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1 Introduction

In actuarial applications we often work with loss distributions for insurance products. For

example, in P&C insurance, we may develop a compound Poisson model for the losses

under a single policy or a whole portfolio of policies. Similarly, in life insurance, we may

develop a loss distribution for a portfolio of policies, often by stochastic simulation.

Profit and loss distributions are also important in banking, and most of the risk measures

we discuss in this note are also useful in risk management in banking. The convention

in banking is to use profit random variables, that is Y where a loss outcome would be

Y < 0. The convention in insurance is to use loss random variables, X = −Y . In this

paper we work exclusively with loss distributions. Thus, all the definitions that we present

for insurance losses need to be suitably adapted for profit random variables.

Additionally, it is usually appropriate to assume in insurance contexts that the loss X

is non-negative, and we have assumed this in Section 2.5 of this note. It is not essential

however, and the risk measures that we describe can be applied (perhaps after some

adaptation) to random variables with a sample space spanning any part of the real line.

Having established a loss distribution, either parametrically, non-parametrically, analyti-

cally or by Monte Carlo simulation, we need to utilize the characteristics of the distribution

for pricing, reserving and risk management. The risk measure is an important tool in this
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process.

A risk measure is a functional mapping a loss (or profit) distribution to the real numbers.

If we represent the distribution by the appropriate random variable X, and letH represent

the risk measure functional, then

H : X → R

The risk measure is assumed in some way to encapsulate the risk associated with a loss

distribution.

The first use of risk measures in actuarial science was the development of premium prin-

ciples. These were applied to a loss distribution to determine an appropriate premium

to charge for the risk. Some traditional premium principle examples include

The expected value premium principle The risk measure is

H(X) = (1 + α)E[X] for some α ≥ 0

The standard deviation premium principle Let V[X] denote the variance of the

loss random variable, then the standard deviation principle risk measure is:

H(X) = E[X] + α
√

V[X] for some α ≥ 0

The variance premium principle H(X) = E[X] + α V[X] for some α ≥ 0

More premium principles are described in Gerber (1979) and Bühlmann (1970). Clearly,

these measures have some things in common; each generates a premium which is bigger

than the expected loss. The difference acts as a cushion against adverse experience.

The difference between the premium and the mean loss is the premium loading. In the

standard deviation and variance principles, the loading is related to the variability of the

loss, which seems reasonable.

Recent developments have generated new premium principles, such as the PH-transform

(Wang (1995, 1996)), that will be described below. Also, new applications of risk measures

have evolved. In addition to premium calculation, we now use risk measures to determine

economic capital – that is, how much capital should an insurer hold such that the uncertain

2



future liabilities are covered with an acceptably high probability? Risk measures are used

for such calculations both for internal, risk management purposes, and for regulatory

capital, that is the capital requirements set by the insurance supervisors.

In addition, in the past ten years the investment banking industry has become very

involved in the development of risk measures for the residual day to day risks associated

with their trading business. The current favorite of the banking industry is Value-at-Risk,

or VaR, which we will describe in more detail in the next section.

2 Risk Measures for Capital Requirements

2.1 Example Loss Distributions

In this Section we will describe some of the risk measures in current use. We will demon-

strate the risk measures using three examples:

• A loss which is normally distributed with mean 33 and standard deviation 109.0

• A loss with a Pareto distribution with mean 33 and standard deviation 109.0

• A loss of 1000 max(1 − S10, 0), where S10 is the price at time T = 10 of some

underlying equity investment, with initial value S0 = 1. We assume the equity

investment price process, St follows a lognormal process with parameters µ = 0.08

and σ = 0.22. This means that St ∼ lognormal(µ t, σ2 t). This loss distribution has

mean value 33.0, and standard deviation 109.01. This risk is a simplified version of

the put option embedded in the popular ‘variable annuity’ contracts.

Although these loss distributions have the same first two moments, the risks are actually

very different. In Figure 1 we show the probability functions of the three loss distributions

in the same diagram; in the second plot we emphasize the tail of the losses. The vertical

line indicates the probability mass at zero for the put option distribution.

1We are not assuming any hedging of the risk. This is the ‘naked’ loss.
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Figure 1: Probability density functions for the example loss distributions.

4



2.2 Value At Risk – the Quantile Risk Measure

The Value at Risk, or VaR risk measure was actually in use by actuaries long before it was

reinvented for investment banking. In actuarial contexts it is known as the quantile risk

measure or quantile premium principle. VaR is always specified with a given confidence

level α – typically α=95% or 99%.

In broad terms, the α-VaR represents the loss that, with probability α will not be ex-

ceeded. Since that may not define a unique value, for example if there is a probability

mass around the value, we define the α-VaR more specifically, for 0 ≤ α ≤ 1, as

H[L] = Qα = min {Q : Pr[L ≤ Q] ≥ α} (1)

For continuous distributions this simplifies to Qα such that

Pr [L ≤ Qα] = α. (2)

That is, Qα = F−1
L (α) where FL(x) is the cumulative distribution function of the loss

random variable L.

