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1. INTRODUCTION 
 
The many uncertainties involved in the payment of losses makes the estimation of the 
required reserves more difficult. Yet, some of the existing methods, such as the popular 
chain-ladder, are simple to apply. However, it has become evident that there is a need for 
better ways not only to estimate the reserves, but also to obtain some measures of their 
variability. This has led to the development of stochastic reserving models, Taylor 
(2000), Kass et. al. (2001), England and Verrall (2002), de Alba (2002). 

The chain-ladder is used as a benchmark in several of the references mentioned above, 
due to its generalized use and ease of application. This facilitates comparison between 
methods. However, in this paper our aim in not to develop Bayesian methods that provide 
results close to those of the chain-ladder method. Rather, we aim at using ‘objective’ 
Bayesian methods to model both claim intensity and severity using some common 
assumptions and to use the resulting predictive distributions to estimate loss reserves, 
allowing for negative values. 

In this paper we present an application of Bayesian forecasting methods to the estimation 
of reserves for outstanding claims. We assume that the time (number of periods) it takes 
for the claims to be completely paid is fixed and known, that payments are made annually 
and that the development of partial payments follows a stable pay-off pattern. This is in 
agreement with many existing models for claims reserving in non-life (general) insurance 
that assume, explicitly or implicitly, that the proportion of claim payments, payable in the 
j-th development period, is the same for all periods of origin, de Alba (2002). The results 
are applicable to any frequency of claim payments (years, quarters, etc.) and length of 
pay-off' period. We present a Bayesian approach to forecasting total aggregate claims 
(number or amount) given data on some development years for several occurrence years. 
Essentially the data would correspond to a typical run-off triangle used in loss reserving. 
We use the term claims reserving in its most general sense.  In particular we are 
concerned with the situation when there are negative values in the development triangle 
of the incremental claim amounts. 

We use standard notation, so that itZ  = incremental number (or amount) of events 
(claims) in the t-th development year corresponding to year of origin (or accident year) i. 
Thus }s,...,t,k,...,i;Z{ it 11 ==  where s = maximum number of years (sub periods) it 
takes to completely pay out the total number (or amount) of claims corresponding to a 
given exposure year. In this paper we do not assume 0>itZ  for all i = 1,…,k  and t = 
1,…,s. Most claims reserving methods usually assume that s=k and that we know the 
values  itZ for 1+≤+ kti . The known values are presented in the form of a run-off 
triangle, Table 1. 

Negative incremental values can arise due to timing of reinsurance or salvage recoveries, 
or premiums being included as negative loss amounts. It could be argued that the problem 
is more with the data than with the methods. The data should be adjusted before applying 
these methods to satisfy regulatory requirements. In this respect de Alba and Bonilla 
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(2002) provide a list of potential adjustments. Although the estimation procedures can be 
applied both to incurred (paid losses and aggregate case estimates combined) or paid 
claims, it is probably better to use the latter, since negative values are less likely to 
appear. That is because case estimates are set individually and often tend to be 
conservative, resulting in over-estimation in the aggregate. This leads to negative 
incremental amounts in the later stages of development. Typically these negative values 
will be the result of salvage recoveries, payments from third parties, total or partial 
cancellation of outstanding claims, due to initial over-estimation of the loss or to possible 
favorable jury decision in favor of the insurer, rejection by the insurer, or plain errors. 

We extend previous results using a full Bayesian model. In fact, two different models are 
presented: one to forecast the number of outstanding claims and one for total aggregate 
claims. The latter is extended from de Alba (2002) to consider negative incremental 
values. The model presented here allow the actuary to provide point estimates and 
measures of dispersion, as well as the complete distribution for the reserves. 

The paper is structured as follows. Section 2 gives a brief description of previous results 
relevant to our approach. Section 3 introduces some Bayesian concepts and their 
applications in actuarial science. Section 4 describes a Bayesian model for claim amounts 
in the presence of negative values. Some examples are given in Section 6. All types of 
model are presented only in discrete time. 

