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Abstract 
 
In this paper, a multivariate quasi-negative binomial distribution is proposed to model frequency 
dependence among different risk types. The operational risk diversification effect is illustrated 
through frequency dependency modeled by the bivariate quasi-negative binomial distribution 
under a framework of Monte Carlo simulation. 
 
 
Keywords and phrases: Bivariate quasi-negative binomial distribution; marginal distribution; 
dependence; operational risk. 
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1. Introduction 
 

In the banking industry, three types of dependence—loss (severity), frequency and 

aggregate loss—can be observed in operational risk loss data (Chernobai et al. 2007). Under the 

advanced measurement approaches (AMA) of Basel II guidelines, operational risk capital charge 

calculations may be allowed to take these types of dependence into account. 

“Banks may use internal estimates of dependence among operational losses across and within 
units of measure if the [bank] can demonstrate to the satisfaction of the [AGENCY] that its 
process for estimating dependence is sound, robust to a variety of scenarios, and implemented 
with integrity, and allows for the uncertainty surrounding the estimates. If the [bank] has not 
made such a demonstration, it must sum operational risk exposure estimates across units of 
measure to calculate its total operational risk exposure.” (U.S. Office of the Federal Register, 
National Archives and Records Administration 2007) 
 
 

There are many studies on risk dependence modeling. Copula theory is the most popular 

and extremely useful in modeling severity dependence structure.  

 

Let 1( , , )nX X  be an n-dimension random vector with marginal distributions 1  ,..., nF F

and the associated uniform random variables    ( ),    1,...,i i iU F X i n= = . If 1( ,..., ) nC u u is the 

distribution function of 1( , , ) nU U , then the distribution function of 1( , , )nX X  is given by 

1 1 1 ( , , )  ( ( ), , ( )) n n nH x x C F x F x=   

and 1( ,..., ) nC u u is the copula function. So, the copula can be interpreted as a function that links 

the marginal distributions of a random vector to form their joint distribution. Conversely, if C is 

a copula and ,    1, ,  iF i n=  are distribution functions, then the function H above is a joint 

distribution function with marginals ,    1, ,iF i n=  .  
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Copula theory captures the dependence structure among continuous random variables and 

hence offers great flexibility in building multivariate statistical models. However, copula theory 

cannot fully capture the dependence structure of discrete random variables (Genest and 

Neslehova 2007). More detailed review on copulas and dependence can be found in McNeil et 

al. (2005) and Nelsen (2006).  

 

Frequency dependence occurs when different types of risks share some common risk 

driving factors such as the business size or economic cycle. These risk factors may or may not be 

observable. Wang (1998) provided examples where individual risks are correlated because the 

risks are subject to the same claim generating mechanisms. Examples include property insurance 

where risk portfolios in the same geographic region are correlated because claims may be 

contingent upon the occurrence of a natural disaster. Powojowski et al. (2002) assumed that the 

number of events of the operational processes follows a Poisson distribution and obtained a 

multivariate Poisson distribution by assuming all these number of events share an underlying 

common Poisson process. The special case, a bivariate Poisson model, is the same as the model 

obtained through trivariate reduction (Johnson et al. 1997, chap. 37). Lindskog (2003) derived a 

more general common Poisson shock processes model using the same logic. A limitation of the 

common Poisson shock model is that it can only model positive correlations. 

 

Aggregate loss dependence is the joint effect of frequency dependence and loss 

dependence. Due to the complexity of the dependence structure, aggregate loss dependence 

modeling is often achieved by Monte Carlo simulation. 

 



 

4 

The central idea for both copula and common Poisson shock models is to construct a joint 

distribution for a random vector of risk types. The joint distribution must be able to describe the 

marginal behavior of individual risk types and their dependence structure as well. Li et al. (2010) 

proposed a new method to construct multivariable discrete distributions by using the generalized 

Lagrangian distribution of the first type. With the method, one can derive numerous discrete 

multivariate distributions including bivariate quasi-negative binomial distribution (BQNBD). 