The reason for the ‘min’ term in the definition (1) is that for loss random variables that are

discrete or mixed continuous and discrete, we may not have a value that exactly matches

equation (2). For example, suppose we have the following discrete loss random variable:

L =





100 with probability 0.005

50 with probability 0.045

10 with probability 0.10

0 with probability 0.85

(3)

From this we can construct the following table:

x Pr[L ≤ x]

100 1.00

50 0.995

10 0.95

0 0.85

Now, if we are interested in the 99% quantile, there is no value Q for which Pr[L < Q] =

0.99. So we choose the smallest value for the loss that gives at least a 99% probability
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that the loss is smaller – that is we choose a VaR of 50. This is the smallest number that

gives has the property that the loss will be smaller with at least 99% probability. That

is,

50 = min{Q : Pr[L < Q] ≥ 0.99]

corresponding to definition (1).

Exercise: What are the 95%, 90% and 80% quantile risk measures for this discrete loss

distribution?

Solution: 10; 10; 0.

We can easily calculate the 95% and 99% risk measures for the three example loss distri-

butions.

Example 1. Normal(µ = 33, σ = 109) Loss

Since the loss random variable is continuous, we simply seek the 95% and 99% quantiles

of the loss distribution – that is, the 95% quantile risk measure is Q0.95 where

Pr [L ≤ Q0.95] = 0.95

i.e. Φ
(

Q0.95 − 33

109

)
= 0.95

⇒
(

Q0.95 − 33

109

)
= 1.6449

⇒ Q0.95 = $212.29

Exercise: Calculate the 99% quantile risk measure for this loss distribution.

Answer: $286.57

Example 2. Pareto Loss

Using the parameterization of Klugman, Panjer and Willmot (2004), (but changing the

notation slightly to avoid confusion with too many α’s) the density and distribution
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functions of the the Pareto distribution are

fL(x) =
γ θγ

(θ + x)γ+1

FL(x) = 1−
(

θ

θ + x

)γ

Matching moments, given the mean and variance of 33 and 1092, we have θ = 39.660 and

γ = 2.2018. The 95% quantile risk measure is Q0.95 where

Pr [L ≤ Q0.95] = 0.95

that is FL (Q0.95) = 0.95

⇒ 1−
(

θ

θ + Q0.95

)γ

= 0.95

⇒ Q0.95 = $114.95

Exercise: Calculate the 99% quantile risk measure for this loss distribution.

Answer: $281.48

Example 3. Lognormal Put Option:

We first find out whether the quantile risk measure falls in the probability mass at zero.

The probability that the loss is zero is

Pr[L = 0] = Pr[S10 > 1] = 1− Φ

(
log(1)− 10µ√

10 σ

)
= 0.8749 (4)

So, both the 95% and 99% quantiles lie in the continuous part of the loss distribution.

The 95% quantile risk measure is Q0.95 such that:

Pr[L ≤ Q0.95] = 0.95

⇔ Pr[1000(1− S10) ≤ Q0.95] = 0.95

⇔ Pr
[
S10 >

(
1− Q0.95

1000

)]
= 0.95
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⇔ Φ

(
log(1− Q0.95

1000
)− 10 µ√

10 σ

)
= 0.05

⇔ Q0.95 = $291.30

Exercise: Calculate the 99% quantile risk measure for this loss distribution.

Answer: $558.88

We note that the 95% quantile of the loss distribution is found by assuming the underlying

stock price falls at the 5% quantile of the stock price distribution, as the put option liability

is a decreasing function of the stock price process.

For more complex loss distributions, the quantile risk measure may be estimated by Monte

Carlo simulation.

2.3 Conditional Tail Expectation

The quantile risk measure assesses the ‘worst case’ loss, where worst case is defined as

the event with a 1 − α probability. One problem with the quantile risk measure is that

it does not take into consideration what the loss will be if that 1 − α worst case event

actually occurs. The loss distribution above the quantile does not affect the risk measure.

The Conditional Tail Expectation (or CTE) was chosen to address some of the problems

with the quantile risk measure. It was proposed more or less simultaneously by several

research groups, so it has a number of names, including Tail Value at Risk (or Tail-VaR),

Tail Conditional Expectation (or TCE) and Expected Shortfall.

Like the quantile risk measure, the CTE is defined using some confidence level α, 0 ≤
α ≤ 1. As with the quantile risk measure, α is typically 90%, 95% or 99%.

In words, the CTE is the expected loss given that the loss falls in the worst (1− α) part

of the loss distribution.

The worst (1−α) part of the loss distribution is the part above the α-quantile, Qα. If Qα

falls in a continuous part of the loss distribution (that is, not in a probability mass) then
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we can interpret the CTE at confidence level α, given the α-quantile risk measure Qα, as

CTEα = E [L|L > Qα] (5)

This formula does not work if Qα falls in a probability mass, that is, if there is some ε > 0

such that Qα+ε = Qα. In that case, if we consider only losses strictly greater than Qα,

we are using less than the worst (1 − α) of the distribution; if we consider losses greater

than or equal to Qα, we may be using more than the worst (1 − α) of the distribution.

We therefore adapt the formula of Equation (5) as follows

Define β′ = max{β : Qα = Qβ}. Then

CTEα =
(β′ − α)Qα + (1− β′) E[L|L > Qα]

1− α
(6)

The formal way to manage the expected value in the tail for a general distribution is to

use distortion functions, which we introduce in the next section.