2. BACKGROUND 
 
 For a comprehensive, although not exhaustive, review of existing stochastic methods that 
can handle the existence of negative incremental values see England and Verrall (2002). 
Although they provide some Bayesian results, most of the methods presented there 
approach the problem from the point of view of frequentist or classical statistics and in 
the framework of generalized linear models (GLM).  They provide predictions and 
prediction errors for the different methods discussed and show how the predictive 
distributions may be obtained by bootstrapping and Monte Carlo methods. From the 
classical viewpoint they mainly consider three models, an (over-dispersed) Poisson, a 
negative binomial and a Normal approximation to the latter. They also mention the 
standard log-Normal model which was introduced by Kremer (1982) and analyzed in 
detail in Verrall (1991b). They provide a Bayesian formulation for the Bornhuetter-
Ferguson Technique. 

England and Verrall (2002) emphasize “that some of the methods presented … are better 
suited for modeling paid amounts or number of claims, since incurred data, which may 
include over-estimation of case estimates, leading to negative incremental values, may 
cause problems.” After describing the stochastic basis for the chain-ladder method, they 
indicates that “the Normal model has the advantage that it can produce estimates for a 
wide range of data sets, and is less affected by the presence of negatives” 
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Table 1 

Year of     Development Year   
origin 1 2 ...... t ... k-1 k 

1 Z11 Z12 ... Z1t  Z1,k-1 Z1k 
2 Z21 Z22 ... Z2t  Z2,k-1 - 
3 Z31 Z32 ... Z3t  -  
:      - - 

k-1 Zk-1,1 Zk-1,2    - - 
k Zk1 -     - 

 
 
The stochastic version of the chain-ladder method is defined as a generalized linear 
model (GLM) with an over-dispersed Poisson distribution, Renshaw and Verrall (1998). 
In the over-dispersed Poisson model the mean and variance are not the same. In our 
previous notation )Z(Em ijij = , with a variance function ijij m)Z(V φ=  and scale 
parameter 0>φ , combined with the log ‘link’ function  jiij )mlog( βαµ ++= . Over-
dispersion is achieved through φ. This model reproduces the estimates of the classical 
chain-ladder method. 

Estimates of the parameters, ji βαµ ˆ,ˆ,ˆ , are obtained by using a ‘quasi-likelihood’ 
approach.  Renshaw and Verrall (1998) suggest the use of Pearson residuals in the GLM 
when there are negative values.  They point out that it “is not applicable to all sets of 
data, and can break down in the presence of a sufficient number of negative incremental 
claims.”  The Poisson assumption seems inadequate for continuous variables, like claims 
amounts.   

The negative binomial model is closely related to the previous one, Verrall (2000). The 
distribution in the GLM is now assumed to be a negative binomial with mean  

11 −− j,ij W)( λ  and variance 11 −− j,ijj W)( λφλ  , where ∑=
=

j

k
ikij ZW

1
and }n,...,j:{ j 2=λ  

are the chain-ladder development factors.   As before, φ  is an over-dispersion parameter. 
This method yields essentially the same estimates as the (over-dispersed) Poisson. With a 
sufficient number of negative incremental claims, it is possible that some of the  λ’s 
become less than one and so the variance would not exist. It is then possible and 
necessary to use a Normal approximation, and the chain-ladder results can still be 
reproduced. It is not recommended to use the Normal approximation in all situations, 
mainly because real claims data are skewed, even though its application is likely to be 
less troublesome in practice. The normal approximation assumes the distribution is 
normal with the same mean as before and variance 1−j,ijWφ . The link function remains 
the same in all cases. This last model is seen to be equivalent to one proposed by Mack 
(1993). In addition, these models have the disadvantage that they incorporate n new 
parameters ( the jφ ) that must also be estimated, but this is the price one must pay to 
estimate the reserves in the presence of negative values.  
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3. BAYESIAN MODELS 
 
We do not intend to give here an extensive review of Bayesian methods. Rather we will 
describe them very briefly and discuss their applications in actuarial science, specifically 
in loss reserving. Bayesian analysis of IBNR reserves has been considered before by 
Jewell (1989,1990), Verrall (1990) and Haastrup and Arjas (1996). For general 
discussion on Bayesian theory and methods see Berger (1985), Bernardo and Smith 
(1994) or Zellner (1971). For a discussion of Bayesian methods in actuarial science see 
Klugman (1992), Makov (1996, 2001),  Scollnik (2001), Ntzoufras and Dellaportas 
(2002) and de Alba (2002). Here, we refer only to those that can be applied to situations 
where 0<itX  for some  i,t = 1,…,k. 

