Marks- Standard Type of Observing Observing of the of Columns Type of
man Mean Deviation Marksman 10 14 Observation D & G Marksman

A 10 3 0.333 0.1330 0.0547 0.007270 0.002423 92.56%
B 20 5 0.333 0.0108 0.0388 0.000419 0.000140 5.34%
C 30 15 0.333 0.0109 0.0151 0.000165 0.000055 2.10%

Overall 0.002618 1.000

Reading from the table above, we see that the chance that it was
marksman B is 5.34%.

Solution 4.2.13: Use the results of the previous question to
weight together the prior means:

Posterior Chance of A Priori
Marksman This Type of Risk Mean

A 0.9256 10
B 0.0534 20
C 0.0210 30

Overall 10.954
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Solution 4.3.1: Use equation [4.3.3]: fµ(µ X=x)=fX(x µ)fµ(µ)=
fX(x) where x is the event of a claim in each of two years.
The probability of one claim in one year is µ, so the proba-
bility of a claim in each of two years given µ is fX(x µ) = µ

2.
By definition, fµ(µ) = 1 for 0 µ 1. The last piece is fX(x)
= 1

0 fX(x µ)f(µ)dµ =
1
0 µ

2 1dµ = µ3=3 1
0 = 1=3. The answer is:

fµ(µ X = x) = µ
2 1=(1=3) = 3µ2 for 0 µ 1.

Solution 4.3.2: Use equation [4.3.3]: fµ(µ X=x)=fX(x µ)fµ(µ)=
fX(x) where x the event of a claim in each of three years.
The probability of one claim in one year is µ, so the proba-
bility of a claim in each of three years given µ is fX(x µ) =
µ3. By definition, fµ(µ) = 1 for 0 µ 1. The last piece is
fX(x) =

1
0 fX(x µ)f(µ)dµ =

1
0 µ

3 1dµ = µ4=4 1
0 = 1=4. The an-

swer is: fµ(µ X = x) = µ
3 1=(1=4) = 4µ3 for 0 µ 1.

Solution 4.3.3: Assuming a given value of p, the chance of ob-
serving one success in three trials is 3p(1 p)2. The prior distri-
bution of p is: g(p) = 1, 0 p 1. By Bayes Theorem, the poste-
rior distribution of p is proportional to the product of the chance
of the observation and the prior distribution: 3p(1 p)2. Thus
the posterior distribution of p is proportional to p 2p2 +p3.
(You can keep the factor of 3 and get the same result work-
ing instead with 3p 6p2 +3p3.) The integral of p 2p2 +p3

from 0 to 1 is 1=2 2=3+1=4 = 1=12. Thus the posterior dis-
tribution of p is 12(p 2p2 +p3). (The integral of the posterior
distribution has to be unity. In this case dividing by 1=12; i.e.,
multiplying by 12, will make it so.) The posterior chance of p in
[.3,.4] is:

12
:4

p=:3
(p 2p2 +p3)dp= 6p2 8p3 +3p4

:4

p=:3

= :42 :296+ :0525 = .1765:

Solution 4.3.4: From the solution to the prior question, the pos-
terior distribution of p is: 12(p 2p2 +p3). The mean of this
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posterior distribution is:

12
1

p=0
(p 2p2 +p3)p dp= 4p3 6p4 + (12=5)p5

1

p=0

= :4:

The chance of a success on the fourth trial is E[p] = .4.

Solution 4.3.5: Given x, the chance of observing three successes
is x3. The a priori distribution of x is f(x) = 1, 0 x 1. By
Bayes Theorem, the posterior density is proportional to the prod-
uct of the chance of the observation and the a priori density
function. Thus the posterior density is proportional to x3 for
0 x 1. Since the integral from zero to one of x3 is 1=4, the
posterior density is 4x3. (The posterior density has to integrate to
unity.) Thus the posterior chance that x < :9 is the integral of the
posterior density from 0 to .9, which is :94 = .656. Alternately,
by Bayes Theorem (or directly from the definition of a con-
ditional distribution): Pr[x < :9 3 successes] = Pr[3 successes x
< :9]Pr[x < :9]=Pr[3 successes] = Pr[3 successes and x < :9]=
Pr[3 successes] =