Section 2 describes the BQNBD and its probabilistic structure. The risk diversification effect is 

illustrated through frequency dependency modeled by the BQNBD under a framework of Monte 

Carlo simulation in Section 3. 
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2. Bivariate Quasi-Negative Binomial Distribution and its Probabilistic 
Structure 

 
 Li et al. (2006) and Li (2007) defined the class of generalized Lagrangian distributions, in 

which an extra parameter (the Lagrangian expansion point) was brought into its probability mass 

function (pmf). Let ( )f z  and ( )g z  be analytic functions, ( ){ }1

0
( ) ( ) 0xx

z
D g z f z−

=

 ′ ≥   and (0)g

> 0, where /D z= ∂ ∂ . If there is a point t  > 0, such that ( )f t  > 0 and ( )g t  > 0, for x N∈ , 

where N is the set of natural numbers, then the generalized Lagrangian probability distribution of 

the first kind ( 1 ( , , ; )GL f g t x ) is defined as 

 ( ) ( ){ }1

0

(0) / ( ),             0
( | ) ( ) / ( )

( ) ( ) ,              1.
! ( )

x
xx

z

f f t x
p x t P X x t g t

D g z f z x
x f t

−

=

=
= = =   ′ ≥  

 (1) 

 

 Many discrete probability distributions can be derived by using specific ( )f z  and ( )g z  

functions. For example, if ( ) g z = zeλ  and ( )f z  = zeθ , then, the pmf of the generalized 

Lagrangian distribution is 

 ( ) 1( ( ) ) / !x t txP X t x t t tx e xθ λθ θ λ − − −= = + , for 0,1, 2, ,x =   (2) 

which is the pmf of the generalized Poisson distribution (GPD) when t = 1 and is the pmf of the 

Poisson distribution when 0λ = (Consul 1989). In the pmf in (2), we have 0 < λ < 1, θ > 0 and t 

> 0. 

 

Let ( )iX t  ( 1, 2,...,i m= ) be discrete random variables following the generalized 

Lagrangian distributions 1 ( , , ; )i i iGL f g t x  with probability mass function ( | )i ip x t  and the 
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variable t be a random variable with density ( )s t . Li et al. (2010) showed that under certain 

conditions, the function 1
1

( ,..., , ) ( ) ( | )
m

m i i
i

p x x t s t p x t
=

= ∏  is a joint probability distribution of 

1 2( , ,..., , )mX X X T  for random variables 1 2, ,..., mX X X  and T, where T is a random variable with 

the density function ( )s t . With the joint probability function, Li et al. (2010) proposed a new 

method to generate multivariate discrete distributions and their marginal distributions. By 

choosing ( ) i z
if z eθ= , ( ) i z

ig z eλ=  and 1,2i =  and supposing the random variable t follows a 

gamma distribution with the density function 1( ) / ( ),  0ts t t e tα α ββ α− −= Γ > , Li et al. (2010) 

obtained a new bivariate discrete distribution: the bivariate quasi-negative binomial distribution. 

For more details in generating multivariate distributions including multivariate quasi-negative 

binomial distribution (MQNBD), refer to Li et al. (2010).  

 

Bivariate random variables (X, Y) are said to have a BQNBD if their pmf (Li et al. 2010) 

is given by: 

 

 ( , )P X x Y y= = = ( ) ( )
[ ]

1 1
1 2 2 1

1 2 1 2 2 1 1 2

1 1( )  
( ) ! !

y xy x

x y

y xx y
y x x y

α α

α

δ δ ε εα
α δ δ ε δ ε δ δ δ

− −+ +

+ +

+ +Γ + +
Γ + + + +

, , 0,1, 2,x y =   (3) 

where constants 0, 0, 0i iε δ α≥ ≥ >  and 1,2i = . 