Verrall (1990) approaches the subject of predicting outstanding claims using hierarchical 
Bayesian linear models, considering the fact that the chain-ladder technique is based on a 
linear model: the two-way analysis of variance model (ANOVA). He essentially carries 
out a Bayesian analysis of the two-way ANOVA model to obtain Bayes and empirical 
Bayes estimates. The latter are given a credibility interpretation. Two alternative 
formulations are considered, one with no prior information and another where he uses a 
specific prior distribution for the parameters.  

More recently, Bayesian results are provided in England and Verrall (2002), notably for 
the Bornhuetter-Ferguson (B-F) technique. The Bornhuetter-Ferguson technique is useful 
when there is instability in the proportion of ultimate claims paid in the early 
development years, so that the chain-ladder technique yields unsatisfactory results. The 
idea is to use external information to obtain an initial estimate of ultimate claims.  In the 
traditional B-F method use is made explicitly of perfect prior (expert) knowledge of 
‘row’ parameters, ultimate claims. This is then used with the development factors of the 
chain-ladder technique to estimate outstanding claims. This is clearly well suited for the 
application of Bayesian methods when knowledge is not perfect, England and Verrall 
(2002). It may break down in the presence of negative values, Verrall (2002). Mack 
(2000) provides a summary of the technique.   

Ntzoufras and Dellaportas (2002) consider various competing models using Bayesian 
theory and Markov chain Monte Carlo methods. Claim counts are used in order to add a 
further hierarchical stage in the model with log-normally distributed claim amounts. In a 
recent paper, de Alba (2002) presents a model for aggregate claims by separating number 
of claims and average claims, which are also assumed log-normally distributed. In this 
paper we follow essentially the approach of the latter. 

A standard measure of variability is prediction error, defined as the standard deviation of 
the distribution of possible reserves. In the Bayesian context the usual measure of  
variability is the standard deviation of the predictive distribution of  the reserves. This is a 
natural way of doing analysis in the Bayesian. In this paper our aim is to obtain not only 
this standard deviation, but also show the complete  predictive distribution. 
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4. A BAYESIAN MODEL FOR AGGREGATE CLAIMS  
 
In this section we present a model for the unobserved aggregate claim amounts and hence 
the necessary reserves for outstanding claims. Let the random variable itZ  represent the 
value of aggregate claims in the t-th development year of accident year  i, i,t=1,...,k. The 

itZ  are known for i+t ≤ k+1  and we assume  

( )δδ +=









+= itit MloglogY

it

it

X
Z

 ,                        (1) 

where we can use alternative specifications for itX . The parameter δ corrects the values 
so as to make it possible to take logarithms. The first one of these specifications we 
consider is to let itX  be the number of closed claims in the t-th development year 
corresponding to year of origin i. In this case ititit XZM /=  is the corresponding average 
claim. This is the structure used in Taylor and Ashe (1983). The second specification we 
consider in this paper is to let iit XX =  for all  t = 1,...,k, i.e. iX  is some measure of 
exposures in each year of origin, e.g the size of portfolio in year i. It is used as a 
standardizing measure of business volume.  This is the formulation used in most of the 
references, e.g. Verrall (1990). A possible third specification would be to use (1) to 
model aggregate claim amounts without including any information on number of claims. 
That is, use itit ZM =  or, equivalently, let k,...,t,i,X it 11 == . This specification is 
equivalent to the model of Doray (1996). Since the first formulation of the three 
mentioned above is more general ( itX  depends on t) we shall consider it in more detail. 
In either case, we assume in addition that 

