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Abstract

We show that the aggregate claims distribution of a portfolio mod-
elled by a mix of the individual and collective models can be obtained
with a single recursion (under some conditions). This seems to have
gone unnoticed in the literature. In fact, it is an application of “De
Pril transforms”, an appellation introduced by Sundt (1992). We dis-
cuss why the collective model is not necessarily an approximation of
the individual model in the context of pension funds, for example.
An application to a Swiss pension fund is presented. This paper is
practical and pedagogical in nature.
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1. Introduction

The individual model is a natural construct for a life insurance portfolio
or a pension fund. At a given time, the insureds of a portfolio are well
known, the pension fund’s members as well. Their characteristics, sex, age,
face amounts, etc., are also available as are good estimates of the needed
biometric functions (probability of death, etc.). However, there is an implicit
assumption underlying the use of an individual model in these contexts: the
group is closed.

The collective model has been suggested as an approximation to the indi-
vidual model. The usual approximation consists of replacing the individual
model by a “close” compound Poisson model. This was standard enough to
be included many years ago in actuarial education of aspiring SOA’s mem-
bers, see chapter 13 of Bowers et al (1986) or chapter 4 of Klugman et al
(1998).

Frequently in practice, the calculation of the aggregate claims distribu-
tion arises in the determination of stop-loss premiums. Although stop-loss
reinsurance is mainly used in non-life insurance, it is routinely employed by
pension funds in some European countries, and especially in Switzerland.
Swiss pension funds can provide substantial disability and death benefits,
consequently individual net amounts at risk (NAAR) can be very large. This
explains the popularity of stop-loss reinsurance among small and medium size
Swiss pension funds.

There is then a real need for a model as close as possible to “reality”,
in order to have a best estimate of the stop-loss premium (net or loaded
according to a premium calculation principle). In section 3, we will discuss
briefly some possibilities in regard of what is the probable evolution of the
pension fund considered (or insurance portfolio). We will do it after recalling
the basics of the individual model, the collective model, and mixes of both,
in the next section. In-between models have been suggested by Goovaerts
and Kaas (1988).

We will show in section 4 that the distribution of such a mixed model can
be calculated with a single recursion. Many recursive formulas for the indi-
vidual and the collective models have been developed over the last decades
following the pioneering works of Panjer (1981) and Kornya (1983). After
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rediscovering a few formulas known in computer science (De Pril 1985, 1986),
De Pril (1988, 1989, 1994 with Dhaene) made a very important contribution
to the individual model efficient calculations literature. The list of papers
here is not exhaustive, these references are the most important in regard
to practical use in the opinion of this paper’s author. A recent survey of
the topic is Sundt (2002). A less important but practice oriented paper is
Dufresne (1996) where a formula, which is a special case of a De Pril’s for-
mula, is derived in the lines of Kornya. Kornya’s approach will be used again
in the following. The relation of the single (mixed) recursion to De Pril
transforms, introduced by Sundt (1992, 1995, 1998), will be discussed.

Next, we consider a small pension fund and apply the hybrid model to it.
Finally, we conclude with some remarks.

2. The models

In the individual model of Risk Theory, the aggregate claims random
variable (r.v.) SInd is defined by

SInd = X1 + X2 + . . . + Xm (1)

where X1, X2, ..., Xm are mutually independent random variables. The ran-
dom variable Xk gives the total claim amount of the insured number k of the
portfolio for a given period of time, k = 1, 2, ..., m.

To simplify the presentation, we will assume that an insured can have at
most one claim per period of time, and that the claim amounts are positive.
This last assumption is generally not satisfied in the case of pension funds
(at least, Swiss ones).

One can model the individual claim amounts Xk by setting

Xk = IkBk (2)

where Ik is an indicator random variable and Bk is the claim amount random
variable, given that a claim occurs. We can assume that Ik and Bk are
independent. Let pk = Pr[Ik = 0] and qk = Pr[Ik = 1] = 1 − pk. The
distribution of Ik is a Bernoulli of parameter qk. Instead of writing Xk as a
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product of two independent random variables, one can alternatively write it
as the following sum

Xk =
Ik∑

i=1

Bi (3)

with the usual convention that the value of an empty sum is zero. This last
representation will be useful to define the collective model approximation to
the individual one.

Throughout this paper, let denote the probability function (discrete case)
or the probability density function (continuous case) of a random variable Z
by fZ(·).

In the collective model, the aggregate claims random variable SColl is
defined by

SColl = Y1 + Y2 + . . . + YN (4)

where Y1, Y2, ..., the individual claim amounts, are mutually independent
random variables and are independent of N . The random variables Y1, Y2, ...
are also identically distributed.