The outcome of equation (6) will be the same as equation (5) when the quantile does not

fall in a probability mass. In both cases we are simply taking the mean of the losses in

the worst (1 − α) part of the distribution, but because of the probability mass at Qα,

some of that part of the distribution comes from the probability mass.

The CTE has become a very important risk measure in actuarial practice. It is intuitive,

easy to understand and to apply with simulation output. As a mean, it is more robust

with respect to sampling error than the quantile. The CTE is used for stochastic reserves

and solvency for Canadian and US equity-linked life insurance.

It is worth noting that, since the CTEα is the mean loss given that the loss lies above

the VaR at level α, then a choice of, say, a 95% CTE is generally considerably more

conservative than the 95% VaR.

In general, if the loss distribution is continuous (at least for values greater than the

relevant quantile), with probability function f(y) then Equation (5) may be calculated

as:

CTEα =
1

1− α

∫ ∞

Qα

y f(y)dy (7)
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For a loss L ≥ 0, this is related to the limited expected value for the loss as follows:

CTEα =
1

1− α

∫ ∞

Qα

y f(y)dy

=
1

1− α

{∫ ∞

0
y f(y) dy −

∫ Qα

0
y f(y) dy

}

Now we know from Klugman, Panjer and Willmot (2004) that the limited expected value

function is

E[L ∧Qα] = E[min(L,Qα)] =
∫ Qα

0
y f(y)dy + Qα(1− F (Qα))

=
∫ Qα

0
y f(y)dy + Qα(1− α)

So we can re-write the CTE for the continuous case as:

CTEα =
1

1− α
{E[L]− (E[L ∧Qα]−Qα(1− α))}

= Qα +
1

1− α
{E[L]− (E[L ∧Qα])}

Example 1: Discrete Loss Distribution

We can illustrate the ideas here with a simple discrete example. Suppose X is a loss

random variable with probability function:

X =





0 with probability 0.9

100 with probability 0.06

1000 with probability 0.04

(8)

Consider first the 90% CTE. The 90% quantile is Q0.90 = 0; also, for any ε > 0, Q0.90+ε >

Q0.90, so the CTE is simply

CTE0.90 = E[X|X > 0] =
(0.06) (100) + (0.04) (1000)

0.10
= 460

that is, 460 is the mean loss given that the loss lies in the upper 10% of the distribution.

Now consider the 95% CTE. Now Q0.96 = Q0.95 = 100, so to get the mean loss in the
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upper 5% of the distribution, we use equation (6), with β′ = 0.96, giving

CTE0.95 =
(0.01) (100) + (0.04) (1000)

0.05
= 820

Example 2: Normal (µ = 33, σ = 109) example.

The loss is continuous, so the 95% CTE is E[L|L > Q0.95]. Let φ(z) denote the p.d.f. of

the standard normal distribution – that is,

φ(z) =
1√
2 π

e−
1
2
z2

then

CTEα = E[L|L > Qα]

=
1

1− α

∫ ∞

Qα

y√
2 π σ

e−
1
2(

y−µ
σ )

2

dy

Let z =
y − µ

σ
then

CTEα =
1

1− α

∫ ∞
Qα−µ

σ

σ z + µ√
2 π

e−
1
2

z2

dz

=
1

1− α

{∫ ∞
Qα−µ

σ

σ z√
2 π

e−
1
2

z2

dz + µ
∫ ∞

Qα−µ
σ

φ(z) dz

}

Substituting u = z2/2 in the first integral, and noting that the second integral is

µ
(
1− Φ

(
Qα − µ

σ

))
= µ(1− α)

gives the CTE formula for the Normal distribution as

CTEα = µ +
σ

1− α
φ

(
Qα − µ

σ

)
(9)

So, the 95% CTE for the N(33, 1092) loss distribution is $257.83, and the 99% CTE is

323.52

Exercise: Derive the formula for the CTE for a Pareto loss distribution, and calculate

the 95% and 99% CTE for the example distribution.
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Answer:

CTEα =
θ

γ − 1
+ Qα

γ

γ − 1
for

where θ > 0, γ > 1. In the example, the 95% CTE is $243.60 and the 99% CTE is

$548.70.

Example 3: The lognormal Put Option example

The 5% worst case for the lognormal put option liability corresponds to the lower 5% of

the lognormal distribution of the underlying stock price at maturity, S10. Let Qα denote

the α-quantile of the S10 distribution. Then the 95% CTE is

CTE0.95 =
1

0.05

∫ Q0.05

0
1000(1− y)

1√
2 πσ y

exp



−

1

2

(
log(y)− µ

σ

)2


 dy

=
1000

0.05





∫ Q0.05

0

1√
2 πσ y

exp


−1

2

(
log(y)− µ

σ

)2

 dy

−
∫ Q0.05

0

y√
2 π σ y

exp


−1

2

(
log(y)− µ

σ

)2

 dy





Now, the first term in the { } is simply FS(Q.05) = 0.05. The second term can be simplified

by substituting

z =
log(y)− µ− σ2

σ

so that the integral simplifies to

eµ+σ2/2
∫ (log(Q.05)−µ−σ2)/σ

−∞
1√
2 π

e−
1
2
z2

dz = eµ+σ2/2 Φ

(
log(Q.05)− µ− σ2

σ

)

So we have:

CTE0.95 =
1000

0.05

{
(0.05)− eµ+σ2/2 Φ

(
log(Q0.05)− µ− σ2

σ

)}

= 1000

{
1− eµ+σ2/2

0.05
Φ

(
log(Q0.05)− µ− σ2

σ

)}
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We might note that (log(Q.05)− µ)/σ) = Φ−1(0.05) = −1.6445.