 
 The marginal distributions of X and Y are, respectively, given by, 

 1 1

1 1 1 1 1

1( ) 1( )
! ( ) 1 1 1

x
xxP X x

x x x x

α
ε δα

α ε δ ε δ ε
   +Γ +

= =    Γ + + + + +   
, 0,1, 2,x =   (4) 

 ( )P Y y= = 2 2

2 2 2 2 2

1( ) 1
! ( ) 1 1 1

y
yy

y y y y

α
ε δα

α ε δ ε δ ε
   +Γ +
   Γ + + + + +   

, 0,1, 2,y =   (5) 
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 The above distribution, quasi-negative binomial distribution (QNBD), was also derived 

through a gamma mixture of generalized Poisson distribution by Li et al. (2008). 

 

 The covariance of ( ,  )X Y  is 

cov( , )X Y =
1

1 1 2 20

1
( ) ( )( )

tt e dt
t t

α

α δ ε δ ε

∞ + −

Γ − −∫ ( )
  

2  0  0
1 1 2 2

1
( )

t tt e t edt dt
t t

α α

δ ε δ εα

− −∞ ∞
−

− −Γ ∫ ∫ .        (6) 

 

 It has been shown that the model (3) can model both positive and negative correlation of 

X and Y (Li et al. 2010).  

 

 The conditional distribution of X given Y is 

( )P X x Y y= =
( )

( )

1
2 1 2 1 1 2 1

1 2 1 2 2 1 1 2

( ) 1( )
! ( )

xx y

x y

y xx y
x y x y

α

α

δ δ ε δ δ δ εα
α δ δ ε δ ε δ δ δ

−+

+ +

+ + +Γ + +
=

Γ + + + + +
.                               (7) 

This also is a QNBD. 

 

Equations (3)-(7) describe the probabilistic structure of the BQNBD. Noting that if we let

0, 1, 2i iε = = , then the equation (3) reduces to  

 ( , )p X x Y y= =
( )

2 1

1 2 1 2

( )
! ! ( )

x y

x y

x y
x y

α α

α

δ δα
α δ δ δ δ

+ +

+ +

Γ + +
=

Γ + +
, , 0,1, 2,...x y = ,               (8) 

 

 The marginal distributions (4) and (5) reduce to the negative binomial distributions 

(NBD) and the covariance of ( ,  )X Y  is given by 

 1 1
1 2cov( , )X Y αδ δ− −= .                                                                                             (9) 
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Other special cases can be obtained in a similar way. For example, one can assume one of 

the , 1, 2i iε =  to be zero and the other parameters to be certain positive numbers. 
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3. Frequency Dependence and Diversification Effect of Operational Risk 
 

The bivariate quasi-negative binomial distribution provides a new distribution for 

studying frequency dependency in practice. Li et al. (2011) investigated the properties of the 

marginal distribution of BQNBD and showed that the moments of the marginal distribution do 

not exist in some situations and the limiting distribution of the marginal distribution is the 

generalized Poisson distribution under certain conditions. Various application results in different 

fields showed that the marginal distribution and its zero-inflated model is extremely suitable for 

operational risk or insurance claims where the data is highly skewed, has heavy tails or excessive 

numbers of zeros. More detailed review on QNBD can be found in Li et al. (2011). In this 

section, we apply the bivariate distribution BQNBD to an operational risk data to demonstrate its 

usefulness in studying diversification effects of risk. 

 

Li et al. (2010) applied the BQNBD to an operational dataset to model the frequency 

dependence of two risk types. The frequency data was from American Banking Association 

(ABA) and on monthly basis. The sample size is 50. Let variable X be the number of loss events 

that occurred for the risk type of employment practices and workplace safety per month and Y be 

the number of loss events that occurred for the risk type of client, products and business practices 

per month. The sample means and standard deviations are, respectively, x = 14.48, xs = 7.88 and 

y = 13.52 and ys = 7.80. The Pearson correlation coefficient between the two risk types is 0.45. 