The collective model approximation to the individual model can be de-
fined by the replacement of Ik in

∑Ik
i=1 Bi by a Poisson r.v., say Nk, with the

same expected value: λk = E[Ik], k = 1, 2, . . . , m. Then

XCA
k ≡

Nk∑

i=1

Bi ∼ compound Poisson(λk, fBk
(·)), (5)

where the superscript CA means “collective approximation”. By a well
known property of the compound Poisson distribution, see, for example, The-
orem 11.1 of Bowers et al (1986), the following random variable

SCA = XCA
1 + XCA

2 + . . . + XCA
m (6)

has a compound Poisson distribution with parameters

λ = λ1 + λ2 + . . . + λm (7)

and

f(x) =
m∑

i=1

λi

λ
fBi

(x) (8)
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where λk = qk = E[Ik], k = 1, 2, . . . , m.

Consequently, SCA can be written as

SCA = Y1 + Y2 + . . . + YN (9)

where Y1, Y2, . . . are independent and identically distributed according to (8)
and independent of N which has a Poisson distribution of parameter λ given
by (7).

If the XCA
k are “close” (in distribution) to the original Xk, the distribution

of SCA will be close to the distribution of SInd. This happens when every Nk

has almost the same distribution as the corresponding Ik, and this is when
the probability, qk, of a claim is “small”. This last assertion is simply the
celebrated Poisson approximation to the binomial distribution. It is easy to
show that the collective approximation preserves the first moment but not
the variance of the original distribution. The variance of SCA is greater than
the one of SInd, but very slightly in usual applications. Errors bounds for
the approximation of the individual model by the collective models have been
developed, see, for example, Gerber (1984).

3. Practical considerations: mixed model

In practice, calculation of the aggregate claims distribution is always done
with a specific time horizon in mind. For example, stop-loss premium con-
tracts for pension funds usually have a one year duration, sometimes a longer
period is chosen, e.g. three years. During that period there will be new en-
trants in the pension fund (or insurance portfolio) as well as withdrawals.
Some of the new entrants will come in as replacement for disabled or de-
ceased members during the given period of time. Nevertheless, a stop-loss
contract will cover everyone: people who were there at the beginning of the
period as well as those who arrive during the period. Also, early withdrawals
do not represent full risk exposures.

Consequently, even if the data as they are laid on paper (or computer
file) speak for an individual model, a collective model might be, in fact,
“closer” to reality. In the following, we assume that the data correspond
to and individual model and that the random variables Xk are well defined,
k = 1, 2, . . . , m
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If we account for the following facts:

• death and disability are more likely to strike older people,

• if people are replaced, they usually will be so by younger persons,

• some people will not be replaced at all (and this can be already known
by the management staff),

• older people have larger net amounts at risk, younger have smaller ones.

Note: The argumentation found in this section has sometimes to be ad-
justed for insurance portfolios. Swiss pension funds are our main example.
The list above is not exhaustive.

We conclude that a model “in-between” could best reflect the features of a
pension fund. Goovaerts and Kaas (1988) did suggest the use of such a model.
They proposed to model the riskiest part of a portfolio by an individual
model and the rest of it by a collective model. They were motivated by
computational efficiency since they considered the collective approximation
just as a computational device allowing to avoid brute force convolution.
Here we suggest a similar modelling on different grounds: to best reflect the
dynamics of a pension fund (or insurance portfolio).

Thus, we split the pension fund in two groups:

1. members who are unlikely to be replaced at all 1,

2. members who are likely to be replaced by new entrants.

Let denote by V the set of indexes of pension fund members (or “risks”)
who are assigned to group 1.

The claim number frequency of group 1 is decreasing over time (assuming,
for example, a uniform distribution of decrements). The one of group 2 will be
assumed constant (since there are replacements). Then we use the individual

1Or who would be replaced by new members with very small NAAR.
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model for the aggregate claims of group 1, S1, and a collective approximate
model for group 2, S2:

S1 =
∑

k∈V

Xk (10)

and
S2 = CA?[{Xk}k/∈V ] (11)

where CA[·] means collective approximation based on the random variables
inside the brackets. The star refers to a possible adjustment of the claim
frequency as described below. We assume that S1 and S2 are independent.
Thus, the pension fund aggregate claims, S, is given by

S = S1 + S2. (12)

Parameters of the two submodels are chosen in the usual way, except for
the claim number parameter, λ, of the second one. The expected number of
claims under the collective model should be adjusted to take into account the
replacements, other new entrants and the withdrawals. It should be noted
that we implicitly assume, in the collective submodel, that the distribution
of individual claim amounts is the same for current members, new entrants
and persons withdrawing.