Using this formula for the example loss distribution, we find that the 95% CTE is $454.14

and the 99% CTE is $644.10.

Exercise: Calculate the 80% CTE for the put option example.

Answer: The 80% quantile lies in the probability mass, so we must use equation (6) for

the CTE. Here β′ = 0.8749 (from (4) above); Q0.80 = Q0.8749 = 0. The CTE is

CTE0.80 =
(

1− 0.8749

1− 0.8

)
E[L|L > 0] = $165.15

Exercise: Derive formulae for the α-quantile and α-CTE risk measures for a lognormal

loss random variable, with parameters µ and σ.

Answer:

Qα = exp
{
Φ−1(α) σ + µ

}

CTEα =
eµ+σ2/2

1− α

(
1− Φ

(
log(Qα)− µ− σ2

σ

))

2.4 Some comments on Quantile and CTE risk measures

1. Clearly CTEα ≥ Qα with equality only if Qα is the maximum value of the loss

random variable.

2. CTE0% is the mean loss.

3. Q0% is the minimum loss; Q50% is the median loss.

4. In Figure 2 we show the quantile and CTE risk measures for all three example loss

distributions, for all values of α between zero and one. In the top diagram, the

quantile risk measures at α = 0 are zero for the Pareto and put option examples,

because that is the minimum loss. The Normal example allows profits, so the lower

quantile risk measures are negative. The put option quantile risk measure remains

at zero for all α < 0.875.

In the lower diagram the CTE’s all meet at the left side, as all the examples have

the same mean loss. At the far right side, the heavy tail of the Pareto distribution
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becomes apparent, as the extreme CTE’s show very high potential losses. The

maximum value of α shown in the plot is 0.999; at this level the Pareto example

CTE is $1634, the Normal example is $400 and the put option example is $783.

5. In some cases negative values may be excluded from the calculation, in which case

the Normal example quantile risk measure would be zero for α < 0.38, and would

follow the same path as shown in the upper diagram after that.

For the CTE, the early values for the Normal example would increase, as the CTE

would be defined for the loss random variable L as

E[max(L, 0)|L > Qα].

2.5 Distortion Risk Measures

Distortion risk measures are defined using the survival function (decumulative distribution

function) for the loss, S(x) = 1 − F (x). We only consider non-negative losses, that is

L ≥ 0 (these methods can be adapted for profit/loss distributions).

The distortion risk measures are those that can be expressed in the form:

H(X) =
∫ ∞

0
g(S(x)) dx (10)

where g() is an increasing function, with

g(0) = 0 and g(1) = 1.

The function g() is called the distortion function. The method works by reassigning

probabilities such that the worst outcomes are associated with an artificially inflated

probability. The function g(S(x)) is a risk-adjusted survival function.

The quantile and CTE risk measures both fall into the class of distortion risk measures.

They are by far the most commonly used distortion measures for capital adequacy, but

others are also seen in practice, particularly for premium setting in property and casualty

insurance.
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The distortion function defining the α-quantile risk measure is

g(S(x)) =





0 if 0 ≤ S(x) ≤ 1− α

1 if 1− α < S(x) ≤ 1
(11)

The distortion function defining the α-CTE risk measure is

g(S(x)) =





S(x)/(1− α) if 0 ≤ S(x) ≤ 1− α

1 if 1− α < S(x) ≤ 1
(12)

Note that the definition for the CTE for non-negative losses using the distortion function

automatically allows for probability masses.

Exercise: For non-negative loss distributions, show that the distortion functions above are

the same as the definitions in sections 2.2 and 2.3.

Other distortion risk measures include The proportional hazard (PH) transform

(Wang (1995, 1996)):

g(S(x)) = (S(x))1/κ for κ ≥ 1 (13)

The parameter κ is a measure of risk aversion – higher values of κ correspond to a higher

security level.

Example: Assume L ∼Pareto(γ, θ). Then the survival function is

S(x) =

(
θ

θ + x

)γ

so the distorted survival function is

g(S(x)) =

(
θ

θ + x

)γ/κ

This is a new survival function for a Pareto (γ/κ, θ) distribution. The integral of the

survival function (for a non-negative loss) is the mean loss, so

H(L) =
θ

γ
κ
− 1

(14)

provided γ
κ

> 1; otherwise it is undefined.

Suppose θ = 1200 and γ = 13. The mean loss is $100; the standard deviation is $109,
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and the 95% VaR is $311. The PH-transform risk measure for, say, κ = 3 is $360.

One problem with the proportional hazard distortion is that there is no easy interpretation

of κ.

The dual power transform is defined using the distortion

g(S(x)) = 1− (1− S(x))κ. (15)

This measure has an interpretation– for integer κ, it is the expected value of the maximum

of a sample of κ observations of the loss L. Suppose κ = 20, and we apply the dual power

to the put option loss example above. We cannot do this analytically, but we can do a

numerical integration. The result is H(X) = $363.