Clearly, both X and Y exhibit over-dispersion property. Li et al. (2010) used the BQNBD to 

model the dependence of X and Y and justified that the BQNBD provided a good fit only when 

all parameters in the BQNBD are positive. The parameter estimations are 1̂δ = 2.3511(1.4836), 

2̂δ  = 2.6027(1.6284), 1̂ε  = 0.0377(.0143), 2ε̂  = .0440(.0154) and α̂  = 21.4488(11.5390). The 
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numbers in the parentheses are the standard error of the estimation. These parameters specify the 

pmf of the marginal distribution of Y in equation (5) and the pmf of the conditional distribution 

of X given Y in equation (7). For more details on parameter estimation and other properties of the 

BQNBD, refer to Li at el. (2010). 

 

Value at risk (VaR) is a standard risk measurement in the banking industry. It is defined 

as a (1 )%α−  quintile of an aggregate loss distribution. In this paper, the aggregate loss 

distribution is obtained by Monte Carlo simulation. Mathematically, the aggregate loss (AL) may 

be written as 

1

N

i
i

AL X
=

= ∑  

where N is a random number measuring the frequency of losses and iX  are loss severities. If the 

probability of density functions (PDF) of the severity distributions of X and Y are ,x yf f , the 

procedure for generating the aggregate loss distribution of X and Y under the BQNBD 

dependency model is below: 

1. Generate a random number from equation (5), denoted by yN .  (To obtain annual 

frequency from monthly frequency, one needs to repeat step 1 to generate 12 

random numbers from equation [5] and add them up.) 

2. Generate a random number, denoted by xN , from equation (7) given yy N= . (To 

obtain annual frequency from monthly frequency, one needs to repeat step 2 to 

generate 12 random numbers from equation [7] and add them up.) 
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3. Generate number of yN  random numbers from yf  and xN  random numbers from

xf . The summation of all these random numbers represents the total loss of X and 

Y in a given time period.  

4. Repeat step 1 to 3 a certain number of times (for example, 1 million times) to 

form the aggregate loss distribution of X and Y. 

 

Generating a random number from equation (5) can be done with a lookup table. 

Specifically, given estimated parameters, one can calculate the probability of 

( ), 1, 2,...,P X i i= =  and accumulative probability of 
0

( ) ( )
i

j
P X i P X j

=

≤ = =∑  from equation (5). 

Then for any random number p generated from a uniform distribution, the random number 

corresponding to the number p from equation (5) is the number x such that 

1

0 0
( ) ( )

x x

j j
P X j p P X j

+

= =

= ≤ < =∑ ∑ . A random number from equation (7) can be generated in a 

similar way. 

 

The random number generators for most commonly used distributions including normal, 

lognormal, uniform, Weibull, gamma, Poisson, and binomial and negative binomial distributions 

are embedded in commonly used statistical software such as SAS, SPSS and R. 

 

The severity of X and Y could be empirical distributions or of any analytic form estimated 

from data. For illustration purposes and for the sake of confidentiality and simplicity, we 

arbitrarily choose the severity distributions of X and Y, which are presented in table 1. The 

distributions include lognormal, exponential and Weibull for both X and Y, and the last case is 



 

12 

Weibull distribution for X and lognormal distribution for Y. By following the aggregate loss 

distribution generating procedure, we obtain the aggregate loss distribution of X and Y. 

Meanwhile, we keep the intermediate results of the procedure and obtain marginal aggregate loss 

distribution of X and Y respectively. (In practice, one may obtain the aggregate loss distribution 

of X or Y by directly employing its marginal frequency model and severity model estimated from 

the original data. However, our study shows the diversification effect is similar.) The capital 

charges are taken as a certain percentile of the aggregate loss distributions. Table 1 presents the 

comparison results of capital charges under perfect correlation and dependence structure of the 

BQNBD. The perfect correlation refers to all severe operational risk losses occurring 

simultaneously and systematically in the same time period (e.g., one year). The capital charge 

under this circumstance is the summation of certain (e.g., 99.9th) percentiles for each loss type. 