Once the two submodels are set up, it remains to compute the distribution
of S. In the next section, we show that it can be obtained with a single
recursion.

4. Recursive calculation

To simplify the presentation, we assume that the net amounts at risk are
all non-negative integers. In the case of a pension fund, the distributions of
the Xk are tri-atomic (no claim, mortality, disability). The p.f. of Xk can be
written as

fXk
(x) =





pk : x = 0

q
(m)
k : x = mk

q
(d)
k : x = dk

0 : elsewhere

(13)
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where mk is the mortality NAAR, and dk is the disability NAAR. For the
given period of time, the probabilities of death and disability for individual
number k are q

(m)
k and q

(d)
k , respectively. It follows that the p.f. of Bk is

fBk
(x) =





q
(m)
k /qk : x = mk

q
(d)
k /qk : x = dk

0 : elsewhere.

(14)

From our assumptions, the probability of no claims is

Pr[S = 0] = Pr[S1 = 0] · Pr[S2 = 0]

= e−λ
∏

k∈V

pk. (15)

If we denote by ϕZ(s) the probability generating function (p.g.f.) of a
r.v. Z, then we have

ϕS(s) = ϕS1(s)ϕS2(s). (16)

Now, the p.g.f. of S2 can be written as

ϕS2(s) = eλ(ϕY (s)−1) (17)

where ϕY (s) is a polynomial.

By definition of S1, its p.g.f. is

ϕS1(s) =
∏

k∈V

(
pk + q

(m)
k smk + q

(d)
k sdk

)
(18)

= (
∏

k∈V

pk) ·
∏

k∈V

(
1 + q̃

(m)
k smk + q̃

(d)
k sdk

)
(19)

with q̃
(m)
k = q

(m)
k /pk, and q̃

(d)
k = q

(d)
k /pk.

In the spirit of Kornya (1983) and De Pril (1988)2, one can also write the
p.g.f. of S1 as

ϕS1(s) = eG(s) (20)

where
G(s) = g0 + g1s + g2s

2 + g3s
3 + . . . (21)

2Although De Pril used to take the logarithm of the p.g.f.
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under mild assumptions. Of course, the value of g0 is easily determined:

g0 = ln fS1(0) = ln Pr[S1 = 0] = ln
∏

k∈V

pk. (22)

If q
(m)
k +q

(d)
k < 1/2, which is usually the case in practice, the other coefficients

gx in G(s) are given by

gx =
∑

k∈V

∞∑

n=1

(−1)n+1

n

n∑

j=1

(
n

j

)
(q̃

(m)
k )j · (q̃(d)

k )n−j · 1{x=mkj+dk(n−j)} (23)

for x = 1, 2, . . . See Dufresne (1996) for an elementary derivation of (23)
or De Pril (1989)3. Under the aforementioned assumption, the infinite sum
converges. Thus, a (very) good approximation of gx is obtained by truncating
the infinite sum at some value r of the index n. This value r is called the
order of the approximation and can be chosen to achieve any desired degree of
precision. The reader is referred to De Pril (1988) for the general formula to
use in selecting r. The approximate value of gx resulting from such truncation
will be denoted by g(r)

x .

Now, we have all the ingredients to compute the probability function of
S at any desired degree of precision. The p.f. of S, fS(x) = Pr[S = x], is
simply given by the coefficient of sx in ϕS(s) which can be computed easily
and efficiently as we shall see in what follows.

If we substitute (17) and (20) in (16), we get

ϕS(s) = eG(s)+λ(ϕY (s)−1)

= eC(s) (24)

where
C(s) = c0 + c1s + c2s

2 + c3s
3 + . . . (25)

is a power series in s with cx = gx +λfY (x), x = 1, 2, . . . , and c0 = ln Pr[S =
0]. Since all the coefficients in C(s) can be determined, we can use the
following theorem mentioned in Kornya (1983) to obtain the (approximate)
distribution of S.

3The case of “translated rescaled Binomial” distributions for the Bk’s is not directly
treated in De Pril’s papers, as far as the present author knows. His general formula would
lead to (23)
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Theorem: If A(s) and B(s) are power series given by

A(s) =
∞∑

i=0

ais
i and B(s) =

∞∑

j=0

bjs
j, (26)

such that
A(s) = eB(s) (27)

then
A(0) = a0 = eb0 (28)

and

ax =
1

x

x∑

k=1

kbkax−k, x = 1, 2, 3, ... (29)

Proof : For the proof, one considers the identity A′(s) = B′(s)A(s) and
compares the coefficient of sx−1 on both sides.