Exercise: Use Excel to calculate risk measures for the put option example,

(i) Using the PH transform with κ = 20

(ii) Using the dual power transform with κ = 40.

Answer:(i) $745 (ii) $479.

Wang’s Transform (WT) Wang (2002) describes a shifted Normal premium principle,

also in terms of a distortion function,

g(S(x)) = Φ
(
Φ−1(S(x)) + κ

)
(16)

Suppose, for example, we have a lognormal loss with parameters µ = 0 and σ = 1. The

mean loss is 1.65, standard deviation 2.16. Consider a right tail loss probability– for

example, Pr[L > 12]. The true probability is 1−Φ((log(12)−µ)/(σ)) = 1−Φ(2.4849) =

0.0065

The probability assigned by Wang’s transform, with κ = 1, say, is found by first taking

Φ−1(0.0065) = −2.4849. Now shift by κ = 1 to give −1.4849. Now reapply the normal

distribution function to give the distorted tail probability

g(S(12)) = Φ(−1.4849) = 0.06879.

So the distorted probability of being in this far tail is more than ten times greater than

the true probability, giving more weight to the tail in the expected value calculation. This

premium principle works well with lognormal losses, as the distorted survival function is
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the survival function for a lognormal distribution with shifted µ parameter.

Exercise: Show that applying Wang’s Transform distortion function to a lognormal(µ, σ)

loss distribution gives a lognormal(µ + κσ, σ) distribution survival function.

Solution:

S(x) = 1− Φ

(
log(x)− µ

σ

)

g(S(x)) = Φ

(
Φ−1

(
1− Φ

(
log(x)− µ

σ

))
+ κ

)

= Φ

(
Φ−1

(
Φ

(− log(x) + µ

σ

))
+ κ

)

= Φ

(− log(x) + µ

σ
+ κ

)

= 1− Φ

(
log(x)− µ− κσ

σ

)

which is the distortion for the Lognormal (µ + κσ, σ), as required.

3 Coherence

With all these risk measures to choose from it is useful to have some way of determining

whether each is equally useful. In Artzner et al (1997, 1999) some axioms were defined

that were considered desirable characteristics for a risk measure (in fact the precursor was

the discussion on ‘desirable characteristics’ in Gerber (1979)).

The axioms are:

Translation Invariance (TI) For any non-random c

H(X + c) = H(X) + c (17)

This means that adding a constant amount (positive or negative) to a risk adds

the same amount to the risk measure. It also implies that the risk measure for a

non-random loss, with known value c, say, is just the amount of the loss c.
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Positive Homogeneity (PH) For any non-random λ > 0

H(λ X) = λH(X) (18)

This axiom implies that changing the units of loss does not change the risk measure.

Subadditivity For any two random losses X and Y ,

H(X + Y ) ≤ H(X) +H(Y ) (19)

The subadditivity axiom has probably been the most examined of the axioms of

coherence. The essential idea is intuitive; it should not be possible to reduce the

economic capital required (or the appropriate premium) for a risk by splitting it

into constituent parts. Or, in other words, diversification (ie consolidating risks)

cannot make the risk greater, but it might make the risk smaller if the risks are less

than perfectly correlated.

Monotonicity If Pr[X ≤ Y ] = 1 then H(X) ≤ H(Y ).

Again, an intuitively appealing axiom, that if one risk is always bigger then another,

the risk measures should be similarly ordered. This axiom, together with the TI

axiom also requires that the risk measure must be no less than the minimum loss,

and no greater than the maximum loss. This is easily shown by replacing X by

min Y for the lower bound, then Pr[min Y ≤ Y ] = 1, so

H(min Y ) ≤ H(Y ) (20)

and using axiom TI, noting that min Y is not random, H(min Y ) = min Y giving

the lower bound.

A risk measure satisfying the above four conditions is said to be coherent. The quantile

risk measure is not coherent, as it is not subadditive. We can illustrate this with a simple

example. Suppose we have losses X and Y , both dependent on the same underlying

Uniform(0,1) random variable U as follows.

X =





1000 if U ≤ 0.04

0 U > 0.04
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Y =





0 if U ≤ 0.96

1000 U > 0.96

Let H(X) denote the 95% quantile risk measure. Then

H(X) = H(Y ) = 0

since in both cases, the probability of a non-zero loss is less than 5%. On the other hand,

the sum, X + Y has an 8% chance of a non-zero loss, and the 95% quantile risk measure

of the sum is therefore

H(X + Y ) = 1000 > H(X) +H(Y ) = 0.

The failure of quantile risk measures to satisfy the coherence axioms is one of the reasons

why it is less popular with actuaries than the CTE risk measure. However, it is still in

widespread use in the banking industry, where the Basel Committee on Banking Super-

vision introduced a 99% Value at Risk requirement, based on a 10-day trading horizon.

The issues surrounding Value at Risk in banking are covered extensively in Jorion (2000)

The subadditivity axiom, and the consequent attempt to reject Value at Risk in favour

of coherent measures, has been attacked on two grounds. The first is that the quantile

risk measure is useful and well understood, that in most practical circumstances it is sub-

additive, and the failure to be sub-additive in a few situations is not sufficiently important

to reject the quantile risk measure (see, for example Danielsson et al (2005))

The second is that in some circumstances it may be valuable to dis-aggregate risks –

though it would need to be more than a paper exercise within the company.