    ),(N~)M(LogY ijijtiit
*
it

20 σεεβαµδ +++=+=                              (2) 

i=1,...,k,   t=1,...,k  and i+t ≤ k+1 so that itM  follows a three parameter log-normal 

distribution, i.e. ),,(LN~M titit δσβαµ 2++  and 

   ),,,|y(f ti
*
it

2σβαµ  ]))M(Log(exp[ tiit
2

22
11 βαµδ
σσ

−−−+−∝ .                 (3) 

It is well known in ANOVA that certain restrictions must be imposed on the parameters 
in order to attain estimability. We use the alternative assumption that 011 =β=α . Also, 
we define UT  = (k+1)k/2 = number of cells with known claim information in the upper 
triangle; and LT  = (k-1)k/2 = number of cells in the lower triangle, whose claims are 
unknown. 

 It is well known that estimation in the three parameter log-normal distribution can be 
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very unstable, Crow and Shimizu (1988).  Hence we will use  the ‘profile’ likelihood 
with δ  replaced by its ML estimator as given in this reference (on page 123),  say  δ̂ , 
and define δ̂yy *

itit += . We then carry out the rest of the analysis with this value 
replaced in (3). Using matrix notation the model in (2) can be written as follows: 

                                 )I,(N~Wy 20 σεεθ += , 

where  }kti,k,...,t,i;y{y it 11 +≤+==  is a UT -dimension vector that contains all the 

observed  values of itY ,  )',...,,,...,,( kk ββααµθ 22=   is the ))k(( 112 ×−  vector of 
parameters, ε  is the )T( U 1× vector of errors and W  is the ))k(T( U 12 −×  design matrix 
of the model.  Now  

)]Wy()'Wy(exp[)ˆ,x,..,x,x,W,,|y(f UT
k θθ

σ
σδσθ −−−∝ −

221
2

2
1 ,           (4) 

where the vectors  )'x..xx(x k112111 = ,  )'x..xx(x k 1222212 −= , …, )x(x kk 1=  contain 
the known data in the triangle. We use this specification in the following sections. In the 
following sub-sections the reader is referred to de Alba (2002) for details, since many of 
the results are essentially the same. Also, in what follows we use direct Monte Carlo 
simulation as described in Appendix B of the aforementioned reference. 

 

4.1 LOSS RESERVING USING CLAIMS PER PERIOD 

We want to estimate (or obtain the distribution of) aggregate claims for accident year i 
given information on at least one year that has fully developed and perhaps on m previous 
completely known accident years. Let ij

t
j

*
it ZZ 1=∑=  for 1 ≤ t ≤ k. Hence, in the run-off 

triangle setup, we are really interested in estimating *
ikZ  i=2,...,k, given *

kZ1 , itX  and 

itZ , i=1,...,k t=1,...,k, with i+t ≤ k+1. Conditioning on itX  is particularly important since 
later we combine the results obtained here with the marginal posterior distribution of the 

itX , i,t = 1,…,k, to estimate outstanding aggregate claims. Now let *
ia

*
iki i

ZZR −= , for 

i=2,...,k  with    ai=k-i+1, so that *
iai

Z  is the accumulation of itZ  up to the latest 
development period and Ri = the total of the aggregate claims process for the 
development years for which it is unknown, both corresponding to business year i.  

Hence, using (4) and  the same assumptions about the distribution of the number of 
claims and notation as in Section 4 in de Alba (2002), as well as from independence of 
the number of claims and the average claim per cell, the joint pdf is 
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∏×=
=

+−
k

i
iiikkk )p,n|x(f)ˆ,W,,|y(f)ˆ,W,,p,n,...,n,n,|x,...,x,y(f

1
1211 δσθδσθ   , 

where )p,n|x(f iiik 1+−  is where   denotes a (k-i+1)-dimensional multinomial   pf . We 
assume the parameters are independent a-priori and specify non-informative priors, de 
Alba (2002). The joint posterior distribution is then seen to be  

       