Replacing in the theorem A(s) by ϕS(s) and B(s) by C(s), and rewriting
slightly we get

fS(x) =
1

x

x∑

k=1

kckfS(x− k)

=
1

x

x∑

k=1

k
(
g

(r)
k + λfY (k)

)
fS(x− k), x = 1, 2, 3, . . . (30)

Formula (30) with fS(0) = Pr[S = 0] given by (15 ) constitutes a recursive
formula.

Naturally, if the set V is empty, formula (30) is the standard compound
Poisson recursive formula4. On the other hand, if V = {1, 2, 3, . . . , m} we
recover the recursive formula for this particular individual model since λ = 0.
Otherwise, we have an in-between model and a mixed recursive formula.

In view of the De Pril transform (DPT) introduced by Sundt (1992),
recursive formula (30) is not surprising at all. To oversimplify a bit, the
DPT of a random variable (or a distribution) is x times the coefficient of sx

in B(s) when one writes a p.g.f. as exp(B(s)), see the above theorem. The

4The value of an empty sum is zero (with probability 1).
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sequence of coefficients {cx}∞x=1 multiplied by x is the DPT of S. If we denote
by D the De Pril transform operator, we have

D[S] = {xcx}∞x=1. (31)

It can be seen that it is the sum of the DPTs of S1 and S2 since their
DPTs are {xgx}∞x=1 and {λxfY (x)}∞x=1, respectively. The following DPT’s
properties justify these claims:

• the DPT of the sum of independent random variables5 is the sum of
their respective DPTs;

• if its probability mass at zero, fZ(0), and its DPT are known, the
probability function of a r.v. Z can be calculated recursively with the
following formula:

fZ(x) =
1

x

x∑

k=1

D[Z](x)fZ(x− k), x = 1, 2, 3, ... (32)

where D[Z](x) is the x-th element in the DPT sequence.

If we look at (23), we see that it is the sum of individual DPTs of the Xk, k ∈
V , divided by x. The DPTs of these Xk could also be calculated numerically
by a recursive formula, see Sundt (1992, 1995) for example. Since these
numerical calculations cannot go indefinitely, by stopping at an adequate
point one gets the approximation g(r)

x (after dividing by x). We do not go
any further on this topic; the interested reader is referred to Sundt’s various
papers on the subject.

5. Illustration

For a numerical illustration, we will use the data of the pension fund
considered by Held (1982). Today, these data are still typical of a Swiss
pension fund. They could be adjusted to reflect the time value of money but
that would only represent a change of monetary unit. The reader should keep
in mind that the amounts of money involved are expressed in Swiss francs of

5Or of the convolution of distributions.
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1982. Adjusting the values mentally should be enough to appraise current
values. We are mostly interested in relative differences. It is also for this
reason that the fact that Swiss “technical bases” have evolved is immaterial.

Held’s data contain some negative net amounts at risk. Although it may
be important in practice to take into account these values, it is not the
point we want to exemplify. Consequently, we set all the negative values
equal to zero. Since, in this context, stop-loss reinsurance covers death and
disability benefits, the data set pertains to a group of 230 active members
of a given pension fund. The data set gives only the essential information:
230 quadruplets, each of which consists of the death NAAR, the disability
NAAR, the (one-year) probabilities of death and of disability.

Since this is all the information we have about these active members, we
will build our mixed models in a somewhat artificial way. We will sort the
230 quadruplets in descending order of the probability of disability6. We
will consider three mixed models. The first will assigned the first 120 sorted
risks to an individual model and the rest to a collective model. We proceed
in the same way for the second mixed model but retain the first 80 risks
for the individual model. For the third one, only the first 40 risks with the
highest probability of disability go in the individual model, the others in the
collective one. So, the cardinality of V is 120, 80, and 40 in the first, second,
and third mixed models.

No adjustments to the claim frequency parameter is made in the collective
models since we want to keep the examples simple. Moreover, we do not have
much information.

In addition to the mixed models, pure individual and collective models
are applied to the data. Thus, we have the two extreme cases and three
in-between ones.

The calculations have been performed with the recursive formula pre-
sented in section 4. The order r of approximation for the individual model
and submodels has been chosen high enough to ensure that the calculated
values of g(r)

x are equal to the exact ones in view of the precision of the
computer. The remaining error is only due to computer roundoff7.