Exercises:

1. Show that H(X) = E[X] is coherent.

2. Show that the variance premium principle is not coherent.

3. The exponential premium principle for a loss X, is

H(X) =
log

(
E

[
eα X

])

α
α > 0

Show that it is not coherent. Which (if any) of the coherency axioms does it satisfy?
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4. Does the quantile risk measure satisfy the axioms of coherence other than subaddi-

tivity?

4 Other measures of risk

All the measures of risk listed so far are solvency measures – that is, they can be interpreted

as premiums or capital requirements for financial and insurance risks. Another class of

risk measures are measures of variability.

In Mean Variance Portfolio Theory, the portfolio variance or standard deviation is taken

as a measure of risk. Clearly these are the most common variability measures. We assume

a higher variance indicates a more risky loss random variable.

Another variability risk measure is the semi-variance measure. The motivation is that only

variance on the worst side is important in risk measurement. So, instead of measuring

the variance σ2 as

σ2 = E[(X − µX)2]

we only look at the worst side of the mean. Since we are dealing with a loss random

variable, this corresponds to higher values of X, so the semi-variance is:

σ2
sv = E[(max(0, X − µX))2] (21)

which would generally be estimated by the sample semi-variance, for a sample size n,

sv2 =
n∑

i=1

(max(xi − x̄, 0))2

n
(22)

where x̄ =
∑n

i=1 xi/n.

The mean may be replaced in the calculation by an arbitrary, known threshold parameter

value, τ . This is sometimes called the threshold semi-variance, that is sv2
τ :

sv2
τ =

n∑

i=1

(max(xi − τ, 0))2

n
(23)

For a profit and loss random variable Y , where a positive value indicates a profit and a
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negative value a loss, the semi-variance is known as the downside semi-variance, so the

threshold downside semi-variance, for example, is

σ2
sv = E[(min(0, Y − τ))2] (24)

and τ = 0 would be a common threshold; that is, measuring the variance of losses with

no contribution from profits.

The downside semi-deviation is the square root of the downside semi-variance.

We can use the variability risk measures to construct solvency risk measures. If we let ν(X)

denote a variability risk measure, then we may construct a solvency risk measure using,

for example, H(X) = E[X] + α ν(X). We have already used this format in the variance

and standard deviation premium principles. However, none of the solvency risk measures

of this form are coherent. The standard deviation principle H(X) = E[X] + α σ does not

satisfy the monotonicity axiom, and neither the variance principle H(X) = E[X] + α σ2

nor the semi-variance principle H(X) = E[X] + α σ2
sv satisfy the sub-additivity axiom.

Exercise: 1. (i) Calculate the semi-variance for the following sample of loss data:

(ii) Calculate the threshold semi-variance, with a threshold of τ = 35.

1, 1, 1, 2, 5, 8, 35, 75

Exercise: Show that the standard deviation premium principle is not coherent. Which (if

any) of the coherency axioms does it satisfy?

Exercise: Show that the variance premium principle is not coherent. Which (if any) of

the coherency axioms does it satisfy?
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5 Estimating risk measures using Monte Carlo sim-

ulation

5.1 The Quantile Risk Measure

In actuarial applications we often use Monte Carlo simulation to estimate loss distribu-

tions, particularly when the underlying processes are too complex for analytic manipula-

tion.

Using standard Monte Carlo simulation2 we generate a large number of independent

simulations of the loss random variable L. Suppose we generate N such values, and

order them from smallest to largest, such that L(j) is the j-th smallest simulated value

of L. We assume the ‘empirical’ distribution of L(j) is an estimate of the true underlying

distribution of L.

For example, suppose we use Monte Carlo simulation to generate a sample of 1000 values

of a loss random variable. We are interested in the 95% quantile risk measure and the 95%

CTE for the loss. We have two important questions; one is, how do we use the output to

estimate the risk measures; the second is, how much uncertainty is there in the estimates?

Suppose we want to estimate the 95%-quantile risk measure of L. An obvious estimator is

L(950). It’s an obvious candidate because it’s the 95% quantile of the empirical distribution

defined by the Monte Carlo sample {L(j)} – that is 95% of the simulated values of L are

less than or equal to L(950). On the other hand, 5% of the sample is greater than or

equal to L(951), so that’s another possible estimator. In Loss Models (Klugman Panjer

and Willmot (2004)), the ‘smoothed empirical estimate’ suggested is to assume that L(j)

is an estimate of the j/(N + 1) quantile of the distribution, and use linear interpolation

to get the desired quantile. That means that L(950) is assumed to be an estimate of the

950/1001 =94.905% quantile, and L(951) is assumed to be an estimate of the 951/1001 =

95.005% quantile. Linear interpolation for the 95% quantile would give

Q95% ≈ (0.05) L(950) + (0.95) L(951)

Generalizing, we have three possible estimators for Qα, from a sample of N simulated

2We assume no variance reduction techniques.
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values of a loss random variable L, where N α is assumed to be an integer.

1. L(N α)

2. L(N α+1)

3. Interpolate between L(N α) and L(N α+1), assuming L(r) is an estimate of the r/(N+1)

quantile – the ‘smoothed empirical estimate’.