:9

x=0
x3f(x)dx

1

x=0
x3f(x)dx=

:9

x=0
x3dx

1

x=0
x3dx

= (:94)=4 = (14)=4 = :656:

Solution 4.3.6:

0
e µf(µ)dµ =

0
e µ36µe 6µdµ = 36

0
µe 7µdµ

= (36)(¡ (2)=72) = (36)(1=49) = .735:

Comment: Note that 0 t
® 1e ¸tdt= ¡ (®)¸ ®. This follows

from the fact that the Gamma Distribution as per the Appendix
is in fact a distribution function, so that its density integrates to
unity. In this case ®= 2 and ¸= 7.
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Solution 4.3.7:

P(Y = 0) = P(Y = 0 µ)f(µ)dµ = e
µ
f(µ)dµ:

For the first case, f(µ) = 1=2 for 0 µ 2

P(Y = 0) =
2

µ=0
e µ=2dµ = (1 e 2)=2 = :432:

For the second case, f(µ) = e µ for µ > 0 and

P(Y = 0) =
µ=0
e 2µdµ = 1=2:

For the third case, P(Y = 0) = e 1 = :368.

In the first and third cases P(Y = 0)< :45.

Comment: Three separate problems in which you need to calcu-
late P(Y = 0) given f(µ) and three different conditional distribu-
tions P(Y = y µ).

Solution 5.1.1: ¡ (5+1)=85+1 = 5!=86 = 4.58 10-4.

Solution 5.1.2: ¸®xa 1e ¸ =¡ (®) = (:13)82e :8=¡ (3) = .0144.

Solution5.1.3: Variance=E[x2] (E[x])2=(®+1)(®)=¸2 (®=¸)2

= ®=¸2.

Solution 5.1.4: Mean = ®=¸= 3:0=1:5 = 2:0. Variance = ®=¸2 =
3:0=(1:5)2 = 1.33.

Solution 5.2.1: Gamma-Poisson has a Negative Binomial mixed
frequency distribution. The Negative Binomial has parameters
k = ®= 4 and p= ¸=(1+¸) = :9. Thus the chance of 5 claims is

5+ k 1

5
pk(1 p)5 =

8

5
:94(:1)5 = (56)(:6561)(:00001)

= .000367:

Solution 5.2.2: The prior distribution is Gamma with ®= 2:0 and
¸= 3:0. The number of claims for an insured selected at ran-
dom is a Negative Binomial with parameters k = ®= 2.0 and p=
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¸=(¸+1) = 3=4. The mean number is k(1 p)=p= ®=¸= 2=3
and the variance is k(1 p)=p2 = ®(¸+1)=¸2 = 2(3+1)=32 =
8=9.

Solution 5.2.3:

k = 2, p= 0:6 and f(n) =
n+2 1

n
(:6)2:4n:

So,

P[X > 2] = 1 P[X = 0] P[X = 1] P[X = 2]

= 1 f(0) f(1) f(2) = 1
1

0
(:6)2(:4)0

2

1
:62:41

3

2
:62:42 = 1 :36 :288 :1728 = .1792:

Solution 5.2.4: The chance of no claims for a Poisson is e ¸. We
average over the possible values of ¸:

(1=2)
3

1
e ¸d¸= (1=2)( e ¸)

3

1

= (1=2)(e 1 e 3)

= (1=2)(:368 :050) = .159:

Solution 5.2.5: (1) Binomial: ¹= np and ¾2 = npq: Then ¹=
np npq= ¾2 for q 1. (2) Negative Binomial: ¹= k(1 p)=p
and ¾2 = k(1 p)=p2. Then, ¹= k(1 p)=p k(1 p)=p2 = ¾2

for p 1. Rank for equal means: ¾2 binomial ¾2 poisson
¾2 negative binomial.

Solution 5.3.1: The Prior Gamma has parameters ®= 4 and ¸=
2: The Posterior Gamma has parameters ® = 4+5 = 9 and ¸ =
2+3 = 5.