×−−−∝ +− )]Wy()'Wy(exp[)ˆ,Dp,n,...,n,,(f )UT(
k θθ

σ
σδσθ 2

1
2 2

1 ∏
∏ =

=

k

t

x
tk

t
t

tp
!x

!n
1

1
1

1 1 × 

                 
t

*
k

x
k

t k

t
k

t
t

x*
k

x
k

nk p
p

!x

!xp)p(
)!x(!x

)!n( 2

22
1

1 1
1

1
2

2
11

2

2 1
1

1
∏ 






∏
−

−
− −

= ∗
−

−

=

∗

−
∗
−∗ × 

                   
tx

k

t k

t
k

t
t

x
k

xn
k p

p

!x

!x
p)p(

)!x()!xn(
)!n( 3

333
2

1 2
2

1
3

3
22

333

3 1
1

1
∏ 






∏
−

−−
− −

= ∗
−

−

=

∗
∗
−

−∗
−∗∗

∗∗

× 

                                                            M  

                        ∏ 





−

−−
−

= ∗

∗
∗−∗

∗

1

1 1

1

1
11

1

1

11
1

1
t

x

k

kxxn

kkk

k
k

kkk

p
p

!x
!xp)p(

)!x()!xn(
)!n(

.             (5) 

where D represents all the known information included in the posterior distribution, i.e. 
}ˆ,y,W,n,x,...,x,x,x,..x{D kk δ121111

∗∗∗= .  We can rewrite (5) as  

                  )(),(),(),,...,,,(
2

2 DpfDpnfDfDpnnf
k

i
ik ××∝ ∏

=

σθσθ ,                    

where 

)(),(),( DfDfDf σσθσθ ×= . 

Since )',...,,,...,,( kk ββααµθ 22= , and from the first factor in  (5), we can write 

                )]ˆ(')'ˆ(
2

1exp[),( 2
)12( θθθθ

σ
σσθ −−−∝ −− WWDf k  

and  

                                   )]ˆ()'ˆ(
2

1exp[)|( 2
)22( θθ

σ
σσ WyWyDf kTU −−−∝ +−− , 
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with y'W)W'W(ˆ 1−=θ . This is the ‘square-root inverted-Gamma’ distribution, Bernardo 
and Smith (1994, page 119). Furthermore, recalling ai=k-i+1, 

                    
∗∗ −∗∗

∗∗ −
−−

−
= ii

i

i

i

xn
a

x
a

iii

i
i )p()p(

)!xn()!x(
)!n(

)D,pn(f 1
1

1
, 

i = 1,2,…,k, and  from Appendix A in de Alba (2002) 

            ∏
∏

=
=

=

k

t

x
tk

t
t

tp
!x

!n)D|p(f
1

1
1

1 1 × 
tx

k

t k

t
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t
t

p
p

!x
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1 1
1

1
2

2 ∏ 






∏

−

=
∗

−
−

=

∗
× 

                     …×
tx

k

t k

t
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t
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

∏

−

= ∗
−

−
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∗

×…× ∏ 


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
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1

1

1

t

x

k

k
k

p
p

!x
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To compute the reserves for the outstanding aggregate claims we need to estimate the 
lower portion of the triangle. We do this by obtaining the mean and variance of the 
predictive distribution. Hence for each cell we have: 

)D|xM(E)D|Z(E ititit =   )D|x(E)D|M(E itit= , 

because of the independence of M  and )x,...,x( k1 , where 
}kti,k,...,t,i;M{M it 11 +≤+== . Then the Bayes estimate of outstanding claims for 

year of business i is ∑
+−> 1ikt

it )D|Z(E . The Bayes ‘estimator’ of the variance (the predictive 

variance) for that same year is too cumbersome to derive. Hence we use direct simulation 
from the posterior distributions to generate a set of N randomly generated values for the 
number of claims in each cell of the (unobserved) lower right triangle )( j

itx , k,..,i 2= ,  
1+−> ikt , for j=1,…,N.  Then, also for j = 1,…,N,  we first generate random values of 

the )j(
ity and from them, for the average payment δ̂}yexp{M )j(

it
)j(

it −=  for each one of 
those same cells, and finally for the corresponding pending aggregate loss payment 