None of these estimators is guaranteed to be better than the others. Each is likely to

be biased, though the bias is generally small for large samples. We cannot even be

certain that the true α-quantile lies between E[L(N α)] and E[L(N α+1)]. In practice, for

the actuarial loss distributions in common use, where we are interested in the right tail of

the loss distribution, we usually get lower bias from using either L(N α+1) or the smoothed

empirical estimate. It is also worth noting that all three estimators are asymptotically

unbiased, so for large samples the bias will be small. Also, the bias will tend to be larger

in the farther tails of the distribution.

Table 1 is an excerpt from one sample of 1000 values simulated from the example Normal

loss distribution, with a mean of 33 and a standard deviation of 109.0. These are the 100

largest values simulated:

Exercise: Use the information in Table 1 to estimate the 95th and 99th quantile for the

Normal (33, 1092) loss, using the three estimators above. What is the relative ‘error’ –

that is, the difference between your values and the true values from Section 1, expressed

as a percent of the true values?

Of course, in practice, when we use Monte Carlo, we do not know the true quantile values.

Suppose we use L(Nα) as an estimate of the α-quantile. This estimate will be subject to

sampling variability. We can use the simulations around the estimate to construct a

non-parametric confidence interval for the true α-quantile, Qα for the distribution3.

The number of simulated values falling below the true α-quantile, Qα is a random variable,

M , say, with a binomial distribution. Each simulated value of L either does fall below

Qα – with probability α – or does not, with probability (1-α). So

M ∼ binomial(N, α)

3Strictly, for the Nα order statistic
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which means that

E[M ] = Nα V[M ] = Nα(1− α)

Suppose we want a 90% confidence interval for Qα. We first construct an 90% confidence

interval for E[M ], say, (mL,mU) such that

Pr[mL < M ≤ mU ] = 0.9

and we constrain the interval to be symmetric around Nα, so mL = Nα − a, say, and

mU = Nα + a So, if FM(x) is the binomial distribution function for M

FM(Nα + a)− FM(Nα− a) = 0.9

using the Normal approximation to the binomial distribution gives:

a = Φ−1
(

1 + 0.9

2

) √
Nα(1− α) (25)

The 90% confidence interval for E[M ] gives the range of ordered Monte Carlo simulated

values corresponding to a 90% confidence interval for Qα:

Pr
[
Qα ∈

(
L(Nα−a), LNα+a

)]
= 0.9

In practice, if a is not an integer, we would round up to the next integer, although

interpolation would also be acceptable.

The L(950) estimate from this simulated sample is 209.2. Suppose we want to construct a

90% confidence interval for this estimate. We find

a = (Φ−1(0.95))
√

1000(0.95)(0.05) = (1.645)(6.892) = 11.33

Round up to 12, then we have a 95% confidence interval for Q95%

(L(938), L(962)) = (200.5, 231.4)

So, in general, the process for the non-parametric q−confidence interval for the Nα order

statistic is

1. Calculate

a = Φ−1
(

1 + q

2

) √
Nα(1− α)
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2. Round a up to the next integer

3. The q-confidence interval is (L(Nα−a), L(Nα+a)).

For the Normal approximation to be valid, we need N(1− α) (or Nα if smaller) to be at

least around 5.

Exercise: Use the non-parametric method, and the information in Table 1, to estimate

the 95% confidence interval for Q92.5% in the Normal example.

Solution: (174.3, 203.7)

Another way to explore the uncertainty would be to repeat the simulations many times.

By this we mean simulate a large number, R, say, of samples, each of N values. Each

simulated sample can be used to estimate the quantile risk measure; let Q̂α(i) denote the

estimate from the i-th simulated sample. The R values of Q̂α(i) then can be viewed as an

i.i.d. sample. Then we would use the mean of these as the estimated risk measure, that

is:

Q̂α =
1

R

R∑

i=1

Q̂α(i)

and the sample standard deviation of the risk measures is an estimate of the standard

error:

ŝQ =
1

R− 1

R∑

i=1

(Q̂α(i)− Q̂α)2

Then we can use the sample standard deviation to construct an approximate confidence

interval for the risk measure; for example, for a 90% confidence interval we would use

(
Q̂α − 1.64ŝQ, Q̂α + 1.64ŝQ

)

We can illustrate this with the Normal(33, 1092) example. With 1000 replications, each

with a sample size of 1000, we find the mean values and standard deviations of the Monte

Carlo estimators are:

L̄(950) = 211.53 sL(950)
= 7.30

L̄(951) = 212.61 sL(951)
= 7.34
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Mean Smoothed Estimator = 212.56

The true 95% quantile value is 212.29; the smoothed estimator has a relative error aver-

aging 0.13%. Using L(950) gives a relative error averaging -0.36%, and using L(951) gives a

relative error averaging 0.15%.

Similarly, the 99% estimators, this time using 5000 replications of the sample, are:

L̄(990) = 284.41 sL(990)
= 12.5

L̄(991) = 288.41 sL(990)
= 12.9

Mean Smoothed Estimator = 288.37

which compares with the true 99% quantile value of 286.57. We note that nearer the tail

the standard deviation and the relative errors increase.

