RUIN PROBABILITIES FOR A SHORT
TERM DISABILITY MODEL

R. K. Freeland
University of Waterloo, Canada

July 30, 2002

Abstract

A simple short-term disability model is developed, where the loss
process is comprised of two processes: new claims process and contin-
uing claims process. This results in a surplus function with stationary
dependent increments. Three dimensional transition probabilities are
needed to model the transitions of this non-Markovian process. An ap-
proximating model with stationary independent increments is found.
The approximating model leads to bounds for the finite probability of
ruin. Numerical comparisons are made.



1 Introduction

A simple discrete time model for short-term disability insurance is consider.
Premiums are collected at a constant rate of P per period, where P is as-
sumed to be some positive integer. The premiums paid during the first &
periods is P, = Pk. The premiums are to provide wage loss benefits (WLB)
to disabled workers while they are unable to work. Let Ny denote the ag-
gregate number of claims as of period k. Claims are assumed to arrive at a
Poisson rate A and hence N has a Poisson distribution with mean Ak. The
notation Ny is used later in section 3. Define the surplus process at time k as
U = up + Pk — Sk, where vy is the initial surplus at time 0 (assumed to be
a positive integer) and Sy is the aggregate losses paid up until time k. The
loss process Sy is quite complicated and requires additional notation, which
is developed below.

Claimants receive WLB of 1 per period while disabled. That is if a
worker became disabled she would receive 1 unit per period until she was
able to return to work. Let Xj denote the number of claimants collecting
wage loss benefits in period k. The aggregate loss process is then S =
Xo+X1+Xo+- -+ Xg, where Xj is the initial number of claimants collecting
WLB at time 0. The number of claimants in each period depends on two
components: the number of claimants continuing to collect from the previous
period and the number of new claimants arriving during the period. Let &
denote the number of new claims in period k. The total number of claims as
of period k is Ny = &1+ €9+ -+ €.

Suppose that each individual collecting WLB at time k— 1 has probability
o of continuing to collect benefits at time k. Then given the number of
claimants at time k& — 1, Xx_1, the number who continue to collect at time
k, has a binomial distribution with probability of ”success” « and number
of trials Xj_;. This procedure is sometimes called thinning. A time series
representation of X3 can be achieved by introducing the thinning operator
”o”. (iven any non-negative integer X, o o X has a binomial distribution
with probability of ”success” o and number of trials X. The Poisson AR(1)
model is written as,

Xg=ao Xy_1+ ég.

Note that Xg|X_1 is a convolution of a binomial random variable and a



Poisson random variable. The conditional probability function is given by

min(Xk,Xk_l)

P (Xe| Xi—1) = Z (Xk_l) o’ (1 - Oz)X’“_l_s ?)_(:\—_:)s! (1)

s=0 s

and the moment generating function and probability generating function are
respectively

Mty (5) = [L = -+ el 46D

and

Vxelxos (2) = [L+ (2 = 1) a1 27D,

If Xy has a Poisson distribution with mean ﬁ then the loss process has
stationary increments. However the increments are dependent. Further the
marginal distribution of Sy — Sg_1 = X} is Poisson with mean ﬁ The
increments of the loss process can be thought of as a birth & death process

or an infinite server queue with Poisson arrivals and geometric service times.

2 'Transition probabilities

Equation 1 gives the transition probabilities for Xi = Sy — Sg_1 = Ug_1 +
P — Uyg. The state space for Uy expanses with k and is given by Qy, =
{-1,0,1,... ,uo + Pk — 1,up + Pk}. Here the state —1 represents ruin. The
transitional probabilities for U, depend on the previous two states and are
related to the transitional probabilities of X} as follows:

P Uy = u|Ug-1,Ug—2) = P(Xg =Ug1 + P —u| X1 = Ug—a + P — U_1)

Which can be represented as a 3-dimensional transition matrix, where the
dimensions are for the current state and the previous two states. The di-
mensions of the matrix are (Up+ P(k—2)+2) x (Uy+P(k—1)+2) x
(Uo + Pk +2).



3 Approximating model

The model defined in section 1 can be approximated by the following pro-
cess, which in essence is the same process. Let S} = ZN’“ X7 Where N is
the aggregate number of claims and X7 is the severity of the j** claim. In
this model Ny is assumed to be Poisson with mean Ak and the severity dis-
tribution is geometric with probability function P (X ;= m) =(1—a)a™ 1,
xz=1,2,3,.... The mean, variance and moment generating function of the
severity random variable are 1a, i a Ca? and M X (s) = (1 a)e This model
has loss increments which are stationary and 1ndependent. For reference
this model will be referred to as the approximating model and the model in
section 1 will be called the dependent model.

The difference between the approximating model and the dependent model
is how losses are counted. For the dependent model, the incremental loss is
equal to the current number of claims paying (both continuing claims and
new claims). This is the amount of losses actually paid during the period.
For the approximating model the incremental loss on the number of new
claims during the interval and the duration of each of these claims. The full
”life” of the claim is counted when the claim occurs.

Since the claims costs are counted sooner in the approximating model
Sy > Sk and U > Uy for all k. Further the probability of ruin for the
approximating model forms and upper bound on the probability of ruin in
the dependent model.

The adjustment coefficient is the positive solution x to the equation 1 +
(14 6) & = 822 o equivalently 14 (1 +6) 1% = [1+ 12 (14 6) k] €*
where 8 > 0 is the load on the actuarially falr premium per period P =

(14 6) 2. Approximating e® >~ 1 + « leads to the solution x; = S(;j_%‘;
V/[26(146)+1—a>+8a(1—a)8(1+6)—[2a(1+6)+1— o]

While e ~ 1—1—/-1—1— leads to the solution ks = 5a(110)

Equation (13.2.12) in Actuarial Mathematics (1997) gives the following ap-
20E[X}]  2001-a)

E[X,j?] 1+a °

proximation kg =

4 Numerical Comparisons

Simulation was used to compare the PAR(1) model and the approximating
model. The parameters used in the simulation were o« = 0.43, A= 1.1, P = 2
and ug = 20. Based on these parameters the premium load is 8 = 3.64%, the
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Figure 1: Probability of ruin for the PAR(1) model and the approximating
model.

adjustment coefficient is k = 0.028024 and the Lundberg upper bound on the
probability of ruin is 57.1%. X was selected from the marginal distribution.
2500 repetitions of 1500 periods were simulated. The probability of ruin
during the first 1500 periods was found to be 49.0% for the PAR(1) model
and 50.8% for the approximating model. Graph 4 show a plot of the ruin
probability as a function of the number of periods. Note the approximating
model dominates the PAR(1) model and is the higher line on the graph.

Table 4 is a plot of the adjustment coefficient as a function of «, with
A= 1.1 and P = 2. For these parameter value k; is significantly larger than
the other two approximations. When o = 0.1, ko is about 60% closer to
the numerical solution for the adjustment coefficient than 3. This improve-
ment in kg over k3 increases with o and when o = .44, ko is about 90%
closer. Alternatively if « is fixed and A is allowed to vary it is found that
the improvement in ko over kg decreases slowly with A\. The main factor in
determining the improvement appears to be o and not A. When « is larger
than .5, k1 is better than x3. However in all the cases examined ko was the
best approximation for the adjustment coefficient.
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Figure 2: The adjustment coefficient as a function of «.
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