6Generally, the probability of disability is much higher than the probability of death.
7The recursion is stable, at least with this data set.
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Tables 1 and 2 below present the results. The values in their first col-
umn are thousands of Swiss francs. The (pure) individual model is used as
benchmark.

The second column of Table 1 gives the individual model’s distribution
function (d.f.) at fourteen selected points. The remaining columns give the
ratios of the d.f. of the other four models to the one of the individual model.
These ratios are expressed as percentages. One can see that the differences
between the models are small. Nevertheless, their cumulative effect on the
stop-loss premiums is non-negligible, as can be seen from Table 2. From
Table 1 we can conclude that the level of the stop-loss deductible selected
in this case would be about the same8 whatever the model adopted. The
stop-loss deductible is generally one of the higher quantiles.

Table 1. Three mixed models and the collective
approximation relative to the individual model.

Ratios of distribution functions.

Ind #V = 120 #V = 80 #V = 40 Coll

x FS(x) % % % %
0 0.28725 100.40 100.70 100.70 100.71
3 0.30730 100.08 100.38 100.38 100.39

19 0.41256 99.49 99.79 99.79 99.80
33 0.50090 99.12 99.41 99.41 99.42
54 0.59968 98.96 99.25 99.26 99.26
88 0.69846 98.98 99.23 99.23 99.23

127 0.80091 98.95 99.18 99.18 99.18
144 0.85095 98.97 99.01 99.01 99.02
176 0.89999 98.94 98.87 98.87 98.87
237 0.95045 98.97 98.84 98.84 98.84
289 0.97491 98.98 98.88 98.88 98.88
363 0.98996 98.99 98.95 98.95 98.94
422 0.99514 99.00 98.97 98.97 98.97
537 0.99900 99.00 98.99 98.99 98.99

In its third column, Table 2 gives the individual model’s net stop-loss
premium (SLP) in thousand of Swiss francs. Column 2 repeats the quantiles

8In addition, stop-loss deductibles are normally round numbers.
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values for easier reference. Table 2’s four last columns show the increases
in the net stop-loss premiums that result from switching from the individual
model to one of the other models. The increases are expressed as percentages
of the individual model’s net SLPs.

From Table 2, one can see that the increases in the net SLPs are generally
non-negligible. For quantiles that matter, the increase is about 5% for the
last three models. One should note that the expected value of the aggregate
claims is the same in all five models. Therefore, the absence of increase in
the net stop-loss premium with deductible equal to zero is not accidental.

It should be also kept in mind that the Held’s data set in not particularly
“dangerous”. It is also relatively small. Much more dangerous such data sets
are encountered in practice and would magnify the phenomena observed in
our examples. Current stop-loss gross premiums being about two times the
net SLP, the differences in premiums could amount from several hundreds to
a few thousands of Swiss francs, depending on which models is adopted.

Table 2. Three mixed models and the collective
approximation relative to the individual model.

Increases in the net Stop-loss premium.

Ind Ind #V = 120 #V = 80 #V = 40 Coll

x FS(x) SLP (x) % % % %
0 0.28725 66.4782 0.00 0.00 0.00 0.00
3 0.30730 64.3453 0.02 0.02 0.02 0.02

19 0.41256 53.8825 0.11 0.15 0.15 0.15
33 0.50090 46.1711 0.18 0.26 0.26 0.27
54 0.59968 36.7360 0.24 0.44 0.44 0.44
88 0.69846 24.9138 0.32 0.84 0.84 0.86

127 0.80091 15.3621 0.48 1.76 1.77 1.81
144 0.85095 12.2489 0.54 2.37 2.39 2.44
176 0.89999 8.2675 0.66 3.33 3.36 3.44
237 0.95045 3.9069 0.68 4.75 4.79 5.00
289 0.97491 1.9882 0.76 5.05 5.10 5.54
363 0.98996 0.7840 0.77 5.33 5.38 6.26
422 0.99514 0.3505 0.83 5.72 5.79 7.27
537 0.99900 0.0697 1.03 7.15 7.23 10.62
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Observe that, currently, reinsurers that offer stop-loss coverages for pen-
sion funds tend to use the collective model for obvious reasons... Stop-loss
premiums are negotiable. The models and approach presented in this paper
can give the pension fund’s management some arguments in the negotiation
process.

6. Conclusion

We discussed why a collective model or some model “between” it and the
individual model may be better suited to pension funds (and, possibly, some
life insurance portfolios). We proposed the use of a recursive formula for
the calculation of the aggregate claims distribution. This recursion is only
valid when all the net amounts at risk are nonnegative. The general case
still requires some numerical convolutions. Our examples showed that the
differences between the different models can be non-negligible in practice.
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