)j(
it

)j(
it

)j(
it MxZ ∗= , k,..,i 2=  and 1+−> ikt . These  values include both parameter 

variability and process variability.  Thus we can compute a random value of the total 
required reserves ∑=

t,i

)j(
it

)j( ZR . The mean and variance can be computed as 

                             ∑ ∑
= =

=−=
N

j

N

j

j
j

R R
N

Rand
N

RR
N 1 1

)(
2)(

2 1)(1σ . 
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The standard deviation Rσ  thus obtained is an ‘estimate’ for the prediction error of the 
number of claims to be paid. The simulation process has the added advantage that it is not 
necessary to obtain explicitly the covariances that may exist between parameters. They 
are dealt with implicitly. 

 

4.2 LOSS RESERVING USING A MEASURE OF EXPOSURE PER ACCIDENT 
YEAR 

In this sub-section we present the second specification for equation (1). Now in it let  
== iit XX  some exposure factor or the (known)  exposures in each year of origin, 

Verrall (1990), Renshaw and Verrall (1994), England and Verrall (1999). Since iX , i = 
1,…,k, are no longer random variables we only need to model  itM  as before. The 

expressions for )D|Z(Var it  and )D|Z,Z(Cov itis  will simplify somewhat, but they will 
still be cumbersome to compute. Hence we obtain the predictive distribution by 
simulation but we only need to generate the samples for the δ̂}yexp{M )j(

it
)j(

it −=   and 

the required reserves per cell will now be   )j(
iti

)j(
it MXZ ∗= ,    all k,..,i 2= ,  

1+−> ikt . Using this procedure we can obtain the predictive distribution of the reserves 
that will be comparable to those given in the references, but with the advantage of having 
the complete predictive distribution. Notice that since the global model is arrived at using 
all the information on p and this vector does not appear when using iit XX =   = 
exposures, then there is no need to model itX  when it is defined this way. Further 
simplification can be attained if there is no information on claims per cell or exposure. In 
that case we would have 1=itX  for all i and t. 
 
 
 
 
5. APPLICATION 
 
In this section we present two sets of data that conatain negative values, Table 2 and 
Table 3. These have been extensively used to estimate the reserves by different methods. 
Table 2 comes from Mack (1994) and has only one negative value. Table 3 is taken from 
Verrall (1991b) and includes three negative values. Tables 4 and 5 present the results of 
applying different methods to these sets. In Table 4  we compare the results of applying 
the chain-ladder method, the over-dispersed Poisson and our Bayesian simulation. As 
expected the required reserves are exactly the same for the first two.  We also include the 
Bootstrap estimator of the standard deviation as given in England and Verrall (2002). 
This last reference also provides the reserves estimated with the B-F method, which are  
50,002; lower than the others. All the standard devistions are well the same range, with 
the Bayesian one slightly larger. The more striking difference is in the reserves. The 
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Bayesian result is much higher. It is near the one that one would obtain by applying a 
straightforward lognormal model with some adjustments for the negative value, Mack 
(1994). Clearly, the chain-ladder does not seem to be affected by the negative value. 
Figure 1 shows the predictive distribution of the reserves for Year of Origin 2 (Row 2) 
and for the total. They are clearly skewed, specially the first one. Analysis for the other 
Rows show similar results, but they are not included for the sake of brevity. This may be 
one cause for this difference. 
 
Table 5 provides the results of applying  the the same three methods as above, but now 
we include also those of the straightforward three parameter log-normal model without 
using the ‘variance correction’ when estimating the claim amounts per cell. This is the 
column labeled log-Normal. We also include the result of ignoring the cells with the 
negative values, i.e. treating them as missing values. In this case there no big differences, 
the largest being the latter. It is interesting to note that some of the methods yield 
negative reserves for some of the accident years, but the total is positive.  Figure 2 shows 
the predicitve distribution for accident year 2 (top panel), accident year 6 (middle panel) 
and for the total (bottom panel). They are all much less skewed than in the previous 
example. This may expplain why the differences between the results of the different 
methods are smaller.  
 