Diversification effect (DE) is defined as a proportion of the capital charge reduction due to loss 

dependence as opposed to the capital charge under perfect correlation assumption.  
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TABLE 1 
VaRs Assuming Perfect Correlation and Diversification Effects 

 

PDF 

2

2
(ln( ) )

21 , 0
2

16, 2.5

x

xf e x
x

θ
λ

πλ
θ λ

−
−

= >

= =

 
1 , 0

0.01

x

xf e xλ

λ
λ

−
= >

=

 

2

2
(ln( ) )

21 , 0
2

18, 2.3

y

yf e y
y

θ
λ

πλ
θ λ

−
−

= >

= =

 
1 , 0

0.02

y

yf e xλ

λ
λ

−
= >

=

 

 VaR95% VaR99% VaR99.9% VaR95% VaR99% VaR99.9% 

X 8.03E+10 1.73E+11 5.45E+11 22143.8 24371.3 26982.0 

Y 7.57E+10 1.65E+11 5.38E+11 10375.7 11428.0 12683.4 
Perfect 
correlation 1.56E+11 3.38E+11 1.08E+12 32519.5 35799.3 39665.4 

Dependence 1.4E+11 2.75E+11 8.06E+11 31759.6 34673.2 38082.5 
Diversification 
effect 10.2% 18.5% 25.6% 2.3% 3.1% 4.0% 

PDF 

1exp( ( ) ) ( ) , 0

0.5, 1000

x
x xf xα αα
λ λ λ

α λ

−= − >

= =
 

1exp( ( ) ) ( ) , 0

0.1, 1000

x
x xf xα αα
λ λ λ

α λ

−= − >

= =
 

1exp( ( ) ) ( ) , 0

0.5, 1200

y
y yf yα αα
λ λ λ

α λ

−= − >

= =
 

2

2
(ln( ) )

21 , 0
2

16, 3

y

yf e y
y

θ
λ

πλ
θ λ

−
−

= >

= =

 

 VaR95% VaR99% VaR99.9% VaR95% VaR99% VaR99.9% 

X 482019.4 550800.9 635786.4 1.39E+12 8.2E+12 7E+13 

Y 544263.5 624131.3 722122.1 3.48E+11 1.01E+12 4.45E+12 
Perfect 
correlation 1026283 1174932 1357909 1.74E+12 9.21E+12 7.45E+13 

Dependence 965647.7 1076676 1211723 1.69E+12 8.66E+12 7.05E+13 
Diversification 
effect 5.9% 8.4% 10.8% 2.5% 6.0% 5.3% 

 

Some observations can be drawn from the table above: 

1. The severity distribution of X and Y could be of the same form or a different form, 

indicating the flexibility of our dependence model. 
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2. The capital charge reduction rate varies with the choice of severity distributions. 

Heavier tail severity distributions often lead to a higher diversification effect. 

3. The diversification effect becomes higher as risk measurement moves to the tail 

of the loss distributions. The diversification effect could be as high as more than 

25 percent at 99.9th percentile measurement.  
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Conclusion 
 

The paper details the probabilistic structure of the bivariate quasi-negative binomial 

distribution. The operational risk diversification effect is illustrated through frequency 

dependency modeled by the BQNBD under a framework of Monte Carlo simulation. It is shown 

that the diversification effect in a bivariate case could be as high as more than 25 percent under 

the framework of the BQNBD dependence model. The method of studying diversification effect 

is statistically sound but very flexible, easy to extend to multivariate cases and easy to implement 

in practice.  

 

The BQNBD can be extended to include covariates in the data. Future study will consider 

regression models based on QNBD and BQNBD for count data. 
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