Solution 5.3.2: For the Gamma-Poisson, if the prior Gamma has
parameters ®= 3, ¸= 4, then the Posterior Gamma has param-
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eters ®= 3+1 and ¸= 4+2. Posterior Gamma = ¸®µ® 1e ¸µ=
¡ (®) = 64µ3e 6µ=(3!) = 216µ3e 6µ.

Solution 5.3.3: The prior Gamma has ®= 1 (an Exponential Dis-
tribution) and ¸= 1. The posterior Gamma has ® = prior ®+
number of claims= 1+0 = 1 (an Exponential Distribution) and
¸ = prior ¸+ number of exposures= 1+1 = 2. That is, the pos-
terior density function is: 2e 2µ.

Comment: Given µ, the chance of observing zero claims is
µ0e µ=0! = e µ. The posterior distribution is proportional to
product of the chance of observation and the a priori distribution
of µ: (e µ)(e µ) = e 2µ. Dividing by the integral of e 2µ from 0
to gives the posterior distribution: e 2µ=(1=2) = 2e 2µ.

Solution 5.3.4: For the Gamma-Poisson, the posterior Gamma
has shape parameter ® = prior ®+ number of claims observed=
50+65+112 = 227. For the Gamma Distribution, the mean is
®=¸, while the variance is ®=¸2. Thus the coefficient of variation
is: (variance:5)=mean = ®=¸2 :5= ®=¸ = 1=®:5. The CV of the
posterior Gamma = 1=® :5 = 1=227:5 = .066.

Solution 5.3.5: The Prior Gamma has parameters ®= 3 and
¸= 4. The Posterior Gamma has parameters (3+1), (4+2)
= 4,6: f(µ) = (64=(3!))e 6µµ3 = 216e 6µµ3. Thus the posterior
chance that the Poisson parameter, µ, is between 1 and 2 is the
integral from 1 to 2 of f(µ): 2

1 216e
6µµ3dµ.

Solution 5.3.6: Prior Gamma has (inverse) scale parameter
¸= 1000 and shape parameter ®= 150. After the first year
of observations: the new (inverse) scale parameter ¸ = ¸+
number of exposures = 1000+1500 = 2500, and the new shape
parameter ® = ®+number of claims = 150+300 = 450. Simi-
larly, after the second year of observations: ¸ = ¸ +2,500 =
5,000 and ® = ® +525 = 975. The Bayesian estimate= the
mean of the posterior Gamma= ® =¸ = 975=5000 = .195.

Comment: One can go directly from the prior Gamma to the
Gamma posterior of both years of observations, by just adding
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in the exposures and claims observed over the whole period of
time. One would obtain the same result. Note that one could
proceed through a sequence of many years of observations in
exactly the same manner as shown in this question.

Solution 5.4.1: Using [5.4.1] the credibility weighted estimate is
(®+N)=(¸+Y) = (2+4)=(8+4) = 6=12 = .50. For an alterna-
tive solution, we start with the Bühlmann Credibility parameter
K = ¸= 8. Then the credibility for four years is Z = 4=(4+8) =
1=3. So the credibility estimate is (1=3)(4=4)+ (1 1=3)(2=8) =
.50.

Solution 5.4.2: Mean of the posterior distribution of µ is
(®+N)=(¸+Y) = (250+89(1)+4(2)+1(3))=(2000+1000) =
.117.

Solution 5.4.3: This is a Gamma-Poisson whose Prior Gamma
has (inverse) scale parameter ¸= 1000 and shape parameter
®= 150. Thus the Bühlmann Credibility Parameter is K = ¸=
1000. One observes a total of 1500+2500 = 4000 exposures.
Therefore, Z = 4000=(4000+K) = :8. The prior estimate is the
mean of the prior Gamma, ®=¸= :15. The observed frequency
is 825=4000 = :206. Thus the new estimate is: (:8)(:206)+
(:2)(:15) = .195.

Comment: Same result as question 5.3.6. For the Gamma-
Poisson, the Bühlmann Credibility estimate is equal to that from
Bayesian Analysis.