The Bayesian method presented here constitutes an appealing alternative to claims 
reserving methods in the presence of negative values in incremental claims for some cells 
of the development triangle. Further analysis is needed to clarify some of the differences, 
which may be warranted when the data is very skewed, as in the first example. On the 
other hand, this method will not break down even in the presence of a considerable 
number of negative values. Another point for research will be to avoid the use of the 
profile likelihood and carry out a fully Bayesian analysis of the problem.  
 
 
 
 
 
 

 

1 2 3 4 5 6 7 8 9 10
1 5012 3257 2638 898 1734 2642 1828 599 54 172
2 106 4179 1111 5270 3116 1817 -103 673 535
3 3410 5582 4881 2268 2594 3479 649 603
4 5655 5900 4211 5500 2159 2658 984
5 1092 8473 6271 6333 3786 225
6 1513 4932 5257 1233 2917
7 557 3463 6926 1368
8 1351 5596 6165
9 3133 2262
10 2063

Source: Mack (1994)

Table 2
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1 2 3 4 5 6 7 8 9 10 11 12
1 290,089 266,666 314,364 468,721 264,735 269,916 125,922 540,684 120,757 58,963 50,837 151,645
2 401,574 648,101 673,897 656,985 458,421 373,010 31,541 279,066 98,551 177,200 -422,178
3 251,430 373,741 1,827,086 -429,298 801,041 746,157 109,788 212,418 101,225 -3,883
4 48,924 213,108 644,118 248,680 1,202,333 311,357 1,067,149 697,658 650,711
5 62,782 278,404 880,618 611,843 243,380 335,226 205,508 164,632
6 10,684 109,837 189,684 581,492 69,177 323,129 207,976
7 271,613 290,244 587,769 660,187 681,626 413,425
8 151,219 183,554 485,830 431,524 427,587
9 97,658 141,952 369,009 450,971
10 51,843 119,089 530,706
11 145,703 421,333
12 21,019

Source: Verrall (1991b)

Table 3

Chain-L
Row Reserves Reserves Std. Dev. Bootstrap Reserves Std. Dev.

2 154        154           556                  695                  189            759            
3 617        617           1,120               1,343               1,515         1,548         
4 1,636     1,636        1,775               1,992               3,551         2,318         
5 2,747     2,747        2,231               2,377               3,577         2,396         
6 3,649     3,649        2,440               2,563               4,283         2,833         
7 5,435     5,435        3,124               3,093               5,065         3,252         
8 10,907   10,907      5,032               5,135               12,654       6,204         
9 10,650   10,650      6,075               6,018               14,262       7,790         

10 16,339   16,339      12,987             13,644             24,364       15,458       

TOTAL 52,135   52,135      18,193             19,267             69,459       21,788       

Comparison of Results. Mack Data
Table 4

BayesianOver-dispersed Poisson

Row Bayesian Chain-ladder Log-Normal ODP Missing
2 179,230 184,720          193,396           184,720        185,913       
3 58,630 (21,405)           (12,061)           (21,405)        306,927       
4 62,530 87,020            532,171           87,020          473,254       
5 863,030 238,643          157,646           238,643        408,801       
6 634,900 328,846          (92,416)           328,846        319,098       
7 224,900 1,052,768       1,373,008        1,052,768     1,248,633    
8 1,830,100 1,027,397       939,318           1,027,397     1,191,910    
9 1,352,100 1,206,533       1,034,681        1,206,533     1,184,983    

10 791,900 1,347,809       1,067,784        1,347,809     1,270,170    
11 1,913,500 3,616,144       3,368,769        3,616,144     4,078,328    
12 1,492,200 398,872          1,375,010        398,872        557,668       

TOTAL 9,403,100       9,467,347       9,937,308        9,467,347     11,225,685  

Comparison of Results. Verrall Data
Table 5
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