Using L(951) as the estimator for Q95%, the mean value is 212.61, and the associated

standard deviation from our 1000 simulations is sQ95%
= 7.34. This gives a 90% confidence

interval for Q95% of (200.57,224.65), which is similar to the non-parametric 90% confidence

interval, but achieved at a much greater cost, of an additional 999 simulated samples, each

with 1000 simulated loss values.

5.2 CTE

The CTE is the mean of the worst 100(1−α)% of the loss distribution, so we estimate the

CTE using the mean of the worst 100(1−α)% simulations, that is, assuming N(1−α) is

an integer,

ĈTEα =
1

N(1− α)

N∑

j=Nα+1

L(j) (26)

For example, the figures in Table 1 show the worst 100 simulations from a sample of

N=1000. To estimate the 95% CTE we average the worst 50 values, giving a CTE

estimate of $260.68. This compares with the true value of $257.83, which was calculated

in Section 2.3.
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L(901) to L(910)

169.1 170.4 171.3 171.9 172.3 173.3 173.8 174.3 174.9 175.9

L(911) to L(920)

176.4 177.2 179.1 179.7 180.2 180.5 181.9 182.6 183.0 183.1

L(921) to L(930)

183.3 184.4 186.9 187.7 188.2 188.5 191.8 191.9 193.1 193.8

L(931) to L(940)

194.2 196.3 197.6 197.8 199.1 200.5 200.5 200.5 202.8 202.9

L(941) to L(950)

203.0 203.7 204.4 204.8 205.1 205.8 206.7 207.5 207.9 209.2

L(951) to L(960)

209.5 210.6 214.7 217.0 218.2 226.2 226.3 226.9 227.5 227.7

L(961) to L(970)

229.0 231.4 231.6 233.2 237.5 237.9 238.1 240.3 241.0 241.3

L(971) to L(980)

241.6 243.8 244.0 247.2 247.8 248.8 254.1 255.6 255.9 257.4

L(981) to L(990)

265.0 265.0 268.9 271.2 271.6 276.5 279.2 284.1 284.3 287.8

L(991) to L(1000)

287.9 298.7 301.6 305.0 313.0 323.8 334.5 343.5 350.3 359.4

Table 1: Largest 100 values from a Monte Carlo sample of 1000 values from a

Normal(33, 1092) distribution
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Exercise: Compare the 99% CTE estimate from the Table 1 Monte Carlo sample with the

true value for the N(33,1092) distribution.

Solution: The estimate from the sample is $321.8, compared with the true value $323.5

The most obvious candidate for estimating the standard deviation of the CTE estimate

is s1/
√

N(1− α) where s1 is the standard deviation of the worst 100(1− α)% simulated

losses:

s1 =

√√√√ 1

N(1− α)− 1

N∑

i=Nα+1

(
L(j) − ĈTEα

)2

We might use this because, in general, we know that the variance of the mean of a sample is

equal to the sample variance divided by the sample size. However, this will underestimate

the uncertainty, on average. The quantity that we are interested in is V [ĈTEα] . We can

condition on the quantile estimator Q̂α, so that:

V[ĈTEα] = E[V[ĈTEα|Q̂α]] + V[E[ĈTEα|Q̂α]] (27)

The plug-in s2
1/N(1− α) estimates the first term; we need to make allowance also for the

second term which considers the effect of the uncertainty in the quantile.

A way to allow for both terms in (27) is using the influence function approach of Manistre

and Hancock (2005). The variance of the CTE estimate can be estimated using

s2
CTEα

=
s2
1 + α(ĈTEα − Q̂α)

N(1− α)

Using the Table 1 data, with α = 0.95, for example, we have Q̂95% = 212.56 using the

smoothed estimator, and the 95% CTE is estimated above as $260.68. The standard

deviation of the largest 50 values in Table 1 is 37.74. Also, N = 1000, α = 0.95, so the

standard deviation estimate is:
√

37.732 + 0.95(260.68− 212.56)

50
= 5.42

Note that the first term in this formula is the same s1/
√

N(1− α) term that we proposed

earlier; the second term allows for the uncertainty in the quantile.
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Another approach to the standard error is to repeat the sample simulation a large number

of times and calculate the standard deviation of the estimator, exactly as we did for the

quantile. This is effective, but expensive in terms of the volume of additional simulation

required.

Exercise: Estimate the 99% CTE and its standard error using the data in Table 1.

6 More Exercises

1. Assume an exponential loss distribution with mean θ. Derive an expression for the

difference

CTEα −Qα

2. For a loss random variable L, derive a relationship between the α-CTE of L and

the mean residual lifetime function (Klugman, Panjer and Willmot).

3. Assume a Weibull loss distribution with θ = 1000, τ = 2 (using the notation of

KPW).

(a) Calculate the 95% quantile risk measure.

(b) Calculate the 95% CTE (Use the limited expected value function; you will need

the gamma and incomplete gamma functions)

(c) Calculate the distortion risk measure using Wang’s PH transform, κ = 5.

4. You are given the following discrete loss distribution:

X =





10 with probability 0.8

50 with probability 0.1

200 with probability 0.08

1000 with probability 0.02

Calculate:

(a) The 95% quantile

(b) the 95% CTE
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(c) The semi-variance

(d) The distortion risk measure using Wang’s second premium principle, with

κ=0.5.
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