Solution 5.4.4: EPV= Expected Value of the Poisson Means=
overall mean = 5.

Solution 5.4.5: The overall mean is 5. Second moment= :1 10
0 x2

dx= 100=3. Therefore, VHM= 33:333 52 = 8.333.

Comment: For the uniform distribution on the interval (a,b), the
Variance= (b a)2=12. In this case with a= 0 and b = 10, the
variance is 100=12 = 8:333.
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Solution 5.4.6: K =EPV=VHM= :6. For one year, Z = 1=
(1+ :6) = 5=8. New estimate is (7)(5=8)+ (5)(3=8) = 6.25.

Solution 6.2.1: (1) Z = 3=(3+5) = 3=8. Proposed rate= (3=8)
(15)+ (1 3=8)[(18)(:9)] = $15.75. (2) Z = 3=(3+10) = 3=13.
Proposed rate= (3=13)(15)+ (1 3=13)[(18)(:9)] = $15.92. (3)
Z = 3=60 = :224. Proposed rate= (:224)(15)+ (1 :224)[(18)
(:9)] = $15.93.

Comment: Note how the proposed rates vary much less than the
credibility parameters and/or formulas.

Solution 6.4.1: (1) Reported experience= $4 million=3,000 =
$1,333 per $100 of payroll. Expected losses= ($20)(3,000) =
$60,000. (Note that 3,000 represents the number of units of
$100 in payroll for Angel.) Z = 60=(60+80) = :429. So, future
expected losses= (:429)($1,333)+ (1 :429)($20) = $583 per
$100 of payroll.

(2) Reported limited experience= $200,000=3,000 = $66:67
per $100 of payroll. Expected limited experience= ($20)(3000)
(:95) = $57,000. Z = 57=(57+50) = :533. Reported limited ex-
perience loaded for excess losses= $66:67=:95 = $70:18. So,
future expected losses = (:533) ($70:18) + (1 :533) ($20) =
$46.75 per $100 of payroll.

Comment: Using unlimited losses, the prediction is that Angel’s
future losses will be 29 times average. Using limited losses, the
prediction is that Angel’s future losses will be 2.3 time aver-
age. In an application to small insureds, one might cap even the
estimate based on limited losses.

Solution 6.6.1: Husband’s car: mean= (30+33+26+31+30)=
5 = 30 and sample variance= [(30 30)2 + (33 30)2 + (26
30)2 + (31 30)2 + (30 30)2]=(5 1) = 6:5. Sue’s sports car:
mean= (30+28+31+27+24)=5 = 28 and sample variance=
[(30 28)2 + (28 28)2 + (31 28)2 + (27 28)2 + (24 28)2]=
(5 1) = 7:5. The mean time for both cars is (30+28)=2 = 29.
EPV = (6:5+7:5)=2 = 7.0. VHM = [(30 29)2 + (28 29)2]=
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(2 1) EPV=5 = 2 7=5 = .60. The Bühlmann K parameter
is EPV=VHM = 7:0=:60 = 35=3. The credibility is Z = 5=
(5+35=3) = .30. Sue’s estimated commute time in her sports car
is: (:30)(28)+ (1 :30)(29) = 28.7 minutes.

Solution 6.6.2: 1.000, .889, .944, .867, and 1.167.

Solution 6.6.3: (:5 :75=1:000)2 + (:5 :5=:889)2 + (:5 :222=
:944)2 + (:5 :40=:867)2 + (:5 :7=1:167)2 = .1480.

Solution 6.6.4: A K value around 800 produces a sum of squared
differences that is close to the minimum.

Comment: We want the modified loss ratios to be close to the
overall average loss ratio. Based on this limited volume of data, a
Bühlmann credibility parameter of about 800 seems like it would
have worked well in the past. Actual tests would rely on much
more data. This is insufficient data to enable one to distinguish
between K = 800 and K = 1,000. Here is a graph that shows the
sum of the squared differences between the modified loss ratios
and the overall average loss ratio. Note that there is a range of
K values that produce about the same minimum sum of squares.
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